
Received July 16, 2021, accepted August 5, 2021, date of publication August 12, 2021, date of current version August 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104475

Towards Edge Computing as a Service: Dynamic
Formation of the Micro Data-Centers
MILOŠ SIMIĆ , IVAN PROKIĆ , JOVANA DEDEIĆ , GORAN SLADIĆ ,
AND BRANKO MILOSAVLJEVIĆ
Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Corresponding author: Miloš Simić (milos.simic@uns.ac.rs)

ABSTRACT Edge computing brings cloud services closer to the edge of the network, where data originates,
and dramatically reduces the network latency of the cloud. It is a bridge linking clouds and users making
the foundation for novel interconnected applications. However, edge computing still faces many challenges
like remote configuration, well-defined native applications model, and limited node capacity. It lacks
geo-organization and a clear separation of concerns. As such edge computing is hard to be offered as a
service for future real-time user-centric applications. This paper presents the dynamic organization of geo-
distributed edge nodes into micro data-centers to cover any arbitrary area and expand capacity, availability,
and reliability. A cloud organization is used as an influence with adaptations for a different environment,
and a model for edge applications utilizing these adaptations is presented. It is argued that the presented
model can be integrated into existing solutions or used as a base for the development of future systems.
Furthermore, a clear separation of concerns is given for the proposed model. With the separation of concerns
setup, edge-native applications model, and a unified node organization, we are moving towards the idea of
edge computing as a service, like any other utility in cloud computing.

INDEX TERMS Cloud computing, distributed systems, edge computing, formal specifications,
infrastructure as software, platform.

I. INTRODUCTION
Over the past decade, computation and data volumes
have increased significantly [1]. Augmented reality, online
gaming, autonomous vehicles, or the Internet of Things (IoT)
applications produce huge volumes of data. Such workloads
require latency below a few tens of milliseconds, which a
centralized model like the cloud cannot offer [1]. Cloud
computing (CC) can be defined as the aggregation of
computing resources as a utility and software as a service [2].
Hardware and software in big data-centers (DCs) provide
services for user consumption over the internet [3]. Resources
like CPU, GPU, storage, and network can be used as well
as released on-demand as utility [4]. The key strength
of the CC is offered services [2]. The traditional CC
model provides enormous computing and storage resources
elastically, to support the various applications needs. This
property refers to the ability of the cloud to allow services
allocation of additional resources or release unused ones to
match the application workloads on-demand [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

Data is required to be moved to the cloud from data
sources, which introduces a high latency in the system [6].
For example, Boeing 787s generates half a terabyte of data
per single flight, while a self-driving car generates two
petabytes of data per single drive. Bandwidth is not large
enough to support such requirements [7]. Data transfer is
not the only problem: applications like self-driving cars,
delivery drones, or power balancing in electric grids require
real-time processing for proper decision-making [7]. Serious
issues might be faced if a cloud service becomes unavail-
able due to a denial-of-service attack, network, or cloud
failure [8].

Cloud centralized architecture with enormous DCs capaci-
ties creates an effective economy of scale to lower administra-
tion cost [9]. However, when such a system grows to its limits,
centralization brings more problems than solutions [8], [10].
Despite all the CC benefits, applications and services face
serious degradation over time due to the high bandwidth and
latency [11]. This can have an enormous consequence on the
business and potentially human lives as well. Organizations
use cloud services to avoid huge investments [12], like
creating and maintaining their own DCs. They consume

114468 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8646-1569
https://orcid.org/0000-0001-5420-1527
https://orcid.org/0000-0002-5946-4438
https://orcid.org/0000-0002-0691-7392
https://orcid.org/0000-0003-4551-9802
https://orcid.org/0000-0002-3202-1127

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

resources created by cloud providers [13] and pay for usage
time – the ‘‘pay as you go’’, model.

To overcome cloud latency, research led to new computing
areas like edge computing (EC). EC is a model in which
computing and storage utilities are in proximity to data
sources [13]. The cloud is enhanced with new ideas for
future generation applications [14]. Over the years, designs
like fog [15], cloudlets [12], and mobile edge computing
(MEC) [16] emerged. In this paper, we refer to all these
models as edge nodes. They all use the concept of data
and computation offloading from the cloud closer to the
ground [17], while heavy computation remains in the cloud
because of resource availability [14]. EC models introduce
small-scale servers (i.e., EC nodes), operating between data
sources and the cloud. Typically, these EC nodes have much
fewer capabilities compared to their cloud counterparts [18].
Aroca et al. investigated the capabilities of small devices,
and they noticed that small ARM-based devices have a good
performance for building servers and clusters, considering
their performance perWatt relation [19]. These servers can be
spread in base stations [16], coffee shops, or over geographic
regions to avoid latency, as well as huge bandwidth [12]. They
can serve as firewalls [20] and pre-processing tier, while users
get a unique ability to dynamically and selectively control the
information sent to the cloud.

EC models, on the other hand, lack dynamic geo-
organization, well-defined native applications, and a clear
separation of concerns (SoC) (i.e., a formal separation of
the algorithms from special-purpose concerns [21]). SoC
allows for modularity: a part of a system can be safely
implemented or changedwithout need for detailed knowledge
of the overall system and without affecting other parts
of the system. All the above-named issues imply that the
existing EC models cannot be offered as a service to the
users. They usually exist independently from one another,
scattered without communication between them, offered by
providers who mostly lock users in their ecosystem. Co-
located edge nodes should be organized locally, as micro [22],
community or edge clouds [23] to help power-hungry servers
reduce traffic. This cloud-like extension makes the whole
system and applications more available and reliable, but
also extend resources beyond the single node or group of
nodes, maintaining good performance to build servers and
clusters [19]. Not all companies and organizations will be
able to deploy edge nodes [12]. EC nodes could be deployed
by government authorities or large cloud companies [24] for
their own needs, and the general public can use them with the
familiar ‘‘pay as you go’’ model.

This paper contributes to CC with unique results in the
literature that deepen and strengthen our understanding of CC
as a whole. It proposes a formal model that can serve as a
base of EC as a service model that will organize EC nodes
into micro clouds dynamically, abstracting infrastructure to
the level of software — infrastructure as software [25].
The presented model is inspired by the cloud architecture,
with adaptations for a different environment. Two possible

scenarios of model implementation could coexist: (i) a
stand-alone implementation or (ii) an extension integration
within existing tools, as a node organizer and register. Both
implementations will enable reorganization of EC nodes
dynamically as needed, allowing disposable micro cloud
infrastructure due to the proposed model.

Our model expands peer-to-peer systems into new direc-
tions and blends them with the cloud to allow novel human-
centered, cloud-like applications. This extension yields a
model for EC applications utilizing these adaptations, and
clear SoC for extended cloud model as a direct implication.

The main contributions of the paper are as follows:
(i) A formally correct and validated model able to maintain

a record of available EC nodes registered in the system
and their employment in some micro cloud, allowing
recruiting more free nodes if required.

(ii) A formally correct and validatedmodel that can organize
EC nodes dynamically in a standard way based on cloud
architecture, with adaptation for an EC geo-distributed
environment. Give users the ability to reorganize nodes
in the best possible way in some geographic areas
to serve only the local population nearby. Such a
model allows treating micro clouds disposable, allowing
infrastructure to be abstracted to the level of software,
creating infrastructure as software system.

(iii) A set of clear technical requirements that nodes must
fulfill to join the platform. With these requirements,
we can unify heterogeneous EC nodes in the same
way, even allowing the inclusion of volunteer nodes if
available infrastructure cannot support newly created
load.

(iv) Describe how to offer EC as a service, like any other
utility in the cloud. EC as a service could be offered
to researchers and developers to create new human-
centered applications, giving them the ability to do
resource management. If the users need more resources
on one side, they can take them from some other resource
pool and move them to the place they need. Or, they can
organize their resources in any other way that suits them
best.

(v) Present bright SoC for the future system that will extend
the standard CC model, in which every part will have an
intuitive role and can complete a distinct job. This will
make such a system easier to understand, modify and
extend.

Based on the previously listed contributions, our model
should be seen as an automated tool for failure where
no micro cloud is irreplaceable. Such model, to the best
of the authors’ knowledge, has not been studied yet. The
proposed model can exist as a stand-alone solution, the aiding
component of existing orchestration engines, or part of the
infrastructure for every cloud provider.

The rest of the paper is organized as follows: Section II
discusses related work. The design and architecture of the
system are formally presented in Section III. Section IV
outlines an example of a high-level application for the

VOLUME 9, 2021 114469

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

proposed model. For that purpose, we used the combination
of area traffic control and healthcare applications during the
COVID-19 outbreak in the city of Milan, Italy. Section V
collects some concluding remarks and future directions of our
research.

II. RELATED WORK
This section presents the relevant studies of the literature to
our solution. The related work is summarized in two parts:
(A) nodes organization and (B) platform model.

A. NODES ORGANIZATION
A zone-based organization for EC nodes presented by
Guo et al. in [26], gives an interesting perspective on EC in
the application of a smart vehicle. The authors showed how
zone-based models enable continuity of dynamic services,
and reduce the connection handovers. Also, they show how to
enlarge the coverage of ESs to a bigger zone, thus expanding
the computing power and storage capacity of ESs. Since
one of the premises of EC is geo-distributed workloads,
organizing ESs into zones and regions could potentially
benefit EC.

Baktir et al. [27] explored the programming capabilities
of software-defined networks (SDN). Findings show SDN
can simplify the management of the network in a cloud-
like environment. SDN is a good candidate for networking
because it hides the complexity of the heterogeneous
environment from the end-users. Kurniawan et al. [28] argue
about very bad scalability in centralized delivery models
like cloud content delivery networks (CDN). They proposed
a decentralized solution using nano DCs as a network of
gateways for internet services at home [28]. These DCs are
equipped with some storage as well. Authors show a possible
usage of nano DCs for some large-scale applications with
much less energy consumption.

Ciobanu et al. [29] introduce an interesting idea called
drop computing. The authors show that we can compose
EC platforms ad-hoc, thus enabling collaborative computing
dynamically, using a decentralized model over multilayered
social crowd networks. Instead of sending requests to the
cloud, drop computing employs the mobile crowd formed of
nearby devices, hence enabling quick and efficient access to
resources. The authors show an interesting idea of how to
create a computing group ad-hoc. Creating ad-hoc platforms
from crowd resourcesmight raise a few possible concerns: (1)
crowd nodes availabilities, and (2) offered resources. Crowd
nodes might be a captivating idea as a backup option in cases
we need more computing power or storage, and there are no
more available resources to use.

