
Received July 8, 2021, accepted July 30, 2021, date of publication August 12, 2021, date of current version August 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104283

Systematic Fuzz Testing Techniques on
a Nanosatellite Flight Software for
Agile Mission Development
TAMARA GUTIERREZ 1, ALEXANDRE BERGEL 1, CARLOS E. GONZALEZ 2,
CAMILO J. ROJAS 2, AND MARCOS A. DIAZ 2, (Member, IEEE)
1Intelligent Software Construction Laboratory (ISCLab), Department of Computer Science (DCC), Faculty of Physical and Mathematical Sciences, University of
Chile, Santiago 8370448, Chile
2Space and Planetary Exploration Laboratory (SPEL), Electrical Engineering Department, Faculty of Physical and Mathematical Sciences, University of Chile,
Santiago 8370448, Chile

Corresponding author: Tamara Gutierrez (tamara.gutierrez@ug.uchile.cl)

This work was supported in part by Lam Research, in part by the ANID Fondecyt Regular 1221907 and 1200067, in part by Fondecyt
1151476, in part by Anillo ACT1405, in part by CONICYT-PCHA/Doctorado Nacional/2016-21161016, in part by the Force Office
of Scientific Research (AFOSR) under Award FA9550-18-1-0249 and Award FA9550-20-1-0303, and in part by the CONICYT
QUIMAL 190004.

ABSTRACT The success of CubeSat space missions depends on the ability to perform properly in a harsh
environment. A key component in space missions is the flight software, which manages all of the processes
executed by the satellite on its onboard computer. Literature shows that CubeSat missions suffer high infant
mortality, and many spacecraft failures are related to flight software errors, some of them resulting in
complete mission loss. Extensive operation testing is the primary technique used by CubeSats developers
to ensure flight software quality and avoid such failures. The ‘‘New Space’’ requirements pressure to add
‘‘agility’’ to the software development, which could limit the capacity to test. While advanced and beneficial
software testing techniques are found in the software engineering field, CubeSat software solutions mostly
rely on unit testing, software in the loop simulation, and hardware in the loop simulation. In this work, fuzz
testing techniques were developed, implemented, and evaluated as a manner to expedite operational testing
of CubeSats while maintaining their completeness. The impact of the tools was evaluated by using the three
new 3U CubeSats under development at the University of Chile. We identified twelve bugs not covered by
classic testing strategies in less than three days. These failures were reported, fixed, and characterized by the
developers in eight sprint sessions. Our results indicate that fuzz testing improved the completeness of flight
software testing through automation and with almost no development interruption. Although our approach
has been tested on the SUCHAI flight software, it applies to systems that follow a similar architecture.

INDEX TERMS CubeSat, embedded software, flight software, nanosatellites, testing, fuzz testing, software
quality, open source.

I. INTRODUCTION
The first conception of a CubeSat nanosatellite prototype
came up only 20 years ago approximately. Initially, nanosatel-
lites were conceived with a mainly educational purpose
in which students are able to experience the development
and operation of a satellite in the time frame of a college
degree [1]. Nowadays, nanosatellites have opened several
opportunities but still need to overcome multiple challenges
to reach their full potential [2]. Nanosatellites increasingly

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Magno .

require more attention to their quality attributes to be suc-
cessful in more complex missions. Specifically, the flight
software of nanosatellites is a critical factor in determining
a satellite’s quality because it controls most of the tasks
that must be executed once in space. The success rate of a
space mission is highly dependent on the quality of its flight
software [3].

In the space field, several testing techniques are used to
assess flight software quality. However, the most advanced
techniques are only suitable for larger missions or systems,
in terms of time and budget, such as large satellites, rovers,
or interplanetary missions [4]. In the state of the art, the most

114008 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3370-2311
https://orcid.org/0000-0001-8087-1903
https://orcid.org/0000-0001-5936-9708
https://orcid.org/0000-0001-8941-408X
https://orcid.org/0000-0002-7701-5839
https://orcid.org/0000-0003-0368-8923

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

reported testing techniques applied to nanosatellites flight
software testing are hardware in the loop simulation (HILS)
and software in the loop simulation (SILS) [5], [6]. HILS
and SILS methodologies can optimize the production pro-
cess’ overall costs in certain situations [7], [8]. However,
these techniques can be difficult to implement and execute,
potentially dangerous to the hardware when executed in
engineering or flight models, and time-consuming to set up
the environment. Besides, the test cases must be predefined
because these techniques are difficult to automate [7].

In a recent review of some relevant nanosatellite flight
software frameworks, only three out of six candidates exhibit
the reliability attribute, which refers to the existence of
unit testing with significant code coverage [9]. The abil-
ity to implement different testing techniques also relies
on the flight software design. Satellite command and data
handling (C&DH) systems are usually designed to receive
telecommands, execute necessary actions, and answer with
data obtained from telemetry. Some novel flight software
designs exploit this concept to implement a command-based
software architecture [10], [11]. Such a clear design and
well-documented interfaces may help implement testing
strategies that treat the flight software as a black-box instead
of intervening the code with unit testing or instrumentation.

Currently, the high expectations of CubeSats are based
on the possibility of developing a large number of satellites
(mega-constellations) in a cost-effective manner [12], [13].
The cost-effectiveness requires that these constellations can
be developed by small inexperienced groups (e.g., startups) in
short development cycles. This commercial hardware usually
has more computing power with less power consumption,
is more miniaturized and up-to-date regarding technological
needs. However, this hardware and the software that controls
it has almost no flight heritage, making them risky to use in
space. Testing automation arises as to the most cost-effective
manner of keeping agile development while ensuring the
required quality and robustness for the spacecraft.

Fuzz testing is an automated software testing technique
that consists in automatically generating random input to
find software vulnerabilities [14]. In need of looking for
an automatable and agile software testing technique appli-
cable to nanosatellites, we study the usage of fuzz testing
in the SUCHAI nanosatellite flight software [10]. Thanks
to its design, the software can be intervened by sending
commands and observing its behavior. Therefore, fuzz testing
is implemented by generating a set of random commands and
parameters. The randomness of the number of commands,
the number of parameters, the composition of commands’
characters, and the composition of parameters’ characters
give rise to four proposed strategies defined in Section IV.

A. CONTRIBUTIONS AND RESULTS
This article presents the impact of using fuzz testing to
verify the proper flight software operation of nanosatellites.
The evaluation was performed in a series of 3 nanosatellites
being developed at the University of Chile (SUCHAI-II,

SUCHAI-III, and PlantSat). The contributions made by this
article are:

• Presents amethodologywe have developed to apply fuzz
testing to nanosatellites’ flight software as part of an
agile CubeSat flight software methodology;

• Highlights and discusses the challenges we faced and
describes the main requirements to implement this tech-
nique in similar projects;

• Presents a compelling case study of applying mod-
ern testing techniques to a critical embedded soft-
ware which, we believe, opens a niche in the field of
nanosatellite flight software testing.