Micro data-centers (MDCs) are an interesting
model and area of rapid innovation and development.
Greenberg et al. [30] introduce MDCs as DCs that operate in
proximity to a big population (on contrary to nano DCs that
serve a lot smaller population), thus minimizing the latency
and costs for end-users [24], [30], and reducing the fixed costs
of traditional DCs. The minimum size of a MDCs is defined

by the needs of the local population [30], [31], with agility as
a key feature. Agility here means the ability to dynamically
grow and shrink resources and satisfy the demands and usage
of resources from the most optimal location [30].

Different from the previously mentioned works, this study
focuses on the descriptive dynamic organization of geo-
distributed nodes over an arbitrary vast area that other
solutions lack. To achieve such a task, the model here
proposed is under the influence of the cloud computing
organization but adapted for a different environment such as
EC. This allows us to push the whole solution more towards
edge computing as a service model like any other utility in
the cloud.

B. PLATFORM MODEL
Kubernetes [32] is an open-source variant of Google
orchestrator Borg [33]. All workloads end in the domain of
one cluster [32]–[34]. Kubernetes is a promising solution for
geo-distributed and EC environments due to its extensibility
and existing tooling, but by design, Kubernetes operate in a
completely different environment. On the other hand, some
solutions show the Kubernetes can run in geo-distributed and
EC environments. For example, Rossi et al. [34] focuses
on adapting Kubernetes for geo-distributed workloads using
a reinforcement learning (RL) solution, to learn a suitable
scaling policy from experience. Like every other machine
learning implementation, this could be potentially slow
due to the required model training. KubeEdge [35] is a
lightweight extension of Kubernetes framework allowing
native containerized application orchestration capabilities to
hosts at edge. Built upon Kubernetes it provides fundamental
infrastructure support for network, applications deployment
and metadata synchronization between cloud and edge. The
comparison of the Kubernetes and our model is described in
detail in Section III-E.

Ryden et al. [23] present a platform for distributed com-
puting with attention to user-based applications. Unlike
other systems, the goal is not to implement a resource
management policy but to give users more flexibility for
application development. Users implement applications using
Javascript (JS) programming language, with some embedded
native code for efficiency. Similarly [29], the authors use
volunteer nodes to run all the workloads, with the difference
that some nodes are storage, while others are calculation
exclusively. Volunteer nodes refer to the nodes donated by
regular people for some project in which their resources are
used for distributed computing and/or storage [36]. Sand-
boxing technique protects nodes running applications from
malicious code. Users develop their applications using JS
only. This restriction comes from using Google Chrome Web
browser-based Native Client (NaCl) sandbox [37]. JS is a
popular language at the moment, but the restriction of a single
languagemight be a deal-breaker for some usages. If standard
virtual machines become too resource-demanding, a solution
using containers could provide sandboxing and bring better
resource utilization. It is an interesting idea to show how

114470 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

users can develop their applications and run them in an EC
environment.

Lèbre et al. [38] describe a promising solution of extend-
ing OpenStack, an open-source infrastructure as a ser-
vice (IaaS) platform for fog/edge use cases. The authors
tried to manage both cloud and edge resources using a
NoSQL database. Implementation of a massively distributed
multi-site IaaS, using OpenStack is a challenging task [38].
Communication between nodes of different sites can be
subject to important network latencies [38]. The major
advantage is that users of the IaaS solution can continue using
the same familiar infrastructure. In [22] Shao et al. present a
possible MDCs structure serving only the local population,
in the smart city use-case. There are few industry operating
frameworks for EC, like Amazon Greengrass [39], deeply
connected to the entire Amazon cloud ecosystem. These
frameworks are mainly used for user-based applications,
while, for instance, GE. Predix [40] is a scalable platform
used for industrial IoT applications.

Our work focuses on fully bringing cloud solutions closer
to the ground and data sources, with adaptation for a
different environment. The users will have a cloud-like
application model, able to fully utilize the new design —
the edge computing applications model. This model should
allow users to develop applications regardless of technology,
language or framework as long as they can be virtualized
(e.g., microservices in containers or virtual machines).

III. DESIGN AND ARCHITECTURE
This section explains the model of EC as a service compared
to the traditional CC model. The formation of such a system
is presented with a formal model and a proof of concept
implementation based on the proposed model.

A. TOWARDS EDGE CENTRIC COMPUTING AS A SERVICE
MDCs with a zone-based server organization are a good
starting point for building EC as a service because we can
extend the computing power and storage capacity to serve the
local population. But, we need a more available and resilient
system with less latency.

Looking at the CC design it can be seen that every part
there contributes to a more resilient and scalable system.
CC architecture consists of three main building blocks:
cluster, region, and availability zone [41].

A cluster represents a set of computers working together,
and they are viewed as a single working entity. A Region
represents a geographic location where cloud resources (or
clusters) are located. Regions are isolated and independent
from each other, composed of few availability zones [41].
Every availability zone represents a logical DC in a region
available for cloud customers to use. Every availability zone
represents a logical DC inside a region to use, and has
redundant and separate power, networking, and connectivity.
If the zone fails, there are still more of them to serve user
requests. CC customers can run their applications in multiple
zones at the same time. With some adaptations, edge-centric

computing (ECC) could use a similar architectural strategy
to dynamically form disposable micro clouds, closer to the
users.

Multiple nodes can form a cluster, providing resources for
the system. Multiple node clusters can be combined into a
bigger logical concept of region, increasing the availability
and reliability of the system and applications. We are talking
about geo-distributed systems, and the scenario is slightly
different than in standard CC model.

The cloud region is a physical infrastructure element
housing numerous racks of computers available for cloud
users [41]. In the ECC, a region could be used to describe a
set of clusters over an arbitrary geographic region. Regions
can accept or release clusters and clusters can accept or
release nodes. ECC regions are composed of at least one
cluster but can be composed of many more. If the entire
cluster goes down, the region can failover workloads to one
of the other clusters in the same region achieving a more
resilient and available system. To ensure less latency, the vast
distance between clusters should be avoided. In normal
circumstances we want the cluster to be as close as possible to
the population making the requests. In CC, region extension
requires connecting modules physically to the rest of the
infrastructure [42].

Multiple regions form a second logical layer - topology.
Topology is composed a minimum of one region and
could span over more regions. When designing a topology,
especially if regions need to share information, the vast
distance between regions should be avoided, if possible.
Topology handles regions in the same way region handles
clusters. If the entire region goes down, the topology can
failover workloads to one of the other regions achieving a
more resilient and available system. If regions are not close
to the population sending requests, that situation may affect
latency. In ECC, the cloud has multiple roles. If the EC node
fails, and there are no available regions or clusters to accept
requests locally, we can still failover to the cloud as our final
resort. The cloud should also store and process data on a
much higher scale than EC nodes. Also, the cloud should be
able to accept pre-processed data from EC nodes for further
processing, if required.

With these simple abstractions, any geographic region can
be covered with the ability to shrink or expand clusters,
regions — micro clouds infrastructure. Compared to other
similar models and solutions, this model allows users
dynamic formation of micro clouds infrastructure and treat
it fully disposable. This allow infrastructure abstraction to
the level of software, creating infrastructure as software
model. Available tools, principles, and techniques (e.g., reuse,
testing, modeling, and evaluation) that can equally be used for
our model.

Table 1 shows similar concepts between CC and ECC. The
accent is on the difference between the physical part and the
logical concepts in CC and ECC.

Separation on clusters, regions, and topologies is a matter
of agreement and usages, similar to modeling in Big Data

VOLUME 9, 2021 114471

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

FIGURE 1. ECC as a service architecture with separation of concerns.

TABLE 1. Similar concepts between CC and ECC.

systems [43], [44]. For example, clusters could be as wide as
the whole city or as small as all devices in a single household
and everything in between. The city could be one region with
parts of the city organized into clusters. Either a city topology
or a country topology can be formed by splitting a city into
multiple regions containing multiple clusters, or splitting a
country into regions, with cities being regions.

Nodes inside the cluster should run some membership
protocol. Gossip style protocols, like SWIM [45], could be
used in conjunction with replication mechanisms [46]–[48]
making the whole system more resilient.

In everything as a service model [49], EC as a service fits
in between Containers as a Service (CaaS) and Platform as a
Service (PaaS), depending on users’ needs. Figure 1. shows
the proposed model for ECC as a service, with SoC for every
layer of the system.

B. SEPARATION OF CONCERNS MODEL
SoC is a vital part of any system because it establishes
boundaries, and logical or physical constraints, which
delineates a given set of responsibilities. This is especially
important if creating a platform to be offered as a service.

Our SoC model for ECC as a service is based on the three
core concepts: devices, resources, and services. Describing
physical services with these three concepts, and specifying
their relationships, was first proposed by Jin in [50]. Based
on these concepts, our model is separated into three layers,
as depicted in Figure 1.

The bottom layer consists of various client devices,
or data creators, and service consumers. The second layer

represents resources. Resources have a spatial feature and
indicate the range of their hosting devices [50]. Developers
must know the resource utilization and spread at any time,
as well as the application’s state and health. Resources
represent EC nodes dynamically organized into disposable
micro clouds, operating near users serving their requests
locally. To be part of the system a node must satisfy four
simple rules: (i) run an operating system with a file system,
(ii) be able to run some application isolation tool, for
example, a container or unikernel engine, (iii) have available
resources for utilization, and (iv) have internet connection.
These simple yet powerful rules could be helpful in certain
situations. For example, if there is an increased demand for
resources that the currently available infrastructure cannot
support. In such a scenario, the inclusion of volunteer nodes
(cf. page 114470) [23], [29] into the system can be allowed
to depreciate load for an indefinite period. Services expose
resources through an interface and make them available
on the Internet [50]. These services operate on two levels.
Front service responds to clients immediately if possible,
or cache information [51], [52] insidemicro clouds for future
requests. Back services operate in the cloud and havemultiple
roles: (i) accept pre-processed data from the front services,
(ii) accept queries from front service if the data user requested
is not cached locally, (iii) serve user requests if there are no
micro clouds able to serve user request locally, and (iv) they
are also responsible for computation and storage, which is
beyond the capabilities of micro clouds.

C. PROPOSED MODEL
Infrastructure deployment will not happen until the process
is trivial [51], hence the key is to simplify ECC management.
The main problem is that going to every node is tedious and
time-consuming, especially in a geo-distributed environment.