As a result, fuzz testing has proven to be very valuable
in our situation as we discovered: (i) various potential soft-
ware failures, whose severity ranged from middle to severe,
(ii) identified a sequence of commands to trigger and repro-
duce these failures, and (iii) addressed these software failures.
We provided the necessary detail of our approach, hoping
other researchers in the field of flight software development
will benefit from our effort and results.

B. SCIENTIFIC SCOPE
This article is essentially based on the experience we have
gained by developing the flight software of a series of
nanosatellites (SUCHAI-I, SUCHAI-II, SUCHAI-III, and
PlantSat) and its subsystems/payloads. This experience indi-
cates to us that preparing the flight software for larger
assembly lines may be challenging and requires agility and
automation regarding testing to achieve the desired robust-
ness. However, testing flight software is still an incipi-
ent field. Currently, only sporadic experiences have been
reported, and no dedicated low-cost testing practices have
been proposed thus far. Flight software is a highly valuable
component, and techniques to improve its robustness deserve
to be carefully studied and disseminated.

Whereas the area of software engineering has produced
many techniques, including fuzz testing, there is no public
report of its utilization on CubeSats’ flight software. Our
contributions improve the testing practices of flight software,
which currently appear to be conducted in a non-automatic
way. Our observations from different research agencies devel-
oping flight software highlight a gap between the way flight
software is developed and the techniques proposed by the
software engineering community. We expect that our experi-
ence and proposed methodology could contribute to reducing
this gap.

C. OUTLINE
This article is organized as follows: Section II presents the
work related to our effort; Section III gives the context of this
article by describing the SUCHAI flight software; Section IV
details the methodology we have developed to apply fuzz
testing to the SUCHAI flight software; Section V presents
the results of our methodology; Section VI lists the threats to
the validity of our experiment and analyzes its applicability

VOLUME 9, 2021 114009

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

to other flight software; Section VII presents the main con-
clusions of this work and highlights open issues to address in
future works.

II. RELATED WORK
The most common testing techniques for CubeSats found
in the literature are directly attached to hardware testing.
Kiesbye et al. [5] present and evaluate an environment for
HILS and SILS tests with the inclusion of the electrical
domain for low-cost satellite development. The tested satel-
lite was MOVE-II, developed at the Technical University of
Munich. The results obtained are related to the verification
of MOVE-II’s attitude determination and control algorithms,
the verification of the power budget, and the training of
the operator team with realistic simulated failures before
launch. Additionally, they present how the simulation envi-
ronment was used to analyze detected issues after launch and
verify the performance of new software developed to address
the in-flight anomalies before software deployment. The test-
ing environment described in this work generates results
for both hardware and software components of MOVE-II.
According to the authors, the environment is potentially
suitable for inclusion in a continuous deployment workflow
where code changes trigger automatic tests on the hardware.
However, they do not report full automation for test cases
generation.

Other software testing techniques found in the literature
usually imply an exhaustive definition of test cases based on
the requirements. Hishmeh et al [15] show the design, imple-
mentation, and testing of the flight software for KySat-1,
a picosatellite developed in the Kentucky Space consortium
and launched in 2009. The testing methods that were applied
to the software were strongly based on the requirements and
documentation. Thanks to the application of testing method-
ologies to the flight software, most bugs were found in the
early stages of the development process. This begins with
requirement analysis. After this stage, the flight software
team formulated a test strategy and began the test planning.
After the test cases generation, scripting, and execution, each
bug found was reported. Although the software development
team faced problems associated with the time planning of
students, they did not propose a new development or testing
methodology strategy but a new organization strategy. This
is an example of how arduous testing is for small groups
developing CubeSats in an academic environment. The need
for time planning and agility in the process of software devel-
opment and testing is crucial to produce a reliable system,
especially in groups with those attributes.

Johl et al. [16] present a reusable command and data
handling (C&DH) system as part of a series of CubeSat
missions being built at Austin Texas Spacecraft Laboratory
(TSL), University of Texas. The key idea of this system is
to support various system requirements, using a centralized
architecture with one main flight computer controlling the
actions and the state of the satellite. The authors of this
work affirm that flight software testing is an integral step in

the development process. Therefore, to validate it, white-box
and black-box testing techniques were planned and applied.
The testing technique applied to the C&DH system was
unit testing. Command execution testing and day-in-the-life
testing were proposed to be applied as future work [16]. Day
in-the-life testing refers to verifying the functionality of the
fully integrated satellite while a sequence of operations is
being executed. We identify this type of testing as HILS.
Also, a graphical user interface for the ground station was
developed to minimize the required effort for the ground
station operator to interact with the satellite during the testing
phase and for flight. They do not mention the methodology
to generate the test cases nor an automated testing technique
for the software verification.

Schoolcraft et al. [6] present a description and analysis of
MarCOmission development. MarCO is a twin CubeSat mis-
sion developed by the NASA Jet Propulsion Laboratory (JPL)
to accompany the InSight (Interior Exploration using Seismic
Investigations, Geodesy and Heat Transport) Mars mission
lander. MarCO refined the approach of all the development
stages to solve the challenges of quickly building low-budget
spacecraft to fly to Mars, relying on components reusability
of previous missions. According to the authors, the MarCO
flight software development occurred in a very tight loop.
They focused on a hardware level since computer resources
optimization was considered a development requirement.
Therefore, the testing techniques applied to the flight soft-
ware were mainly associated with HILS.

Zaidi et al. [17] present a testing, and a verification and
validation (V&V) automated platform to identify anomalies,
to characterize their impact, and to reduce costs of system
development for CubeSat missions. The platform, which
is part of the Model-Based Systems Engineering (MBSE),
bridges the gap between after design and before qualifica-
tions phases by first taking information from the concept
exploration, definition, and design phases as the input to be
processed. Moreover, a software called Missurance controls
the test and V&V equipment and receives data when tests
are performed. Therefore, the software can notify whether the
results meet the functional and design requirements and the
test specification. The platform was also used for functional
verification and thermal validation of a transmitter. Since the
work focused on the interaction of both physical and virtual
parts of the system, the mentioned types of testing are mainly
HIL and SILS.

Other concepts like software portability and rigorous
software design are also present in the current related
work and have been a topic of discussion because of
the recent rise of CubeSat deployments. Coelho et al. [18],
Coelho [19], Ivanov and Bliudze [20], Gonzalez et al. [21],
Araguz et al. [22] have also contributed to this line.
Coelho et al. [18], Coelho [19] present the NANOSat MO

Framework, which is a standard onboard software frame-
work for nanosatellites that has been implemented in ESA’s
OPS-SAT mission. This work is based on the CCSDS
MO framework and relies on the concept of portability to

114010 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

maximize reuse and customizations between different mis-
sions and user needs, with a modular and flexible design.
This is achieved by turning the onboard software into apps.
In this context, an app is defined as an onboard software
application that can access the peripherals and can be started,
monitored, stopped, killed, installed, uninstalled, and updated
from ground. The architecture chosen for the software imple-
mentation depends on the number of the running apps, but the
swap between architectures is not complex since the interface
towards the app developer remains the same. The framework
also comes with a software bundle. This work introduces the
concept of portable apps in the space field, differing from the
cFS contribution in systems’ capabilities from the resources
point of view.