The system we propose tackles this issue using remote
configuration and it relies on three protocols: (i) health-
check protocol informs the system about the state of every
node, (ii) cluster formation protocol forms new clusters, and
(iii) list detail protocol shows the current state of the system

114472 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

to the user. For each of the three protocols we also present
formal descriptions using multiparty asynchronous session
types, that are explained in what follows.

1) MULTIPARTY ASYNCHRONOUS SESSION TYPES
Our protocols can be modeled using [53], an extension of
multiparty asynchronous session types (MPST) [54] — a
class of behavioral types tailored for describing distributed
protocols relying on asynchronous communications. The type
specifications are not only useful as formal descriptions
of the protocols, but we can also rely on a modeling-
based approach developed in [53] to validate our protocols
satisfy multiparty session types safety (there is no reachable
error state) and progress (an action is eventually executed,
assuming fairness).

The first step in modeling the communications of a system
using MPST theory is to provide a global type, that is a
high-level description of the overall protocol from the neutral
point of view. Following [53], the syntax of global types is
constructed by:

G ::= {p † qi:`i(Ti).Gi}i∈I | µt.G | t | end (1)

where † ∈ {→,�} and I 6= ∅. In the above, {p †
qi:`i(Ti).Gi}i∈I denotes that participant p can send (resp.
connects) to one of the participants qi, for † =→ (resp.
† =�), a message `i with the payload of sort Ti, and
then the protocol continues as prescribed with Gi. µt.G1 is
a recursive type, and t is a recursive variable, while end
denotes a terminated protocol. We assume all participants
are (implicitly) disconnected at the end of each session
(cf. [53]).

The advance of using approach of [53], when compared
to standard MPST (e.g., [54]), is in a relaxed form of
choice (a participant can choose between sending to different
participants), and, �, that explicitly connects two partici-
pants, hence (possibly) dynamically introducing participants
in the session. Both of these features will be significant for
modeling our protocols (it will be discussed again).

The second step in modeling protocols by MPST is
providing a syntactic projection of the protocol onto each
participant as a local type, that is then used to type check
the endpoint implementations. The definition of projector
operator given in [53] is used. In essence, the projection of
global type G onto participant p can result in Sp = q!`(T) . . .
(resp. Sp = q!!`(T) . . .) when G = p → q:`(T) . . . (resp.
G = p � q:`(T) . . .), and, dually, Sp = q?`(T) . . . (resp.
Sp = q??`(T) . . .) when G = q → p:`(T) . . . (resp. G =
q � p:`(T) . . .), while the projection operator ‘‘skips’’ the
prefix of a global type if participant p is not mentioned neither
as sender nor as receiver. Furthermore, a local type must be
represented by the following syntax:

S ::= +{qiα`i(Ti).Si}i∈I | µt.S | t | end (2)

where α ∈ {!, !!} or α ∈ {?, ??} (in which case qi = qj
must hold for all i, j ∈ I , to ensure consistent external choice
subjects, cf. [53, Page 6.]), and I 6= ∅. Trailing end’s when

FIGURE 2. Low level health-check protocol diagram.

specifying types for our protocols will be omitted. Interested
reader can find details in [53].

2) HEALTH-CHECK PROTOCOL
In a clustered environment, every node has a channel where it
sends metrics as a health-check mechanism. This channel can
be used, or a new one created, to spread actions to the nodes,
for example, a cluster formation message. Figure 2. shows a
low-level health-check protocol between a single node and
the rest of the system, involving the following participants:
Node, Nodes, State, and Log.

The participants which are included in Figure 2 follow the
next protocol: (i) Node sends a health-check signal to the
nodes service; (ii) Nodes accept health-check signals for
every node, update node metrics and if node is used in some
cluster, inform that cluster about the node state; (iii) State
contains information about nodes in the clusters, regions and
topologies; (iv)Log contains records of operations. Users can
query this service.

Periodically, every node will inform the system about
its existence via a health-check ping. This ping will also
carry the information about available labels attached to that
particular node. These labels play a very important role for
the rest of the system, and they can be viewed/used as node
attributes. Furthermore, they will be used when users want
to query available nodes, and/or to form new clusters. For
example, a predefined label geolocation can be used for
cluster formation from nodes that are geographically close to
each other.

Upon the node’s ping, the rest of the system is informed
about the ping if and only if (henceforth iff) the node is used in
some cluster. Algorithm 1 describes how the systemwill store
the node data and determine if the node is free or used. It is a
polynomial or P algorithm class, meaning that the execution
time is either given by a polynomial on the size of the input
or can by such a polynomial be bounded. All subsequent
algorithms fall into the P class category of algorithms.

Set theory can be used to formally describe servers or nodes
(terms are used interchangeably). In the beginning, the server
set S is empty, denoted with S = ∅. Nodes are free iff they
do not belong to any cluster. To determine the node state, a
node-id structure can be used, for example. If the received
health-check message from the particular node contains only
node-id, it is free, otherwise, it is not. If there are n free nodes
in the wild, denoted with si, where i ∈ {1, . . . , n}, and they

VOLUME 9, 2021 114473

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

Algorithm 1 Health-Check Data Received
input: event, config
if isNodeFree(event.id) then

if exists(event.id) then
renewLease(event.id, config.leaseTime);
updateData(event.id, event.data);

else
leaseNewNode(event.id, config.leaseTime,
event.data);
saveMetrics(event.id, event.metrics);

else if isNodeReserved(event.id) then
updateData(event.id, event.data);

else
renewLease(event.id, config.leaseTime);
updateData(event.id, event.data);
saveMetrics(event.id, event.metrics);
sendNodeACK(event.id);

notify the system with a health-check ping that they are free,
they should then be added to the server set, and thus we have:

Snew = Sold ∪
n⋃
i=1

{si}. (3)

The order in which messages arrive is not significant.
Nodes in the same cluster are equal to free nodes, and there
are no special nodes. The only thing cared about is that nodes
are alive and ready to accept some jobs. Algorithm 1 describes
how the system stores the node data and determines if the
node is free or used.We can describe the si server in the server
set S as a tuple si = (L,R,A, I), where:
• L is a set of ordered key-value pairs, i.e., L =

{(k1, v1), . . . , (km, vm)} where ki 6= kj, for each i, j ∈
{1, . . . ,m} such that i 6= j. L represents node
labels or server-specific features. We based labels on
Kubernetes [34] labels concept, which is used as an
elegant binding mechanism for its components.

• R is a set of tuples R = {(f1, u1, t1), . . . , (fm, um, tm)}
representing node resources, where fi, ui, ti, for i ∈
{1, . . . ,m} are as follows: fi is the free resource value; ui
is the used resource value; ti is the total resource value.

• A = {(l1, r1, c1, i1), . . . , (lm, rm, cm, im)}, represent-
ing running applications, where lj, rj, cj, ij, for j ∈
{1, . . . ,m}, are as follows: lj represents labels, the
same way we used for node labels; rj is the resource
set application requires; cj is the configuration set
application requires; ij is the general information like
name, port, developer.

• I represent a set of general node information like: name,
location, IP address, id, cluster id, region id, topology
id, etc.

If we want to assign m (fresh) labels to the ith server, we
start with empty labels set si[L] = ∅, then we add labels to
server. Thus, we have

si[L]new = si[L]old ∪
m⋃
j=1

{(kj, vj)}. (9)

Every server from set S must have a non-empty set of
labels, but the number of labels for every server may vary.
For the label definition, arbitrary alphanumeric text can be
used for both key and value, separated with colon sign
(e.g., os:linux, arch:arm, model:rpi, cpu:2, memory:16GB,
disk:300GB, etc.). Labels should be chosen carefully and
agreed on upfront but should be able to be changed if needed.

Following the MPST (cf. Section III-C1), a formal
description of the low-level health-check communication
protocol (cf. Figure 2) is now presented. The global protocol
G1, presented in (4), as shown at the bottom of the page,
conforms the informal description given on page 114473:
node connects nodes with health_check message and a
payload of type T1 that is required by the system to properly
register node. Then, depending on the received information,
nodes either connects state with activemessage inform-
ing the node status with a payload typedwithT2 (that contains
information required to register active health-check sender),
and then also connects log with the same message, or
directly connects log informing the node is free.

Notice that in G1 (cf. (4)) we indeed have a choice
of nodes sending either to state or to log. Such
communication pattern could not be directly modeled using
standard MPST approaches, such as, e.g., [54]. Also, notice
that state will be introduced into the session only when
receiving from nodes. Hence, if the session after the first
ping from node to nodes proceeds with the second branch
(i.e., connecting nodes with log), then state is not
considered as stuck, as it would be in standard MPST such
as, e.g., [54], but rather idle.

Projecting global typeG1 onto participants node, nodes,
state, and log we obtain local types Snode,Snodes,

Sstate, and Slog, respectively, as presented in (5) – (8), as
shown at the bottom of the page. For instance, type Snodes,
given in (6), specifies nodes can receive the ping message
from node, after which it will dynamically introduce either

G1 = node�nodes:health_check(T1).
{
nodes�state:active(T2).nodes�log:used(T2)
nodes�log:free(T2)

(4)

Snode = nodes!!health_check(T1) (5)

Snodes = node??health_check(T1).+
{
state!!active(T2)].log!!used(T2)
log!!free(T2)

(6)

Sstate = nodes??active(T2) (7)

Slog = +

{
nodes??used(T2)
nodes??free(T2)

(8)

114474 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

FIGURE 3. Low level cluster formation communication protocol diagram.

state or log into the session, where in the former case it
also connects log (but now with message free).

3) CLUSTER FORMATION PROTOCOL
Another communication protocol in our system appears in the
cluster formation process. Users can dynamically form new
clusters. Two different actions are distinguished here. The
first action is a user-system communication, where the user
sends a query to the system to obtain a list of available nodes
based on the query parameters. These query parameters will
be tested against the available node labels. The query result
should be sorted and grouped by geolocation if such a label
is present in node labels, otherwise node IP address could
be used to determine node approximate location. The second
action starts when the user sends a message to the system
with a new specification. Users may choose to form new
clusters based on multiple attributes (e.g., geolocation, node
architecture, specific resources, etc.). Nodes geolocation
should be attributed when forming clusters, but it should
not be mandatory and it should be left on user decision.
In this setting, the system involves participants: User, Queue,
Scheduler, State, Nodes, Log, and NodesPool, that cooperate
to dynamically form new clusters, regions, or topologies,
adhering to the scenario shown in Figure 3.

The participants follow the protocol that is now formally
described: (i) User query Nodes service, based on some
predefined criteria. The user sends created message to Queue,
and gets either a response ok, or error if themessage cannot be
accepted due to missing rights or other issues. This operation
is called mutation; (ii) Queue accepts a user message and
passes it to State. Messages are handled in FIFO (First In,
First Out) order. The queue prevents system congestion, with
received messages; (iii) State accepts mutation messages
from Queue and tries to store new information about the
cluster, region, or topology. If Nodes service can reserve
all desired nodes, the system will store new user desired

information and send a message to Scheduler to physically
create clusters of desired nodes; (iv) Nodes accept messages
from State. If possible, it will reserve desired nodes,
otherwise, it will send an error message to Log service. On a
health-check message, if a node is used in some cluster,
it will inform that the node is alive; (v) Scheduler waits
for a message sent from State, and pushes cluster formation
messages to desired nodes; (vi) Log contains records of
operations. Users can query this service to see if their tasks are
finished or have any problems; (vii) Nodes Pool represents
the set of n free nodes that will accept mutation messages.
On message receive, every node will: (i) start gossip protocol
to inform other nodes from the mutation message about
cluster formation, and (ii) send an event to Scheduler and
Nodes service that it is alive and can receive messages.

If a user wants to get a list of free nodes, he must create a
query using the selector, which is the set of key-value pairs
desired by the user. Algorithm 2 describes steps required to
perform a proper node lookup based on a received selector
value.

Algorithm 2 Nodes Lookup
input: query
Initialize: nodes← []
foreach node ∈ freeNodes() do

if len(node.labels) == len(query) ∧
node.haveAll(query) then

nodes.append(node)

return nodes

We start with the empty selector Q = ∅, in which we
append key-value pairs. Hence, when a user submits a set of
p key-value pairs we have that:

Qnew = Qold ∪
p⋃
i=1

{(ki, vi)}. (10)

Once the query is submitted, for every server in the set S,
we need to check:
(i) the cardinality of the ith server’s set of labels and the

query selector are identical in size

|si[L]| = |Q| , and (11)

(ii) every key-value pair from query set Q is present in
the ith server’s labels set si[L], hence the following
predicate must yield true:

P(Q, si)=
(
∀(k, v)∈Q ∃(kj, vj)∈si[L] : k = kj∧v≤vj

)
(12)

The ith server from the server set S will be present in the result
set R, iff both rules are satisfied:

R = {si | |si[L]| = |Q| ∧ P(Q, si), i ∈ {1, . . . , n}} (13)

If the result set R is not empty, nodes are reserved for
configurable time so that other users cannot see (and try to

VOLUME 9, 2021 114475

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

use) them, and, finally, reserved nodes with message data md
are added to the task queue set

TQnew = TQold ∪ {(R,md)}. (14)

When the task comes to execution, the task queue sends
messages to every node. Algorithm 3 describes the process
required for cluster formation.

Algorithm 3 Clustering Formation Message
input: request, config
nodes← searchFreeNodes(data.query)
reserveNodes(nodes, config.time)
pushMsgToQueue(nodes, data)
key← saveTopologyLogicState(data)
watchForNodesACK(key)

Algorithm 4 describes steps after nodes receive a cluster
formation message, that are explained next.

Algorithm 4 Node Reaction to Clustering Message
input: event
switch event.type do

case formationMessage
updateId(event.topology, event.region,
event.cluster)
newState← updateState(event.labels,
event.name)
sendReceived(newState)
nodes← pickGossipNodes(event.nodes)
startGossip(nodes)

Users can choose to override labels with their own or keep
existing ones when including nodes in the cluster. If the
node is free, or if the user did not change the node labels
on cluster formation, the system will use default labels.
On message received, the node will pick and contact a
configurable subset of nodes Rg ⊂ R, and start the gossip
protocol, propagating information about nodes in the cluster
(e.g, new, alive, suspected, dead, etc.). When every node
inside the newly formed cluster has a complete set of nodes R
obtained through gossiping, the cluster formation process is

over. Topology, region, or cluster formation should be done
descriptively using YAML, or similar formats.

In the following, a low-level cluster formation commu-
nication protocol (cf. Figure 3) is formally described using
the same extension of multiparty session types [53] as for
the health-check protocol. Global protocol G2, presented
in (15), as shown at the bottom of the page, conforms the
informal description of the cluster formation protocol given
on page 114475. The protocol starts with user connecting
state by message query and a payload typed with T1
that contains user query data, and then state forwards the
message by connecting nodes. Then, the protocol possibly
enters into a loop, specified with µt , depending on the later
choices. Further, nodes replies a response resp to state,
that, in turn, forwards the message to user. The payload of
the message is typed with T2 that has response data, based
on a given query. At this point, user sends to state one of
three possible messages: (i)mutate, and the mutation process,
describedwith global protocolG′, presented in (16), as shown
at the bottom of the page, starts; (ii) quit , in which case the
protocol terminates; or, (iii) query— this means the process
of querying starts again, the query message is forwarded to
nodes and the protocol loops, returning to the point marked
with µt . The third branch is the only one in which protocol
loops. Also, notice that user − state and state −
nodes are connected before specifying recursion. Hence,
even after many recursion calls, these connections will be
unique (thus, there is no need to disconnect them before
looping).

The mutate protocol G′ (cf. (16)), activated in the first
branch in G2, starts with user sending createmessage to
state, specifying also information about new user desired
state typed with T3, and state replies back with ok . Then,
state sends ids of the nodes to be reserved (specified in
the payload typed with T4) to nodes, that, in turn sends
one of the two possible messages to state: (a) rsrvd ,
denoting all nodes are reserved and the protocol proceeds as
prescribed with G′′, given in (17), as shown at the bottom
of the page, or (b) error , with error message in the payload,
informing there has been unsuccessful reservation of nodes,
in which case state connects log reporting the error and
the protocol terminates.

G2 = user�state:query(T1).state�nodes:query(T1).

µt.nodes→state:resp(T2).state→user:resp(T2).

user→state:mutate().G′

user→state:quit()
user→state:query(T1).state
→nodes:query(T1).t

(15)

G′ = user→state:create(T3).state→user:ok().state→nodes:ids(T4).{
nodes→state:rsrvd().G′′

nodes→state:err(String).state�log:err(String) (16)

G′′ = state�sched:ids(T5).sched�pool:update(T6).pool→sched:ok().pool�nodes:nids(T4).nodes

→state:succ().state�log:succ() (17)

114476 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

Finally, in G′′ state connects sched (Scheduler) with
message ids and the payload that contains other data imported
for mutation to be completed (typed with T5). Then, sched
connects pool (Nodes Pool) with update specified with T6,
after which pool replies back with ok , and connects to
nodes sending new id’s nids typed with T4 (that contains
successfully reserved user desired nodes). Now nodes
notifies state the action was successful, that in turn
connects log with the same message, and the protocol
terminates.

We may now obtain the projections of global type G2
onto the participants user,state,nodes, log, pool,
andsched as presented in (18) – (24), as shown at the bottom
of the page.

For instance, type Ssched, given in (24), specifies that
participant sched gets included in the session only after
receiving from state message ids, then sched connects
pool with update message, after which expects to receive
ok message and finally terminates.

Global type G2 could also be modeled directly using
standard MPST models (such as [54]). However, in such
models, the projection of G2 onto, for instance, participant
sched would be undefined (cf. [53]). Since we follow the
approach of [53] with explicit connections, projection of G2
onto sched is indeed defined as Ssched.

4) LIST DETAIL PROTOCOL
The last communication protocol in our system appears
in the information retrieval process. Namely, on formed
topologies, using labels, the user can specify what part of
the system he wants to retrieve, for example, to visualize
on some dashboard. Two options are available: (i) global
view of the system — all topologies the user manages,
or (ii) specific clusters details — complete details about

FIGURE 4. Low level view of list operation communication.

specified clusters like resource utilization over time (using
stored metrics information), node information, and running
or stopped services. Similar to the query operation, both rules
(11) and (12) must be satisfied in order for information to be
present in the response. One additional piece of information
that may be specified is whether the user wants a detailed
view or not. If detailed view information is presented in a
request, the user will get a detailed view. Figure 4. shows a
low-level view of the list operation protocol, where users can
get details about the formed system. In this setting, the system
involves participants: User, State, Nodes, and Log.

The participants roles in the protocol are now informally
described: (i) User sends a list request to State service; (ii)
State accepts the list request and the query local state based
on the user selector. If a detail view is required, the state gets
metrics data from Nodes service; (iii) Nodes contain node
metrics data, and if required, it may send this data to State;
(iv) Log contains records of all operations. Users can query
this service.

Algorithm 5 describes steps after the state receives a list
message.

Suser = state!!query(T1).µt.state?resp(T2).+

state!mutate().state!create(T3).state?ok()
state!quit()
state!query(T1).t

(18)

Sstate = user??query(T1).nodes!!query(T1).µt.nodes?resp(T2).user!resp(T2).

+

user?mutate().user?create(T3).S′

user?quit()
user?query(T1).nodes!query(T1).t

(19)

S′ = user!ok().nodes!ids(T4).+
{
nodes?rsrvd().sched!!ids(T5).nodes?succ().log!!succ()
nodes?err(String).log!!err(String) (20)

Snodes = state??query(T1).µt.state!resp(T2).

+

state?ids(T4).+
{
state!rsrvd()
state!err(String).poll??nids(T4).state!succ()

state?query(T1).t
(21)

Slog = +

{
state??succ()
state??err(String) (22)

Spool = sched??update(T6).sched!ok().nodes!!nids(T4) (23)

Ssched = state??ids(T5).pool!!update(T6).pool?ok() (24)

VOLUME 9, 2021 114477

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

Algorithm 5 List of Current State of the System
input: request
Initialize: data← []
foreach (topology, isDetail) ∈ userData(request.query)
do

if isDetail then
data.append(topology.collectData())

else
data.append(topology.data())

return data

Next, we present a formal description of the list
communication protocol (cf. Figure 4) by using [53]
(cf. Section III-C1). Global type G3, presented in (25), as
shown at the bottom of the page, starts with user connecting
state with one of the two possible messages: (i) list ,
specifying a request for a detailed view, where sort T1
identifies which parts of the system user wants to view in
details, after which state connects nodes with query
message, with a payload of sort T2, containing specification
of which nodes need to show their metrics data, and then
protocol proceeds with nodes replying to state result
message and a payload identifying parts of the system user
wants to see in greater detail typed with T3. Then, state
connects log with details and also sends result to
user, and finally terminates; (ii) list∗, specifies no need for a
detailed view is specified, where a payload of sort T4 denotes
user-specified parts of the system the user wants to view, but
without greater details. Then, state also connects logwith
brief and a payload typed with T5 identifying parts of the
system user wants to see without greater detail. Then, state
replies to user with result message, and the protocol
terminates.