Ivanov and Bliudze [20] propose a rigorous and robust
way to design software. They present the BIP framework,
a component-based language that can be used to develop
correct-by-construction applications. BIP allows to formally
model complex systems and provides a toolset for their veri-
fication and validation, and code generation. This framework
was used in the CubETH CubeSat to design the logic for the
satellite’s operation and compile it into machine code, which
is later executed on the onboard computer. Their approach
ensures the reliability, modularity, and portability of the over-
all system. The CubETHmission is based on four main scien-
tific objectives and used a miniaturized low-power command
and data handling system and COTS components. Because
of the memory limitations of the microcontroller used for
the control and data management subsystem, Cortex-M3,
the authors had to reduce the model created with BIP.
Despite the restrictions, the demonstration of this reduced
model on the CubeSat board was considered successful.

Gonzalez et al. [21] propose a hybrid framework to guide
software development modeling of nanosatellite missions
in an academic environment. The authors highlight that
due to the lack of experience that growing countries have
in the research and development of satellite technology,
there is a shortage of specialized software engineers to
work on these types of missions. The proposed model,
named Hybrid-Academic-Aerospace Model for Software
Development (H4ASD), is based on the ECSS-E-ST-40C
documentation and processes, and the disciplines workflow
and artifacts of the Rational Unified Process (RUP) to facil-
itate the assimilation by traditional software engineers with
an incipient knowledge in the aerospace field. H4ASD was
validated through the design of the control and monitoring
software of the Libertad-2 3U CubeSat, developed in Univer-
sidad Sergio Arboleda, in Colombia. H4ASD uses an iterative
and incremental method, following a sequential lifeline, and
takes complementary approaches from conventional software
engineering concepts and the operating constraints of the
space context.

Araguz et al. [22] present three generic design guidelines
to improve the system robustness, modularity, and auton-
omy quality attributes of nanosatellite software architec-
tures. These guidelines were applied to the onboard software

architecture for the Cat-1 CubeSat, developed at the Technical
University of Catalonia. The authors propose three critical
and generic quality attributes to avoid ambiguities as far as
possible since assessing them qualitatively is, mostly, a sub-
jective task. The proposed guidelines to improve them consist
of encapsulation and goal-oriented decomposition of func-
tionalities, modularization, and the provision of autonomous
mission planning capabilities. The application of these rec-
ommendations on Cat-1 resulted in a hierarchical ordering
of software components, a payload-oriented modularization,
and a secure and reliable communication interface that con-
nects low-level modules with the autonomous system.

The core Flight System (cFS) is an open source flight
software solution being developed at NASA. The aim of the
project includes reducing time to deploy high-quality flight
software, reducing project schedule, and reducing cost uncer-
tainty by facilitating formalized software reuse [23]. The cFS
has a solid flight inheritance from NASA projects, and it has
also been used in nanosatellites. The cFS provides a unit test
suit, but the community has provided SILS interfaces using
Simulink and the NOS3 spacecraft simulator [23], [24].

Researchers of the Intelligent Space Systems Labora-
tory (ISSL) at the University of Tokyo have developed
the Command-Centric Architecture (C2A), a flight software
solution focused on reusability and flexible on-orbit recon-
figuration capability [11]. Authors report having used the
software on the Hodoyoshi-3 and 4, the PROCYON, and
EQUULEUS satellites. They also report the advantages of
the command architecture to implement SILS and HILS and
the availability to test the same software with both techniques
with minimal source code modification.

The testing systems applied for the flight software of Cube-
Sats are not deeply discussed in the literature of this area.
In general, the approaches that were found in the related work
mention the use of unit testing, HILS and SILS methodolo-
gies, or software tools that facilitate the data and command
handling from the ground station, but in no case consider
automated testing techniques that could be useful for time
optimization, which is one of the most common problems
for the flight software development. In this work, we propose
and analyze the application of fuzz testing as an automated
testing technique that follows the agile development required
to perform CubeSat space missions. However, it is possible
to find advanced fuzz testing techniques in other areas.

Babić et al. ([25] propose a system for an automated
fuzz driver generation: Fudge. This system operates with an
already developed fuzzer, which has found several security
and robustness bugs at Google projects. Fudge generates fuzz
driver candidates for libraries based on existing client code.
A fuzz driver is a test harness, which in this case, exercises
the library code. This accelerates the current fuzz system,
enabling fuzz testingmore C and C++ codebases. The Fudge
high-level overview consists of a backend pipeline, where
the candidates are generated, and a user interface where
developers can track the results. The backend pipeline has
three main modules. At first, code snippets are extracted from

VOLUME 9, 2021 114011

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

the library usages. Then, these code snippets are mutated and
transformed into fuzz targets. The last module builds and runs
the candidate fuzz targets. There is still a manual selection
after the candidates are generated to assure consistency on
tests. Three different case studies are shown in that work, with
the objective to evidence the system’s effectiveness. Fudge
has found over 150 bugs, which have already been fixed,
including eliminating various exploitable security vulnera-
bilities. This is an example of what advanced fuzz testing
techniques can achieve in other contexts and serves as a guide
to lead advanced testing processes for flight software in the
nanosatellites’ area.

III. THE SUCHAI FLIGHT SOFTWARE
A. SUCHAI CUBESATS
SUCHAI is a CubeSat based space program that includes the
SUCHAI I, II, III, and PlantSat nanosatellites. These satel-
lites are developed by students, engineers, and researchers
from different areas in the Space and Planetary Explo-
ration Laboratory (SPEL) of the University of Chile.
SUCHAI I is the first CubeSat created in Chile, launched
in June 23th, 2017 from the Satish Dhawan Space Centre
[26], [27]. The following versions, SUCHAI II, III, and
PlantSat, continue developing and updating their functional-
ities, and they are expected to be launched between 2021 and
2022. These satellites use the SUCHAI flight software, a soft-
ware solution developed for CubeSat nanosatellites designed
to be highly modular and extensible. This flight software is
based on the ability to execute generic commands. These
commands can be executed automatically from certain mod-
ules of the software itself, or they can be sent from the
ground station as described in Figure 1. In previous work,
Gonzalez et al. [10] document the design and implementa-
tion of the SUCHAI flight software. In this section, we will
describe and explain the most relevant parts of this work.

B. SUCHAI FLIGHT SOFTWARE ARCHITECTURE
ADVANTAGES
The SUCHAI flight software architecture is based on the
command design pattern adapted for implementation in the
C programming language. Figure 2 illustrates the application
layer architecture. The flight software acts as a generic com-
mand executor, and all of its functionalities are encapsulated
as commands. The commands are requested by the client
modules and derived to the invoker. The invoker enqueues
the commands and makes decisions about their executions to
finally send the requests to the receiver. The receiver executes
the function associated with the command in the same order
they were enqueued [10].