The same as for health-check and the cluster formation
protocols, the projections of global type G3 is here also
presented, modeling the list protocol, onto participantsuser,
state, nodes, and log (see (26) – (29)), as shown at the
bottom of the page.

For instance, type Slog, present in (29), specifies log
gets included in the session only after receiving from state,
either message detail, or message brief , and then terminates.

Similarly as for G2, we remark G3 could also be modeled
using standard MPST (e.g., [54]), but again the projection
types would be undefined, while following the approach
of [53] with explicit connections, all valid projections have
been obtained.

D. APPLICATIONS MODEL
Traditional DCs propose specially designed cloud-native
applications [55], that are easier to scale, more available,
and less error-prone when compared to traditional web
applications [55].

Edge-native applications [20] should use the full potential
of EC infrastructure and keep the good features of their
cloud counterparts. Applications may be split into front and
back processing services. The front processing service is an
edge-native application running inside MDCs to minimize
latency, while the back service runs in traditional DCs as a
cloud-native application to leverage greater resources. These
edge-native applications will handle user requests coming to
nearbyMDCs, and communicate to cloud-native applications
when needed generically (e.g., service mesh) [56].

Separation like that gives developers better flexibility and
large design space. The frontend services model should be
event-driven, with a subscription policy to message streams
using topics [57].

The processing strategy is in the developer’s hands,
depending on the nature of the use case. Some examples
include: (i) events that notify users if some value is above
or below some defined threshold, (ii) stream or processing
data as it comes to the system, (iii) batch processing does
processing in predefined times over some collection of data,
or (iv) other, something that falls outside these models, or it
is the composition of multiple operations at once.

E. ENHANCEMENT OF THE EXISTING SOLUTIONS
The protocols defined in this paper could serve as a base
layer for future ECC as a service implementation if the
system is being developed from scratch. It is a base layer
because, on top of the solution based on these protocols, other
services and features like scheduling, storage, applications,
management, monitoring, etc. can be implemented. These
protocols will ensure proper node registration into the system,

G3 =

user�state:list(T1).state�nodes:query(T2).nodes→state:result(T3).state
�log:detail(T3).state→user:result(T3)
user�state:list∗(T4).state�log:brief (T5).state→user:result(T5)

(25)

Suser = +

{
state!!list(T1).state?result(T3)
state!!list∗(T4).state?result(T5)

(26)

Sstate = +

{
user??list(T1).nodes!!query(T2).nodes?result(T3).log!!detail(T3).user!result(T3)
user??list∗(T4).log!!brief (T5).user!result(T5)

(27)

Snodes = state??query(T2).state!result(T3) (28)

Slog = +

{
state??detail(T3)
state??brief (T5)

(29)

114478 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

organization, and reorganization into clusters, regions, and
topologies, bringing disposable micro clouds to the users at
the network edge.

In contrast to the proposed model, the existing orches-
trator engines like Kubernetes, Apache Mesos, Docker
Swarm, etc. operate one cluster level [32]–[35], [58],
and a single cluster could span over multiple availabil-
ity zones, minimizing the chance that a failure in one
zone impairs services in other zones [58]. Kubernetes
even allow multi-cluster deployments [58], treating these
clusters as disposable — ‘‘treating clusters as cattle, not
pets’’ (i.e. numerous servers/clusters built using automated
tools designed for failure, where no servers/clusters is
irreplaceable [59]).

Our model goes one step further, proposing the creation of
disposable micro clouds, thus, gives users more dimensions
to operate and optimize their infrastructure. We can build
numerous micro clouds designed for failure using automated
tools where no micro cloud is irreplaceable — ‘‘treating
micro clouds as cattle, not pets’’.
The proposed model can be integrated into existing

solutions to serve as a node register. Users can register
new nodes into the system, allowing them to be used by
some existing orchestration engine. For example, existing
orchestrator engines run a small agent software on every
machine that can accept new commands, new nodes into
a cluster, or release existing ones. The users can provide
a specification, which available EC nodes need to part of
the micro clouds. The system will communicate with the
existing orchestrator agent to register/unregister them with
the existing cluster. Also, we can rely on the orchestrator
health-check mechanism. On every health-check message
received, the orchestrator can inform our system that a node
used in some cluster is alive. Unused nodes can rely on our
health-check protocol to inform the system that they are still
available for utilization.

Here, our model will preserve the topology of the nodes
allowing cloud providers and orchestrator engines to make
micro clouds disposable, abstracting infrastructure to the
level of software — infrastructure as software [25]. The
benefit of this approach lies in the already available tools,
principles, and techniques (e.g., reuse, testing, modeling, and
evaluation) that can equally be used for the disposable micro
cloud infrastructure definitions.

The presented model is not competing with the existing
orchestrator tools. Its sole purpose is to be free nodes
register and micro clouds infrastructure descriptor offered
as a stand-alone service bringing disposable micro clouds
model to the users. It can be integrated and connected to
any existing orchestration and scheduling tool, leveraging
existing mechanisms and best practices.

Cloud providers might even create their connector, based
on the proposed model, for various orchestration engines.
They can offer dynamically created, disposable micro clouds
as a service to their users, using infrastructure as software
principles.

F. PROOF OF CONCEPT IMPLEMENTATION
As we already discussed in the introduction, the focus of this
paper is not on the implementation details but on a formal
description of the model and its protocols used to organize
geo-distributed nodes into infrastructure that resembles a
cloud but operates closer to the users and data sources.
However, to confirm that an implementation of the presented
model is feasible, we created a proof of concept solution and
tested it in laboratory conditions. We did not analyze metrics
(e.g., performance and network overheads or scalability
aspects) since laboratory conditions are significantly different
than real-world scenarios.

Based on the developed protocols, the proof of concept
solution can dynamically form disposable micro clouds,
abstracting infrastructure to the level of software in laboratory
conditions.

We have implemented a proof of concept system of the
proposed model using the microservice architecture shown
in Figure 5.

All services are implemented using the Go programming
language. As a storage layer, etcd was used, a popular
open-source key-value database, and for metrics storage,
we used the open-source time-series database InfluxDB.
Communication between microservices is implemented in an
RPC manner using gRPC, and Protobuf as a message defini-
tion. gRPC and Protobuf are open-source tools designed by
Google to be scalable, interoperable, and available for general
purposes. Communication between nodes and the system is
carried out using NATS, an open-source messaging system.
Health checking and action push to nodes are implemented
over NATS in a publish-subscribe manner. To communicate
with the platform, we have developed a simple command-line
interface (CLI) application also using the Go programming
language that sends JSON encoded messages over HTTP to
the system.

Every node runs a simple daemon program implemented as
an actor system using the Go programming language. When
a message arrives, the proper actor will react based on the
message type, or discard it if the type is not supported. Before
daemon starts, the user needs to specify identifier, name,
labels, health-check interval, and system address using the
YAML configuration file. Based on the configuration file,
the daemon will start a background health-check mechanism,
and it will subscribe to the system, using an identifier as a
subscription topic. The background thread will contact the
system repeatedly using a contact interval time, specified in
the configuration file. On every health check, the node will
send labels, names, id, and metrics to the system (e.g., CPU
utilization, total, used, free ram or disk, etc.). The specified
labels will be used when the user is querying for available
nodes, while the node id will be used for reservation when
forming a cluster.

The system operates with four commands:
• mutate (orange arrows in Figure 5.) change the system
state by creating, editing, or deleting clusters, regions,
and topologies.When a user wants to perform amutation

VOLUME 9, 2021 114479

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

FIGURE 5. Proof of concept implemented system.

over the system, the desired state needs to be specified
using a YAML file. The users specify which nodes are
forming the cluster. Optionally, users can also specify
labels and names on the node level, and retention period
on the cluster level. The retention period is used to
describe how long metrics are going to be kept. When
the retention period expires, the metrics data will be
deleted or moved to another location. Users can target
a specific system queue, by adding a metadata part
in the configuration file. With this ability, users can
have specific queues just for the mutation to avoid long
waiting times if other queues are full. When forming
a topology, users can assign a name and set of labels
to the entire topology. These parameters will be used
when the user wants to query all topologies to get full
information about regions, clusters, and nodes inside a
topology;

• list show the current state of the system for the registered
user (blue arrows in Figure 5.). Using labels, the user
can specify what part of the system he\she wants to
see. He\She can get a global view of the system - all
topologies he\she manages, or details about a single
topology (i.e., regions, clusters, and nodes in a single
topology). Users can specify a more detailed view of
a single cluster, meaning they will get information
about what resources the cluster has, but also resource
utilization over time (using stored metrics information);

• query operation show all or filtered free nodes regis-
tered to the system (yellow arrows in Figure 5.). When
a user wants to get information about free nodes, he\she
needs to submit a selector value composed of multiple
key-value pairs. The selector will be used to compare
the labels of every free node existing in the system. The
nodes satisfying the rules defined in Section III-C3 will
be in the result;

• logs operation show stored logs and traces to the user
(purple arrows in Figure 5.). Here, the user can see the
state of his\her operations and actions.

We plan to analyze different metrics as part of our future
work (cf. Section V) in real-world scenarios. As a real-world

scenario, we can use any of the examples described in
Section IV.

IV. APPLICATION AREAS
This section explores the case study on a few examples.
Section (A) shows how the presented model could be used.
Section (B) presents what the benefits of such a model would
be. In Section (C) we discuss how it compares to other,
similar, models.

A. FINDINGS
Various computing and network-intensive applications that
require real-time processing of geo-distributed environmental
data may benefit from the proposed model. Applications like
big data streaming, smart healthcare, or even power grids
could be used as example applications serving only local
population needs. We can go even further and think of a smart
city platform, empowered by the proposed model, that unites
applications into a cohesive unit, offering developers a new
platform for their innovative applications.

Users can create different applications, knowing that the
platform, or operating system, will take care of resources. For
example, we can represent a city as a topology, where parts of
the city are separated into one or more regions. Every region
could accommodate multiple clusters, depending on the size
of the population that needs to be serviced. If the population
grows, or shrinks, resources (regions and clusters) can be
dynamically reorganized in the best possible way. Users will
have a notion that the ‘‘cloud’’ is closer to them, minimizing
the potentially huge round-trip time of the cloud [60].

Government authorities can be responsible for the infras-
tructure deployment and maintenance, or they can create an
arrangement with some provider that will be responsible for
the infrastructure. At any given point in time, authorities,
or their representatives can monitor infrastructure utilization
using list detail protocol. This does not mean that they will
take a look at data that is sent, but rather what applications are
running, their state, health, and so on. Authorities can apply
data sharing policies, and these policies could be applied on

114480 VOLUME 9, 2021

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

topology, region, or even cluster level, to control what type of
data is allowed to be shared.

This idea highlights the separation of concerns model
presented earlier in the paper. The devices will collect some
data at their origin, while resources will handle the data
locally with frontend services, and if necessary, sending data
to the cloud, where backend servicemay do more processing,
train models, or store the data for some future usage.

Separating physical areas into groups, regions, and clusters
allows us to naturally follow a certain phenomenon in detail
and act proactively on that target area. For example, our
model can be used for monitoring power grids, ensuring
hospitals and other tenants have constant power during
some catastrophic event. Existing solutions could benefit
from integration with our model because of the additional
monitoring of various parameters (e.g., weather conditions,
vegetation growth, animal migration) in real-time and act
accordingly. This will prevent outages and high damages by
controlling power transmission to the consumers. If outages
are predictable, it can be planned to send crew early to fix
problems, minimizing overall downtime.

In healthcare applications, our model can be used for
real-time monitoring, for instance, pulmonary or asthmatic
patients when going for a walk in some area. Considering that
in the area devices are measuring the air quality parameters,
streaming the data to the frontend service (that analyzes the
data and runs inside the cluster in the closest region), may
result in informing the patient (and possibly also medical
personal) about the danger before the damage is made.

B. COVID-19 MILAN AREA TRAFFIC CONTROL EXAMPLE
As an example of a use-case that can benefit from our
model the city of Milan, Italy, can be considered, in the
context of the recent COVID-19 outbreak. The city of Milan
is divided into nine municipalities, numbered from 1 to 9.
There is here Milan topology in which every municipality can
have one or more regions. Depending on population density,
implemented applications, and needs, every region can have
multiple clusters serving only the population nearby.

Right now, the natural administrative subdivision of
the city is being followed. If this changes in the future,
reorganization of resources (regions and clusters) is easy
and could be done dynamically, using cluster formation
protocol. A prerequisite for this to be done: there are EC
nodes deployed on the territory, and nodes are connected to
the system using health check protocol.

During the COVID-19 outbreak in the city of Milan,
an increased amount of ambulance vehicles and medical
personnel had to be routed to hospitals fast. If the area of the
city of Milan were separated and enhanced with the platform
for smart area traffic control, utilizing the principles of our
model, the ambulance vehicles could be targeted and given a
higher priority, than regular vehicles.

In this scenario, EC clusters can run two kinds of frontend
services, specifically tailored for this application: a service
that follows the ambulance vehicles either using some

machine learning techniques, specialized hardware, or using
some other technique and a service that will regulate the
traffic light control.

In a catastrophic scenario, a sudden increased number of
ambulance vehicles causes an increased need for resources
at the frontend service that regulates the traffic light control
(also because of, e.g., decisions that require more processing
power). Our clusters can be rearranged, or even a special
cluster can be dedicated just for this purpose. If more
resources are needed even regions can be changed, and
finally, the whole topology can be changed to support
increased requests and may be merged with a city nearby.

Patient health can be monitored in real-time [61]–[63] and
data transferred to give health workers crucial information
about patients on their arrival, while robotic systems can help
in diagnosis and screening [64]. Combined with area traffic
control application, such a platform would increase patient
chances for survival, and at the same time reduce the hospital
spending on unnecessary tests.

Another special frontend service could extract depersonal-
ized data and transfer it to the backend service for the research
purpose. For all mentioned above, we believe a service based
on our model at the time of the COVID-19 outbreak in Milan
could have been helpful for researchers, providing valuable
insight in real-time. Other cities and countries could reuse
the same applications strategy, if all goes well, or make the
adjustments to best suit their needs. Such a service may exist
only during the outbreak, when the situation is under control
the service could be terminated.

When the pandemic is gone, or fewer resources are needed,
the previous arrangement of the resources can be restored.
If all of a sudden there is the next pandemic spike, the same
strategy can be reused.

Collected data may be transferred to the backend service
for deeper analysis, behavior modeling, or whatever other
purpose. This should be regulated by the government if they
want such sensitive pieces of information to be sent to the
cloud or not.

C. DISCUSSION
The main advance of ECC compared to the traditional cloud-
only approach is the acceleration of the communication
speed. The system is more robust to network failures because
local requests can still be accepted [56]. The cloud could
bring huge latency for some real-time applications.

By separating some area, a city for example, into regions
and giving them some storage and processing resources in
form of clusters all connected into one coherent system, huge
potential is being given to future developers and new human-
centered applications. The most important thing is that the
system would be able to operate these resources, efficiently
organize them, and make them available for utilization. This
is what the cloud has done a few decades ago.

The proposed model allows organization and reorganiza-
tion of resources in a similar way the cloud does, allowing
users to develop applications without some specialized

VOLUME 9, 2021 114481

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

infrastructure for different applications. Compared to similar
models, there are few benefits and few downsides.

Some of existing models [26], [61]–[63], [65] require
specialized infrastructure for solving a single problem or
a single application. The proposed model is more oriented
towards developing a broader specter of applications without
the need for a specialized hardware or software. Users should
build their applications, similarly as they are building them
for the cloud.

Specialized models are developed and optimized for a
specific use case to take the maximum out of hardware
and software. They might outperform the proposed model
in terms of speed. The proposed model offers much more
development freedom for the users, in terms of agility and
applicability. Users will be able to create new interesting
human-centered applications in the future, utilizing both CC
and ECC.

Existing application models [23], [26], [27] limit users in
terms of technology for building applications. Limitations
are not always a bad thing (e.g., better security, known
access patterns). However, in many cases users may find
such limitations too restraining, for example, when their
applications can be optimized with some other technology.

The proposedmodel does not limit users on how to develop
applications, what technology, language, or framework to
use. As long as the application could be virtualized (e.g.,
using virtual machines, containers, or unikernes). In this way,
developers may reuse already acquired knowledge and best
practices to develop their applications.

If a catastrophic event like the COVID-19 outbreak is in
the human population, a city can organize its storage and
processing resources according to priority. If all cities in a
state apply the same model, then the whole state can organize
its resources and completely manage its digital infrastructure,
andmake applications that will help its citizens in those tough
times.

V. CONCLUSION AND FUTURE WORK
This paper presents a possible solution for the organization
of geo-distributed EC nodes, with the addition of few
proven abstractions from cloud computing like zones and
regions forming micro clouds model. These abstractions
allow coverage of any geographic area and yield a more
available and reliable EC system, allowing us to treat micro
clouds disposable.

The organization and reorganization of these abstractions
are done descriptively, and their size is determined by the
population needs.We present a cloud to ECmapping and give
a formal model of the system, with clear SoC and edge-native
application model for future EC as service development. The
paper also presents a proof of concept implementation with
a real-world example application, and discusses integration
into existing solutions, allowing existing scheduling tools to
operate in micro clouds environment.

As part of our current and future work, we are plan-
ning to test the prototype implementation in a real-world

geo-distributed environment (e.g., measurements of different
parameters relevant to detect hazardous occurrences, real-
time detection, and alerting of changes in air quality essential
for lung patients, management in power grids, etc.) to analyze
the performance, network overheads, and scalability aspects
of the proposed model. We are also planning to extend
existing open-source tools like Kubernetes with the proposed
principles.

Beside that, we are planning to extend the proposed
model with remotemanagement with configurations, security
credentials, and actions over nodes in one ormultiple clusters.
Also, we are planning to extend the system with namespaces
for usage in environments with many users in multiple teams.
Namespaces provide the virtual clusters, on the same physical
cluster. Additionally, we are planning to implement: complete
architecture and applications monitoring, role-based access,
and quotas control for different users. These features will be
helpful to any administrator of such a system.

Another direction for future work is the implementation of
a scheduling system for user-developed applications. Users
can develop their applications with different models: (i)
PaaS, where the platform is doing all the management
and offers a simple interface for developers to deploy their
applications, or (ii) CaaS if users require more control
over resources requirements, deployment, and orchestration
decisions. Last, but not least, we are planning to add several
security layers to protect the system in general frommalicious
users.

REFERENCES
[1] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research

opportunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016, doi: 10.1109/JIOT.2016.2584538.

[2] W. Vogels, ‘‘A head in the clouds the power of infrastructure as a service,’’
in Proc. 1st Workshop Cloud Comput. Appl., 2008.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘Above
the clouds: A Berkeley view of cloud computing,’’ EECS Dept.,
Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2009-28, Feb. 2009. [Online]. Available: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2009/EECS-2009-28.html

[4] Q. Zhang, L. Cheng, and R. Boutaba, ‘‘Cloud computing: State-of-the-art
and research challenges,’’ J. Internet Services Appl., vol. 1, no. 1, pp. 7–18,
May 2010, doi: 10.1007/s13174-010-0007-6.

[5] M. D. da Assunção, A. da S. Veith, and R. Buyya, ‘‘Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions,’’ J. Netw. Comput. Appl., vol. 103, pp. 1–17, Feb. 2018, doi:
10.1016/j.jnca.2017.12.001.

[6] S. K. A. Hossain, M. A. Rahman, and M. A. Hossain, ‘‘Edge computing
framework for enabling situation awareness in IoT based smart city,’’
J. Parallel Distrib. Comput., vol. 122, pp. 226–237, Dec. 2018, doi:
10.1016/j.jpdc.2018.08.009.

[7] J. Cao, Q. Zhang, and W. Shi, Edge Computing: A Primer (Springer
Briefs in Computer Science). Cham, Switzerland: Springer, 2018.
[Online]. Available: https://dblp.org/rec/series/sbcs/CaoZS18.bib, doi:
10.1007/978-3-030-02083-5.

[8] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. and Eliazar, ‘‘Why does the cloud stop
computing?: Lessons from hundreds of service outages,’’ in Proc. 7th ACM
Symp. Cloud Comput., M. K. Aguilera, B. Cooper, and Y. Diao, Eds, Santa
Clara, CA, USA, Oct. 2016, pp. 1–16, doi: 10.1145/2987550.2987583.