We can remark two advantages of the command pattern
architecture. First, the operational requirements are mapped
to commands, and commands are mapped to functions. Thus,
by testing commands execution, we can examine the soft-
ware robustness and track the associated high-level mission
requirements. And second, the command execution follows a

FIGURE 1. Example of satellite operations. Adapted from ‘‘An
architecture-tracking approach to evaluate a modular and extensible
flight software for CubeSat Nanosatellites’’ by C. Gonzalez, C. Rojas, A.
Bergel, and M. Diaz, vol 7, pp. 126409-126429, 2019.

FIGURE 2. The SUCHAI flight software architecture. Adapted from ‘‘An
architecture-tracking approach to evaluate a modular and extensible
flight software for CubeSat Nanosatellites’’ by C. Gonzalez, C. Rojas, A.
Bergel, and M. Diaz, vol 7, pp. 126415, 2019.

single path, independently of the software interactionmethod.
If we decide to interact using the serial console, the commu-
nications interface, or a new dedicate client, we are testing
the complete command executionmechanism, which benefits
the test coverage. Therefore, thanks to the implemented archi-
tecture, we can integrate different testing techniques into the
SUCHAI flight software with minimal code instrumentation.

C. CURRENT TESTING PRACTICES
Unit testing, integration testing, and HILS are the primary
testing techniques applied to the SUCHAIflight software dur-
ing its development to improve and verify particular aspects
of its quality. Unit testing was implemented using CUnit. The
current unit testing system is based on testing the interfaces
of the main modules, but it contains at most four test func-
tions for each module. The integration testing system of the
SUCHAI flight software consists of running the flight soft-
ware with a specific configuration, sending the commands
under test with fixed parameters, thus covering only particular

114012 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

use cases. In the case of HILS testing, the software is being
tested on the same onboard computer that will be installed on
the satellite or the satellite flight model itself, which requires
a careful test cases design and environment preparation (soft-
ware, hardware, and facilities), prior to tests execution in a
controlled environment.

Software engineering tools are used on the validation
methodology of the SUCHAI flight software architecture.
Specifically, a visual architecture evaluation tool tracks the
flight software’s quality attributes, generating visualizations
that measure the software components’ modularity. This tool
is complemented with automatic cross-compilation and auto-
mated testing to evaluate the software’s portability and reli-
ability [10]. In addition, unit testing, integration testing, and
visualization generation have been included in a continuous
integration system build using the GitLab CI/CD tools.

FIGURE 3. Logic diagram of the proposed fuzz testing implementation
and the communication system with the SUCHAI flight software.
RandomSequenceFuzzer is the system to generate the random sequence
of commands to be sent to FsRunner. FsRunner interacts with the SUCHAI
flight software running process. It sends the sequence commands to the
running process. The SUCHAI flight software receives the commands
through the communications module and executes them following the
logic of its architecture.

IV. FUZZ TESTING
Fuzz testing is an automated software testing technique that
consists in feeding a random input into a program to uncover
system failures. Software failure is defined as an unex-
pected software behavior that gives a different result from the
expected one. There are three main types of software failures:
loss of service, incorrect service delivery, and system/data
corruption [28].

Section IV-A describes how fuzzing was applied to find
unexpected failures on the SUCHAI flight software. The
complexity of this application is determined by the SUCHAI
flight software architecture. However, it must be emphasized
that nothing prevents our approach from being applied to
different flight software, as we explain later. Section IV-B
lists the different strategies we have employed. Section IV-C
presents some aspects when we ran our experiment.

A. FUZZ TESTING ON SUCHAI
As we explained in Section I, the SUCHAI flight software
is considered a critical embedded system because it carries

out the whole system control procedures of the nanosatellite.
Therefore, we are interested in finding vulnerabilities associ-
ated with the system’s availability and reliability.

There are many ways to apply fuzz testing on the SUCHAI
flight software, such as sending random input to functions,
modules, or commands. We chose to use this technique with
commands because we can take advantage of the software
architecture. As we explained above, the SUCHAI flight soft-
ware architecture is based on the command design pattern,
which means that all the functionalities are implemented and
executed as commands. Thanks to its design, the software
provides interfaces to receive commands as inputs through
the satellite communication system (that can be emulated
in the local loop), the serial console (or Linux terminal),
the flight plan, or another specific task of the application.
These interfaces will be used to interact with the SUCHAI
flight software running process during the execution of the
tests. On each test, we will analyze the result of send-
ing a combination of random commands with a random
number of parameters and/or random values of parameters.
Thus, each test case should be composed of a sequence of
commands.

We used the fuzzing architecture proposed in The Fuzzing
Book Zeller et al. [29], which provides a Runner and Fuzzer
classes. As described in Figure 3, the Runner represents the
process to be executed with the randomly generated data, and
the Fuzzer represents the system that generates and feeds this
data into a consumer. In this context, FSRunner is a class
that inherits from Runner and interacts with the SUCHAI
flight software. FSRunner has methods that run this process
with the fuzzed commands and parameters. The RandomSe-
quenceFuzzer class inherits from Fuzzer and has methods to
generate a sequence of random commands and parameters.
We are using the communication system interface to interact
with the SUCHAI Flight Software. This interface uses the
CubeSat Space Protocol (CSP), which provides aGNU/Linux
and FreeRTOS implementation. The GNU/Linux implemen-
tation relies on the ZeroMQ library, so we can send com-
mands using ZeroMQ sockets and the local loop.

B. STRATEGIES
The implementation of fuzz testing for the SUCHAI flight
software is based on four strategies defined by the number of
commands sent per sequence, the number of parameters sent
per command, and the randomness to produce commands or
parameters in a sequence:

Strategy 0: Random commands. Since the SUCHAI flight
software provides a check system for wrong names of com-
mands, this strategy’s key idea is to prove the robustness
of the SUCHAI flight software with random and possibly
unknown commands. This can be achieved by providing
sequences of random names of commands without parame-
ters. Thus, the implemented Fuzzer creates N random names
of commands. These random names are stored in a list, which
is sent to the implemented FSRunner class.

VOLUME 9, 2021 114013

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

This strategy should not make the software crash because
of the check system mentioned above. Before the commu-
nications module sends the command object to the invoker,
it checks if the command exists in the command repository,
iterating over the list of all the registered commands. If there
is not a name in that list that matches with the name of the
sent command, the command is not directed to the invoker
for its execution.

Strategy 1: Random number of parameters. By providing
sequences of known commands with a random number of
parameters, including zero, this strategy mainly searches for
possible errors in the implementations of commands that are
not considering the number of the passed parameters. Each
parameter is a random value of a fixed type. The types are
defined in the command implementation. These are int,
long, unsigned int, float, and string.

In this case and the following ones, the Fuzzer receives
a list of available commands implemented in the SUCHAI
flight software and the number of commands per sequence.
Commands are randomly chosen from the list of available
commands. To date, more than 90 commands have been
implemented.

Strategy 2: Random parameter values with randomly cho-
sen types of values. This strategy provides known com-
mands with the exact number of expected parameters, but
the values and types of these parameters are random. The
types of the values are randomly chosen, too; therefore, they
may not necessarily correspond with the expected types of
values. The goal is to mainly find errors in the implemen-
tations of commands that may cause a crash because they
do not check for the values, the values type, or the variables
range.

Strategy 3: Random parameter values with defined types
of values. With this strategy, we look for errors in imple-
mentations of commands that have unchecked properties of
values, such as the length of each parameter. To achieve
that objective, we provide known commands with the exact
number of parameters that each commands receives, where
each parameter is a fixed value of a defined type. Unlike the
previous strategy, in this case, the types of the values must
correspond with the expected types.

C. EXECUTION
The different strategies were executed by sending sequences
of 5, 10, 50, and 100 commands. Each of these sequences
with a predefined size was generated 1,610 times for each
strategy to find useful test cases. Therefore, in total, there
were 25,760 sequences executed on the SUCHAI flight soft-
ware. Initially, the execution of the 25,760 sequences lasted
around 3 days. In a replication of the experiment with the
same sequences, the execution lasted 175,872 seconds. This
translates into 2 days and 53 minutes of total execution time.
The replication of the experiment was carried out to analyze
time execution on a different computer system with more
processing and storage capacity.

V. RESULTS
The results obtained from the execution of the strategies
mentioned in Section IV-B are analyzed in terms of the exit
code, execution time, and memory consumption for every
sequence. For each strategy, we executed 6,440 sequences.
These sequences were equally distributed in four sets based
on the contained number of commands: 5, 10, 50, and
100 commands per sequence.

A. EXPERIMENT EXECUTION RESULTS
Initially, we executed the experiment under the operating
system Ubuntu version 18.04. In terms of hardware, we used
an Intel(R) Core(TM) i5-6200U processor @2.3 GHz and
12 gigabytes of RAM.

For strategy 0, the results show that the failure rate by
sending random names of commands without parameters
is 0%. Then, the results are consistent with the hypothesis that
the software validates the names of the commands before they
are sent for their execution.

The percentages of the failed sequences on each set for
strategies 1, 2, and 3 are shown as bar charts in Figure 4,
Figure 5, and Figure 6, respectively. The variable in the x-axis
is the number of commands per sequence. The variable in the
y-axis is the percentage of failed sequences compared to the
total number of sent sequences per strategy.

FIGURE 4. Percentage of failed sequences of commands given a fixed
number of commands per sequence for strategy 1.

For each of the above figures, there is an increase in
the failure percentage between the sets. Since the random
generation of commands and parameters uses a uniform dis-
tribution, the probabilities of choosing parameters that make
a command execution crash the SUCHAI flight software
process increases as the number of commands contained in
a sequence is greater.

The maximum time that a sequence took to execute was
approximately 6,463 seconds. Ten sequences lasted longer
than 200 seconds to execute, which in total makes up only
0.15% of the sequences. This behavior only appeared in the
first execution of the experiment; therefore, it is not partic-
ularly related to the experiment performance itself but other
factors we will discuss in Section V-B.

114014 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

FIGURE 5. Percentage of failed sequences of commands given a fixed
number of commands per sequence for strategy 2.

FIGURE 6. Percentage of failed sequences of commands given a fixed
number of commands per sequence for strategy 3.

The memory consumption of the sequences varies from
10,268 to 11,100 kilobytes. There is not a significant vari-
ation between strategies. In all cases, the maximum memory
consumption of a sequence is in the order of 10,000 kilobytes.

Figure 7 shows the commands’ occurrence frequency on
sequences that made the SUCHAI flight software crash, clas-
sified by module. Each color represents a module. The red
color on a command name of the x-axis labels indicates an
identified failure in the SUCHAI flight software produced by
the command. The number of times a command appeared in
the same sequence was not considered in the counting for
a clearer analysis. In total, ten commands were identified
as a cause of a SUCHAI flight software crashing. Seven of
them appeared more frequently in the sequences that made
the SUCHAI flight software fail. The module that has the
majority of the ten identified commands is the flight plan (fp).
By looking at Figure 7 one can identify the commands that

made the SUCHAI flight software crash. In fact, the develop-
ers identified the first seven commands (from right to left)
that appear more frequently in the sequences as a cause of
failure in the SUCHAI flight software at least once. This
identification process will be explained more in detail on
Section V-C.

We have found sequences that made the SUCHAI
flight software crash. From these sequences, ten
failing commands have been particularly iden-
tified by the software development team. Also,
we found anomalies in the execution time of the
sequences, which will be analyzed and discussed on
Section V-B.

B. EXPERIMENT REPLICATIONS RESULTS
As we mentioned at the beginning of Section V, three exper-
iment replications were carried out to measure the execution
time under other conditions with better hardware resources.
We used an Intel(R) Core(TM) i7-990X @3.47GHz, and
24 gigabytes of RAM. The objective of replicating the experi-
ment on a different hardware is to verify whether the findings
mentioned in Section V-A are not tied to the employed hard-
ware. In terms of software, we performed these replications
under the operating system Ubuntu version 20.04. The results
related to memory consumption and exit code were also
measured again in order to be consistent.

In contrast to the first execution of the experiment, we did
not observe large differences in the execution time of the
sequences. In fact, none of the sequences lasted longer than
200 seconds to execute. The differences between the exper-
iments are associated with the help of better resources to
replicate the experiment. However, more experiments are
necessary to associate a definite cause to this effect and
achieve more confidence about the obtained results to make
statistical conclusions. This threat is discussed in detail in
Section VI-A.
Strategy 0 does not present any sequence with execution

time longer than 10 seconds, which is the expected behavior
since a random command name should not be recognized as
valid input in the first place. This kind of inputs does not cover
anymore code than the necessary statements to validate them.

As in the first execution of the experiment, we have not
found a significant variation of the memory consumption
between the sequences. The variation ranges from 11,655 to
12,279 kilobytes.

We found differences between the original experiment exe-
cution and its replications in the number of failures, with
more failures in the first experiment execution. In addition,
some values of the memory consumption measurements are
equivalent to 0 kilobytes in the experiment replication. These
findings could be associated with the conditions under which
the replications were executed. We will discuss this further
in Section VI-A.

We conclude that differences in execution time,
number of failures, and wrong values in the measure-
ments of memory consumption are not related to an
experiment performance issue. This will be further
discussed on Section VI-A.

VOLUME 9, 2021 114015

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

FIGURE 7. Commands appearance frequency on the failed sequences, classified by command type (module). The commands that made the SUCHAI flight
software crash are red-colored in the x-axis labels (identified command failure).

C. FAILURES FIXING AND CHARACTERIZATION
Once the sequences were sent to the SUCHAI flight software,
and the relevant results from their execution were identified,
we reported the findings to the software development team.
Eight sprint sessions were organized to identify bugs, fix
them, and characterize them for a detailed analysis.