[9] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, and
M. G. Rabbani, ‘‘Data center network virtualization: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quart., 2013, doi:
10.1109/SURV.2012.090512.00043.

114482 VOLUME 9, 2021

http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1016/j.jnca.2017.12.001
http://dx.doi.org/10.1016/j.jpdc.2018.08.009
http://dx.doi.org/10.1007/978-3-030-02083-5
http://dx.doi.org/10.1145/2987550.2987583
http://dx.doi.org/10.1109/SURV.2012.090512.00043

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

[10] P. G. Lopez, A. Montresor, D. J. Epema, A. Datta, T. H. Higashino,
A. L. Iamnitchi, and M. Barcellos, ‘‘Edge-centric computing: Vision and
challenges,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5,
pp. 37–42, 2015, doi: 10.1145/2831347.2831354.

[11] M. B. A. Karim, B. I. Ismail, M. Wong, E. M. Goortani, S. Setapa,
L. J. Yuan, and H. and Ong, ‘‘Extending cloud resources to the edge:
Possible scenarios, challenges, and experiments,’’ in Proc. Int. Conf.
Cloud Comput. Res. Innov., Singapore, May 2016, pp. 78–85, doi:
10.1109/ICCCRI.2016.20.

[12] S. Alonso-Monsalve, F. García-Carballeira, and A. Calderón,
‘‘A heterogeneous mobile cloud computing model for hybrid clouds,’’
Future Gener. Comput. Syst., vol. 87, pp. 651–666, Oct. 2018, doi:
10.1016/j.future.2018.04.005.

[13] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017, doi: 10.1109/MC.2017.9.

[14] H. Ning, Y. Li, F. Shi, and L. T. Yang, ‘‘Heterogeneous edge computing
open platforms and tools for Internet of Things,’’ Future Gener. Comput.
Syst., vol. 106, pp. 67–76, May 2020, doi: 10.1016/j.future.2019.12.036.

[15] F. Bonomi, R. A. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing:
A platform for Internet of Things and analytics,’’ in Big Data and
Internet of Things: A Roadmap for Smart Environments (Studies
in Computational Intelligence), vol. 546, N. Bessis and C. Dobre,
Eds. Cham, Switzerland: Springer, 2014, pp. 169–186. [Online]. Avail-
able: https://dblp.org/rec/series/sci/BonomiMNZ14.bib, doi: 10.1007/978-
3-319-05029-4_7.

[16] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing, caching
and communications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017, doi:
10.1109/ACCESS.2017.2685434.

[17] A. Khune and S. Pasricha, ‘‘Mobile network-aware middleware framework
for cloud offloading: Using reinforcement learning to make reward-based
decisions in smartphone applications,’’ IEEE Consum. Electron. Mag.,
vol. 8, no. 1, pp. 42–48, Jan. 2019, doi: 10.1109/MCE.2018.2867972.

[18] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, ‘‘On the computation
offloading at ad hoc cloudlet: Architecture and service modes,’’ IEEE
Commun. Mag., vol. 53, no. 6, pp. 18–24, Jun. 2015, doi: 10.1109/
MCOM.2015.7120041.

[19] R. V. Aroca and L. M. G. Gonçalves, ‘‘Towards green data centers:
A comparison of x86 and ARM architectures power efficiency,’’ J.
Parallel Distrib. Comput., vol. 72, no. 12, pp. 1770–1780, Dec. 2012, doi:
10.1016/j.jpdc.2012.08.005.

[20] M. Satyanarayanan, G. Klas, M. Silva, and S. Mangiante, ‘‘The
seminal role of edge-native applications,’’ in Proc. IEEE Int. Conf.
Edge Comput. (EDGE), Milan, Italy, Jul. 2019, pp. 33–40, doi:
10.1109/EDGE.2019.00022.

[21] W. L. Hürsch and C. V. Lopes. (1995). Separation of concerns. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
29.5223

[22] Y. Shao, C. Li, Z. Fu, L. Jia, and Y. Luo, ‘‘Cost-effective replication
management and scheduling in edge computing,’’ J. Netw. Comput. Appl.,
vol. 129, pp. 46–61, Mar. 2019, doi: 10.1016/j.jnca.2019.01.001.

[23] M. Ryden, K. Oh, A. Chandra, and J. B. Weissman, ‘‘Nebula: Dis-
tributed edge cloud for data intensive computing,’’ in Proc. IEEE Int.
Conf. Cloud Eng., Boston, MA, USA, Mar. 2014, pp. 57–66, doi:
10.1109/IC2E.2014.34.

[24] C. Shi, K. Habak, P. Pandurangan, M. H. Ammar, M. Naik, and
E. W. Zegura, ‘‘COSMOS: Computation offloading as a service for mobile
devices,’’ in Proc. 15th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
J. Wu, X. Cheng, X. Li, and S. Sarkar, Eds., Philadelphia, PA, USA,
Aug. 2014, pp. 287–296, doi: 10.1145/2632951.2632958.

[25] B. Fitzgerald, N. Forsgren, K.-J. Stol, J. Humble, and B. Doody,
‘‘Infrastructure is software too!’’ SSRN Electron. J., Jan. 2015, doi:
10.2139/ssrn.2681904.

[26] H. Guo, L.-L. Rui, and Z.-P. Gao, ‘‘A zone-based content pre-caching
strategy in vehicular edge networks,’’ Future Gener. Comput. Syst.,
vol. 106, pp. 22–33, May 2020, doi: 10.1016/j.future.2019.12.050.

[27] A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391,
4th Quart., 2017, doi: 10.1109/COMST.2017.2717482.

[28] I. Kurniawan, H. Febiansyah, and J. Kwon, Cost-Effective Content
Delivery Networks Using Clouds and Nano Data Centers, vol. 280. Berlin,
Germany: Springer-Verlag, Jan. 2014, pp. 417–424, doi: 10.1007/978-3-
642-41671-2_53.

[29] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, and
G. Mastorakis, ‘‘Drop computing: Ad-hoc dynamic collaborative comput-
ing,’’ Future Gener. Comput. Syst., vol. 92, pp. 889–899, Mar. 2017, doi:
10.1016/j.future.2017.11.044.

[30] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, ‘‘The cost
of a cloud: Research problems in data center networks,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2009, doi:
10.1145/1496091.1496103.

[31] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018,
doi: 10.1109/JIOT.2017.2750180.

[32] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, ‘‘Borg,
omega, and kubernetes,’’ Commun. ACM, vol. 59, no. 5, pp. 50–57, 2016,
doi: 10.1145/2890784.

[33] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, ‘‘Large-scale cluster management at Google with Borg,’’ in
Proc. 10th Eur. Conf. Comput. Syst., EuroSys, L. Réveillère, T. Harris,
and M. Herlihy, Eds., Bordeaux, France, Apr. 2015, pp. 1–17, doi:
10.1145/2741948.2741964.

[34] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, ‘‘Geo-distributed
efficient deployment of containers with Kubernetes,’’ Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020, doi: 10.1016/j.comcom.2020.04.061.

[35] Linux Foundation. KubeEdge. Accessed: Nov. 7, 2020. [Online].
Available: https://kubeedge.io/

[36] Volunteer Computing, Boinc, Berkeley, CA, USA, Accessed:
Jul. 5, 2020. [Online]. Available: https://boinc.berkeley.edu/trac/
wiki/VolunteerComputing

[37] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, ‘‘Native client: A sandbox for portable,
untrusted x86 native code,’’ Commun. ACM, vol. 53, no. 1, pp. 91–99,
Jan. 2010, doi: 10.1145/1629175.1629203.

[38] A. Lèbre, J. Pastor, A. Simonet, and F. Desprez, ‘‘Revising openstack
to operate fog/edge computing infrastructures,’’ in Proc. Int. Conf.
Cloud Eng., Vancouver, BC, Canada, Jan. 2017, pp. 138–148, doi:
10.1109/IC2E.2017.35.

[39] A. Kurniawan, Learning AWS IoT: Effectively Manage Connected
Devices on the AWS Cloud Using Services Such as AWS Green-
grass, AWS Button, Predictive Analytics and Machine Learning. Birm-
ingham, U.K.: Packt, 2018. [Online]. Available: https://books.google.
rs/books?id=7NRJDwAAQBAJ

[40] General Electric. GE Predix. Accessed: Nov. 7, 2020. [Online]. Available:
https://www.ge.com/digital/iiot-platform/

[41] F. R. de Souza, C. C. Miers, A. Fiorese, M. D. de Assunção, and
G. P. Koslovski, ‘‘QVIA-SDN: Towards QoS-aware virtual infrastructure
allocation on SDN-based clouds,’’ J. Grid Comput., vol. 17, no. 3,
pp. 447–472, Sep. 2019, doi: 10.1007/s10723-019-09479-x.

[42] J. R. Hamilton, ‘‘An architecture for modular data centers,’’ in Proc.
CIDR, Asilomar, CA, USA, Jan. 2007, pp. 306–313. [Online]. Available:
http://cidrdb.org/cidr2007/papers/cidr07p35.pdf

[43] K. Sonbol, Ö. Özkasap, I. Al-Oqily, and M. Aloqaily, ‘‘EdgeKV: Decen-
tralized, scalable, and consistent storage for the edge,’’ J. Parallel Distrib.
Comput., vol. 144, pp. 28–40, Oct. 2020, doi: 10.1016/j.jpdc.2020.05.009.

[44] J. Wang, D. Crawl, I. Altintas, and W. Li, ‘‘Big data applications using
workflows for data parallel computing,’’ Comput. Sci. Eng., vol. 16, no. 4,
pp. 11–21, Jul. 2014, doi: 10.1109/MCSE.2014.50.

[45] A. Das, I. Gupta, and A. Motivala, ‘‘SWIM: Scalable weakly-consistent
infection-style process group membership protocol,’’ in Proc. Int. Conf.
Dependable Syst. Netw., Bethesda, MD, USA, 2002, pp. 303–312, doi:
10.1109/DSN.2002.1028914.

[46] C. Li, J. Bai, Y. Chen, and Y. Luo, ‘‘Resource and replica management
strategy for optimizing financial cost and user experience in edge cloud
computing system,’’ Inf. Sci., vol. 516, pp. 33–55, Apr. 2020, doi:
10.1016/j.ins.2019.12.049.