1) SPRINTS
At the beginning of each sprint session, the reports made
for the software development team were analyzed. This con-
sisted of searching for the sequences that made the SUCHAI
flight software crash and reproducing themmanually, sending
the specific commands that make up each sequence to the
SUCHAI flight software, one by one. In parallel, each mem-
ber of the software team tried to identify a failed sequence.
When a sequencewas found, the issuewas reported in the ver-
sion control system used to track the SUCHAI flight software
code changes. The information attached to the issue report
was the number of commands in the sequence, the exit code
returned by the execution of the sequence on the SUCHAI
flight software, and the commands of the sequence with their
respective values of parameters.1

The changes made in the code to fix the issues found were
attached to the bug reports on the version control system.
This process made it possible to keep track of the error type,

1https://github.com/spel-uchile/SUCHAI-Flight-
Software/issues?q=is:issue+label:Fuzz-Testing

architecture level affected, modules affected, the number of
code lines changed, and the number of modified functions.

Once the issue associated to a failed sequence was iden-
tified and fixed, three questions were asked to the software
team members to better understand the failure and the com-
plexity of its solution. The possible answers to these questions
are represented as a number scale from 1 to 5, ranging from
‘‘very unimportant/very easy’’ to ‘‘very important/very dif-
ficult’’. We considered the following questions:
• How important is the failure?
• How difficult is the failure to find?
• How difficult is the failure to fix?

2) RESULTS
In total, 12 failed sequences were identified and fixed by the
developers during the sprint sessions. Each of these sequences
failed because of the crashing on the execution of one particu-
lar command. Ten commands had identified errors. From the
questions asked during the sprint sessions, and thanks to the
tracking of the code changes, the failure shown in Table 1.
This description includes the ID of the issues reported in the
version control system and the command directly associated
with the failure. The exit code refers to the values of the
POSIX signals that were sent to the process to terminate its
execution. The error type is the main part of the error message
associated with the process exit code. Errors are reported in
the table with particular acronyms: SS is a stack smashing,
SF is a segmentation fault, NP is a null pointer and FA is a

114016 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

TABLE 1. Characterization of the failures found in the SUCHAI flight software.

failed assertion. ‘‘Where is it being executed?’’, ‘‘Critical-
ity’’, ‘‘Ease of finding’’, ‘‘Ease of fixing’’, and ‘‘Architecture
level’’ attributes were part of the discussion with the soft-
ware development team during the sprint sessions. Therefore
these answers represent the developers’ opinion from 1 to 5,
where 1 means that the bug under study is irrelevant for the
mission/not difficult to find/not difficult to fix and 5 means
that it is critical for the mission/very difficult to find/very
difficult to fix. In the table, the acronyms shown below the
previously mentioned question represent the places where
a certain command is being executed: SAT is the onboard
satellite, GND is the ground station, and SIM is the simula-
tor. The architecture level from where the failure originates
(ORG), expressed (EXP) and fixed (FIX) could be the drivers
layer (D) or the application layer (A). The affected modules,
number of added (+) or extracted (−) code lines to fix the
bug, and the number of modified functions to fix the bug were
extracted from the version control system after the bug was
fixed.

As discussed in Section V, the majority of the software
failures we found are related to the flight plan module. The
flight plan module contains almost all of the error types,
except one: a failed assertion. Besides, four of the eight com-
mands associated with the flight plan are executed onboard
the satellite. ‘‘fp_del_cmd_unix’’ is executed on the ground
station and the simulator. ‘‘fp_test_params’’ is just a test-
ing command; therefore, it is not executed in any of the
shown modules. It is important to note that ‘‘fp_set_cmd_dt’’
and ‘‘fp_del_cmd_unix’’ appear twice on the table because
there were different failures found on each of these
commands.

The criticality is strongly associated with the place where
the command is being executed. Eight out of the ten pre-
sented commands are considered critical since they are being
executed onboard the satellite, while ‘‘com_send_tc’’ was
rated as 3 in criticality level because it is executed only on

the ground station and the simulator. ‘‘fp_test_params’’ was
rated as 1 since it is not executed in any of the mentioned
parts.

3) FIXING THE ISSUES
The bug related to the command ‘‘com_send_tc’’ is con-
sidered the most difficult to find. The developers tried to
identify the cause of failure only by using the debugger
but also through trial-and-error, making direct changes to
the code until the software did not crash anymore. The rest
of the bugs were rated in the range from 1 to 3 regarding
the ‘‘Ease of finding’’ category. Eight out of twelve bugs
were found by sending commands with no parameters. The
first bug associated with the command ‘‘fp_del_cmd_unix’’
was rated as 3 because it was necessary to find the precise
configuration of the database system to reproduce it. The
failure related to the command ‘‘tm_send_status’’ is a failed
assertion independent of the values of each parameter, though
it is relatively easy to find. The first bug associated with
the command ‘‘fp_set_cmd_dt’’ is a stack smashing type of
failure, where a string without its null character is saved in a
buffer. Though the bug is not difficult to find, it required time
to understand the cause of failure.

Four out of twelve bugs were rated with a value higher
than 1 (‘‘very easy’’) on the attribute ease of fixing. Eight bugs
were rated as 1 because of a wrong parameter validation when
sending commands with no parameters, which are considered
easy to fix. The bug related to the command ‘‘com_send_tc’’
is considered the most difficult to fix since, as we men-
tioned above, the process to fix it was not direct. The first
bug associated with the command ‘‘fp_del_cmd_unix’’ was
caused by a missing implementation of the functionalities of
a certain database system. Thus, the complexity for fixing
this bug lies in the number of functionalities, and there-
fore code lines, that must be implemented to execute this
command correctly under the required configuration for that

VOLUME 9, 2021 114017

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

database system. According to the developers, the bug associ-
ated with the command ‘‘tm_send_status’’, and the first bug
related to the command ‘‘fp_set_cmd_dt’’ are not very hard
to find, but a certain level of knowledge is required to solve
them.

The first bug associated with the command
‘‘fp_del_cmd_unix’’ has the largest numbers of modified lines
of code and modified functions to fix the bug, which are
375 and 10, respectively. This affects its complexity, which
wasmentioned by the developers beforehand. The bug associ-
ated with the command ‘‘tm_send_status’’ has 108 modified
code lines and 3 modified functions. The rest of the bugs do
not present a value higher than 20 and 1 on the attributes # of
code lines to fix the bug and # of modified functions to fix the
bug, respectively.

4) IMPACT ON THE ARCHITECTURE
All of the bugs were expressed in the application layer of the
software architecture. Ten out of twelve bugs were originated
from and were fixed on the application layer. Only two bugs
were originated from and were fixed on the drivers layer.
Both of them are considered critical and are related to the
flight plan module. The driver to interact with the different
database systems is implemented on the data_storage.c
file. Since the last-mentioned bugs are originated from
the drivers layer, data_storage.c is an affected
module.

VI. DISCUSSION
A. THREATS TO VALIDITY
We analyze the threats to the validity for this work as
described in Quasi-experimentation: Design & Analysis
Issues for Field Settings Cook et al. [30].

1) CONCLUSION VALIDITY
The experiment, defined as sending specific sequences that
were initially randomly generated, was reproduced three
more times in order to capture more accurate results mainly
associated with time and memory consumption. These repli-
cations were executed under different conditions that were
as similar as possible to the original execution. However,
the experiment is considered to have low statistical validity
because of the low number of executions and the different
conditions related to hardware and software characteristics.
To mitigate this threat, a higher number of executions is
required. Also, the conditions under which the experiment
will be reproduced must be defined beforehand. Furthermore,
this experiment is considered to have random heterogeneity
since 1,610 random sequences for each predefined num-
ber of commands per sequence were sent on a particular
strategy.

2) INTERNAL VALIDITY
We found very few variations when replicating our experi-
ment. External elements could have affected the executions,

possibly attached to the operating system and hardware.
In the case of memory consumption and execution time, these
results were expected. However, the number of failures also
varied: we found fewer failures on each replication than the
original execution.

3) CONSTRUCT VALIDITY
The SUCHAI flight software has a configuration module,
which has several variables to configure the execution of
the software conditions, such as tasks to be reproduced,
database system to be set up, communication system settings,
among others. For the executions of the experiment, we set up
only one standard configuration, considering we were purely
testing software. Combinations of values for configuration
module variables were not tested. However, several strate-
gies were developed in order to analyze different types of
scenarios. Besides, the results considered not only the num-
ber of failures but the memory consumption and execution
time.

4) EXTERNAL VALIDITY
The implementation for this work applies only to the
SUCHAI flight software context. However, it is possible to
generalize it to flight software with similar software architec-
ture, although changes to the source code might be necessary.
The experiment was performed in a specific version of the
software to help the developers implement an improved ver-
sion of it. After the developers fixed the bugs found with this
technique, the experiment was run again to find new failures.
No new bugs were found.

B. APPLICABILITY TO OTHER MISSIONS
Fuzz testing covers a wide range of strategies, including
black-box, white-box, or grey-box testing methods. Particu-
larly, in our work, we implemented fuzzing as a black-box
testing method. Then, from our experience in implement-
ing it for the SUCHAI flight software, we describe the
basic characteristics of a flight software architecture that
may facilitate the application of the black-box fuzzing
strategies:
• Interoperability: The system should have a clear and
well-defined interface to interact with the fuzz testing
application.

• Understandability: The software architecture should
be easy to understand and have a clear structure in order
to know how to manage the fuzz testing application.

• Testability: The requirements of the mission should be
consistent and testable. There must be documentation
of the public API in order to apply black-box testing.
Besides, the system should have the capacity to capture
the test results.

• Performability: The system should be fast enough to
perform each action in a reasonable amount of time,
taking into account how many inputs will be sent.

114018 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

FIGURE 8. cFS top level architecture modified to integrate a fuzz testing
application. Adapted from ‘‘core flight system (cFS) background and
overview’’, NASA, 2014, https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-
ExportControl-Final.pdf (accessed 2021 June 23).

From the reviewed software architectures by
Gonzalez et al. [10], the core Flight System [23] and
the Command Centric Architecture [11] present a well-
documented architecture that fulfills the characteristics pre-
viously highlighted. This makes it possible to define a clear
way to fuzz both flight software as a black-box testing
method.

The core Flight System (cFS) is an open source flight
software solution developed by NASA [23]. This software
exhibits a layered architecture that hides the hardware and
OS specifics while providing a core and application layer
with general and mission-specific services. The cFS provides
an interface to integrate a new application using a publish-
and-subscribe architectural style with a software message
bus, allowing interoperability. Thanks to its clear software
architecture, it would be possible to create a new fuzz
testing application to interact with the rest of the system
using the software bus. Messages have a well-defined format
(CCSDS), so the list of supported messages and parameters
can be randomized by the fuzzer. All of the applications
are connected to the software bus so the fuzzer can interact
with the system by sending request messages and observing
response messages. Figure 8 explain this proposal.

The Command Centric Architecture (C2A) is the flight
software developed by ISSL researchers at the Univer-
sity of Tokyo with a focus on reconfiguration capability.
A major feature of C2A is to describe the behavior of the
spacecraft by commands and to present a clear software
architecture to register and execute both single and block
commands [11]. Following the C2A concepts, it would be
possible to develop a fuzz testing essential function to send
commands and randomize parameters and the execution order
as described in Figure 9. The block commands concept in
C2A matches with the idea of command sequences. The new
essential function requires a definition table that aggregates
all other existing command definition tables. By fuzzing
application-specific block commands in the C2A, it would be
possible to explore the effect of uncertainty in the execution

of the individual commands sequences or test the spacecraft
robustness to deviations in the expected operations.

FIGURE 9. C2A software architecture modified to integrate a fuzz testing
essential function. Adapted from ‘‘Command-centric architecture (C2A):
Satellite software architecture with a flexible reconfiguration capability’’,
by Nakajima et al., Acta Astronautica, vol 171, pp. 208-214, 2020.

VII. CONCLUSION AND FUTURE WORK
In this work, we reviewed the flight software testing strategies
used in several CubeSat projects and discovered that unit
testing, SILS, and HILS are the most common techniques.
However, to the best of our knowledge, not all flight soft-
ware frameworks nor CubeSat missions document the testing
procedures used to ensure software quality and robustness.
Moreover, in our search of agile testing solutions, we did not
find any reported use of more advanced software testing tech-
niques, such as fuzz testing, to CubeSatmissions. Fuzz testing
techniques have demonstrated in other areas their usefulness
by providing automation to the testing procedures, improving
software robustness. For this reason, we proposed their use
in a context of agile and low-cost CubeSat development,
which, to the best of our knowledge, has not been introduced
before.

In this work, we explored the usage of fuzz testing
techniques in the flight software of the SUCHAI series of
nanosatellites by running a set of strategies. We found out
that the command-based architecture of the SUCHAI flight
software facilitates the interaction with the fuzzer. Moreover,
testing through commands facilitates the use of these strate-
gies both in early development stages (development machines
or continuous integration systems) and qualification/
formal functional testing campaigns (protoflight or flight
models).

The test results showed that 42.8% of the total sequences
failed during the execution of the tests, which is a sign
of active software bugs not found with previous testing
techniques (unit testing, integration test, and HILS). After
three days of doing more than 1,000,000 commands exe-
cutions in an unattended manner, we found twelve bugs
in total. These results were appropriately reported to the
SUCHAI software team, and these twelve bugs were fixed

VOLUME 9, 2021 114019

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

through eight sprint sessions, identifying their relevant
characteristics.

The next steps in this research include studying more
advanced strategies with a focus on the intelligent identifi-
cation of failure paths led by code coverage. The proposed
fuzz testing application can be extended to other flight soft-
ware as well. This work may help current and future small
and nanosatellite missions to improve their quality and thus,
reducing the mission risk. The automation possibilities and
the unattended execution are key to achieving the repetition
and agility required to test hundreds to thousands of satellites
in the context of mega-constellations.

ACKNOWLEDGMENT
The authors would like to thanks the ISCLab and the SPEL
team for their commitment and support of this work. We are
grateful to Renato Cerro for commenting on an early draft of
this paper.