[47] E. Cau, M. Corici, P. Bellavista, L. Foschini, G. Carella, A. Edmonds,
and T. M. Bohnert, ‘‘Efficient exploitation of mobile edge computing for
virtualized 5G in EPC architectures,’’ in Proc. 4th IEEE Int. Conf. Mobile
Cloud Comput., Services, Eng. (MobileCloud), Oxford, U.K., Mar. 2016,
pp. 100–109, doi: 10.1109/MobileCloud.2016.24.

[48] W. Yu and C.-L. Ignat, ‘‘Conflict-free replicated relations for multi-
synchronous database management at edge,’’ in Proc. IEEE Int. Conf.
Smart Data Services (SMDS), Beijing, China, Oct. 2020, pp. 113–121.
[Online]. Available: https://hal.inria.fr/hal-02983557

[49] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, ‘‘Everything
as a service (XaaS) on the cloud: Origins, current and future trends,’’ in
Proc. IEEE 8th Int. Conf. Cloud Comput., New York, NY, USA, Jun. 2015,
pp. 621–628, doi: 10.1109/CLOUD.2015.88.

VOLUME 9, 2021 114483

http://dx.doi.org/10.1145/2831347.2831354
http://dx.doi.org/10.1109/ICCCRI.2016.20
http://dx.doi.org/10.1016/j.future.2018.04.005
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1016/j.future.2019.12.036
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.1109/MCE.2018.2867972
http://dx.doi.org/10.1109/MCOM.2015.7120041
http://dx.doi.org/10.1109/MCOM.2015.7120041
http://dx.doi.org/10.1016/j.jpdc.2012.08.005
http://dx.doi.org/10.1109/EDGE.2019.00022
http://dx.doi.org/10.1016/j.jnca.2019.01.001
http://dx.doi.org/10.1109/IC2E.2014.34
http://dx.doi.org/10.1145/2632951.2632958
http://dx.doi.org/10.2139/ssrn.2681904
http://dx.doi.org/10.1016/j.future.2019.12.050
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1007/978-3-642-41671-2_53
http://dx.doi.org/10.1007/978-3-642-41671-2_53
http://dx.doi.org/10.1016/j.future.2017.11.044
http://dx.doi.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1145/2741948.2741964
http://dx.doi.org/10.1016/j.comcom.2020.04.061
http://dx.doi.org/10.1145/1629175.1629203
http://dx.doi.org/10.1109/IC2E.2017.35
http://dx.doi.org/10.1007/s10723-019-09479-x
http://dx.doi.org/10.1016/j.jpdc.2020.05.009
http://dx.doi.org/10.1109/MCSE.2014.50
http://dx.doi.org/10.1109/DSN.2002.1028914
http://dx.doi.org/10.1016/j.ins.2019.12.049
http://dx.doi.org/10.1109/MobileCloud.2016.24
http://dx.doi.org/10.1109/CLOUD.2015.88

M. Simić et al.: Towards EC as Service: Dynamic Formation of MDCs

[50] X. Jin, S. Chun, J. Jung, and K. Lee, ‘‘Iot service selection based on
physical service model and absolute dominance relationship,’’ in Proc. 7th
IEEE Int. Conf. Service-Oriented Comput. Appl. (SOCA), Matsue, Japan,
Nov. 2014, pp. 65–72, doi: 10.1109/SOCA.2014.24.

[51] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets in mobile computing,’’ IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009, doi: 10.1109/MPRV.2009.82.

[52] Y. Yao, B. Xiao, W. Wang, G. Yang, X. Zhou, and Z. Peng, ‘‘Real-
time cache-aided route planning based on mobile edge computing,’’
IEEE Wireless Commun., vol. 27, no. 5, pp. 155–161, Oct. 2020, doi:
10.1109/MWC.001.1900559.

[53] R. Hu and N. Yoshida, ‘‘Explicit connection actions in multiparty session
types,’’ in Fundamental Approaches to Software Engineering (Lecture
Notes in Computer Science), vol. 10202, M. Huisman and J. Rubin, Eds.
Uppsala, Sweden: Springer, Apr. 2017, pp. 116–133, doi: 10.1007/978-3-
662-54494-5_7.

[54] K. Honda, N. Yoshida, and M. Carbone, ‘‘Multiparty asynchronous
session types,’’ in Proc. 35th Annu. ACM SIGPLAN-SIGACT Symp. Princ.
Program. Lang., San Francisco, CA, USA, Jan. 2008, pp. 273–284, doi:
10.1145/1328438.1328472.

[55] D. Gannon, R. Barga, and N. Sundaresan, ‘‘Cloud-native applications,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 16–21, Sep. 2017, doi:
10.1109/MCC.2017.4250939.

[56] R.-A. Cherrueau, M. Delavergne, and A. Lebre, ‘‘Geo-distribute cloud
applications at the edge,’’ in Proc. 27th Int. Eur. Conf. Parallel Distrib.
Comput., Lisbon, Portugal, Aug. 2021, pp. 1–15. [Online]. Available:
https://hal.inria.fr/hal-03212421

[57] M. Beck, M. Werner, S. Feld, and T. Schimper, ‘‘Mobile edge computing:
A taxonomy,’’ in The 6th Int. Conf. Adv. Future Internet (AFIN), Jan. 2014,
pp. 48–55.

[58] Kubernetes. Running Multiple Zones. Accessed: Nov. 7, 2020. [Online].
Available: https://kubernetes.io/docs/setup/best-practices/multiple-zones/

[59] P. Andrade, T. Bell, J. Eldik, G. Mccance, B. Panzer-Steindel, M. Santos,
and U. Schwickerath, ‘‘Review of CERN data centre infrastructure,’’
J. Phys. Conf. Ser., vol. 396, Dec. 2012, Art. no. 042002.

[60] X. Huang and N. Ansari, ‘‘Content caching and distribution at wireless
mobile edge,’’ IEEE Trans. Cloud Comput., early access, May 18, 2020,
doi: 10.1109/TCC.2020.2995403.

[61] M. Al-Khafajiy, T. Baker, C. Chalmers, M. Asim, H. Kolivand, M. Fahim,
and A. Waraich, ‘‘Remote health monitoring of elderly through wearable
sensors,’’Multim. Tools Appl., vol. 78, no. 17, pp. 24681–24706, 2019, doi:
10.1007/s11042-018-7134-7.

[62] Y. J. Jeon and S. J. Kang, ‘‘Wearable sleepcare kit: Analysis and
prevention of sleep apnea symptoms in real-time,’’ IEEE Access, vol. 7,
pp. 60634–60649, 2019, doi: 10.1109/ACCESS.2019.2913849.

[63] G. Chiarini, P. Ray, S. Akter, C. Masella, and A. Ganz, ‘‘MHealth
technologies for chronic diseases and elders: A systematic review,’’
IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 6–18, Sep. 2013, doi:
10.1109/JSAC.2013.SUP.0513001.

[64] Y. Shen, D. Guo, F. Long, L. A. Mateos, H. Ding, Z. Xiu, R. B. Hellman,
A. King, S. Chen, C. Zhang, and H. Tan, ‘‘Robots under COVID-19
pandemic: A comprehensive survey,’’ IEEE Access, vol. 9, pp. 1590–1615,
2021, doi: 10.1109/ACCESS.2020.3045792.

[65] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and
J. H. Abawajy, ‘‘Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,’’ IEEE Access, vol. 5,
pp. 9882–9910, 2017, doi: 10.1109/ACCESS.2017.2702013.

MILOŠ SIMIĆ received the B.Sc. and M.Sc.
degrees in computer science from the Faculty
of Technical Sciences, University of Novi Sad,
in 2014 and 2015, respectively, where he is
currently pursuing the Ph.D. degree. He has been
a Teaching Assistant with the Department of
Computing and Control Engineering, Faculty of
Technical Sciences, University of Novi Sad, since
2015. His research interests include distributed
systems, cloud computing, edge computing, big
data, and service oriented architectures.

IVAN PROKIĆ received the B.Sc. and M.Sc.
degrees in mathematics from the Faculty of
Sciences, University of Novi Sad, in 2012 and
2014, respectively, and the Ph.D. degree in
applied mathematics from the Faculty of Tech-
nical Sciences, University of Novi Sad. He has
been a Teaching Assistant with the Department
of Fundamentals Sciences, Faculty of Technical
Sciences, University of Novi Sad, since 2020. His
research interests include formal methods, more

specifically concurrency theory, process calculi, and type theory.

JOVANA DEDEIĆ received the B.Sc. and M.Sc.
degrees in applied mathematics from the Faculty
of Sciences, University of Novi Sad, in 2010 and
2011, respectively, where she is currently pursuing
the Ph.D. degree with the Faculty of Technical
Sciences. She has been a Teaching Assistant with
theDepartment of Fundamentals Sciences, Faculty
of Technical Sciences, University of Novi Sad,
since 2012. Her research interests include process
calculi, concurrency theory, expressive power of
languages with concurrency, and type theory.

GORAN SLADIĆ received the B.Sc. (Dipl.-Ing.),
M.Sc. (Magister), and Ph.D. degrees in computer
science from the Faculty of Technical Sciences,
University of Novi Sad, in 2002, 2006, and
2011, respectively. He has been an Associate
Professor with the Department of Computing
and Control Engineering, Faculty of Technical
Sciences, University of Novi Sad, since 2016.
He has published over 70 articles and participated
in more than 20 projects. His research interests

include cyber security, blockchain, software architectures, and context-aware
computing.

BRANKO MILOSAVLJEVIĆ received the Ph.D.
degree from the University of Novi Sad, in 2003.
He is currently a Professor of computer science
with the Faculty of Technical Sciences, University
of Novi Sad. He has published over 150 articles
and participated or lead in more than 20 projects.
His research interests include digital libraries, net-
centric software architectures, and context-aware
computing.

114484 VOLUME 9, 2021

http://dx.doi.org/10.1109/SOCA.2014.24
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MWC.001.1900559
http://dx.doi.org/10.1007/978-3-662-54494-5_7
http://dx.doi.org/10.1007/978-3-662-54494-5_7
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1109/MCC.2017.4250939
http://dx.doi.org/10.1109/TCC.2020.2995403
http://dx.doi.org/10.1007/s11042-018-7134-7
http://dx.doi.org/10.1109/ACCESS.2019.2913849
http://dx.doi.org/10.1109/JSAC.2013.SUP.0513001
http://dx.doi.org/10.1109/ACCESS.2020.3045792
http://dx.doi.org/10.1109/ACCESS.2017.2702013