REFERENCES
[1] T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi,

‘‘Towards the thousandth CubeSat: A statistical overview,’’ Int. J. Aerosp.
Eng., vol. 2019, pp. 1–13, Jan. 2019.

[2] Achieving Science With CubeSats: Thinking Inside Box, National
Academies Press, Washington, DC, USA, 2016.

[3] D. L. Dvorak, ‘‘NASA study on flight software complexity,’’ in Proc. AIAA
Conf. AIAA Unmanned. Unlimited Conf., Apr. 2009, p. 264.

[4] J. Finnigan, ‘‘A scripting framework for automated flight SW testing: Van
Allen probes lessons learned,’’ in Proc. IEEE Aerosp. Conf., Mar. 2014,
pp. 1–10.

[5] J. Kiesbye, D. Messmann, M. Preisinger, G. Reina, D. Nagy, F. Schummer,
M. Mostad, T. Kale, and M. Langer, ‘‘Hardware-in-the-loop and software-
in-the-loop testing of the MOVE-II CubeSat,’’ Aerospace, vol. 6, no. 12,
p. 130, Dec. 2019.

[6] J. Schoolcraft, A. T. Klesh, and T.Werne, ‘‘MarCO: Interplanetary mission
development on a CubeSat scale,’’ in Proc. SpaceOps Conf., May 2016,
pp. 221–231.

[7] J. A. Ledin, ‘‘Hardware-in-the-loop simulation,’’ Embedded Syst. Pro-
gram., vol. 12, pp. 42–62, Feb. 1999.

[8] S. Jeong, Y. Kwak, and W. Jin Lee, ‘‘Software-in-the-loop simulation for
early-stage testing of autosar software component,’’ in Proc. 8th Int. Conf.
Ubiquitous Future Netw. (ICUFN), Jul. 2016, pp. 59–63.

[9] D. J. F. Miranda, M. Ferreira, F. Kucinskis, and D. McComas, ‘‘A compar-
ative survey on flight software frameworks for ‘new space’ nanosatellite
missions,’’ J. Aerosp. Technol. Manage., Oct. 2019, pp. 1–13.

[10] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, ‘‘An architecture-
tracking approach to evaluate a modular and extensible flight software for
CubeSat nanosatellites,’’ IEEE Access, vol. 7, pp. 126409–126429, 2019.

[11] S. Nakajima, J. Takisawa, S. Ikari, M. Tomooka, Y. Aoyanagi, R. Funase,
and S. Nakasuka, ‘‘Command-centric architecture (C2A): Satellite soft-
ware architecture with a flexible reconfiguration capability,’’ Acta Astro-
nautica, vol. 171, pp. 208–214, 2020.

[12] C. Boshuizen, J. Mason, P. Klupar, and S. Spanhake, ‘‘Results from the
planet labs flock constellation,’’ in Proc. AIAA/USU Conf. Small Satell.,
Aug. 2014, pp. 1–8.

[13] I. F. Akyildiz and A. Kak, ‘‘The Internet of Space Things/CubeSats,’’ IEEE
Netw., vol. 33, no. 5, pp. 212–218, Sep. 2019.

[14] P. Godefroid, ‘‘Fuzzing: Hack, art, and science,’’ Commun. ACM, vol. 63,
no. 2, pp. 70–76, Jan. 2020.

[15] S. F. Hishmeh, T. J. Doering, and J. E. Lumpp, ‘‘Design of flight software
for the KySat CubeSat bus,’’ in Proc. IEEE Aerosp. Conf., Mar. 2009,
pp. 1–15.

[16] S. Johl, E. G. Lightsey, S. M. Horton, and G. R. Anandayuvaraj,
‘‘A reusable command and data handling system for university CubeSat
missions,’’ in Proc. IEEE Aerosp. Conf., Mar. 2014, pp. 1–13.

[17] Y. Zaidi, N. G. Fitz-Coy, and R. V. Zyl, ‘‘Rapid, automated, test, verifica-
tion and validation for the CubeSats,’’ Int. J. Space Sci. Eng., vol. 5, no. 3,
pp. 242–268, 2019.

[18] C. Coelho, O. Koudelka, andM.Merri, ‘‘NanoSatMO framework: Achiev-
ing on-board software portability,’’ in Proc. SpaceOps Conf., May 2016,
p. 2624.

[19] C. Coelho, ‘‘A software framework for nanosatellites based on CCSDS
mission operations services with reference implementation for Esa’s OPS-
SAT mission,’’ Ph.D. dissertation, Inst. Commun. Netw. Satell. Commun.,
Graz Univ. Technol., Graz, Austria, 2017.

[20] A. B. Ivanov and S. Bliudze, ‘‘Robust software development for
university-built satellites,’’ 2020, arXiv:2010.02208. [Online]. Available:
http://arxiv.org/abs/2010.02208

[21] F. A. D. González, P. R. P. Cabrera, and C. M. H. Calderón, ‘Design
of a nanosatellite ground monitoring and control software–a case study,’’
J. Aerosp. Technol. Manage., vol. 8, no. 2, pp. 211–231, May 2016.

[22] C. Araguz, M. Marí, E. Bou-Balust, E. Alarcon, and D. Selva, ‘‘Design
guidelines for general-purpose payload-oriented nanosatellite software
architectures,’’ J. Aerosp. Inf. Syst., vol. 15, no. 3, pp. 107–119, Mar. 2018.

[23] D. McComas, J. Wilmot, and A. Cudmore, ‘‘The core flight system (CFS)
community: Providing low cost solutions for small spacecraft,’’ in Proc.
AIAA/USU Conf. Small Satell., Aug. 2016, pp. 1–8.

[24] M. D. Grubb, ‘‘Increasing the reliability of software systems on small
satellites using software-based simulation of the embedded system,’’
M.S. thesis, Lane Dept. Comput. Sci. Elect. Eng., West Virginia Univ.,
Morgantown, WV, USA, 2021.

[25] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux,
L. Szekeres, and W. Wang, ‘‘FUDGE: Fuzz driver generation at scale,’’ in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., Aug. 2019, pp. 975–985.

[26] M. A. Diaz, J. C. Zagal, C. Falcon, M. Stepanova, J. A. Valdivia,
M. Martinez-Ledesma, J. Diaz-Peña, F. R. Jaramillo, N. Romanova,
E. Pacheco, M. Milla, M. Orchard, J. Silva, and F. P. Mena, ‘‘New oppor-
tunities offered by CubeSats for space research in Latin America: The
SUCHAI project case,’’ Adv. Space Res., vol. 58, no. 10, pp. 2134–2147,
2016.

[27] C. Gonzalez, C. Rojas, A. Becerra, J. Rojas, T. Opazo, and M. Diaz,
‘‘Lessons learned from building the first Chilean nano-satellite: The
SUCHAI project,’’ in Proc. AIAA/USU Conf. Small Satell., Aug. 2018,
pp. 1–10.

[28] I. Sommerville, Software Engineering. Reading, MA, USA:
Addison-Wesley, 2011.

[29] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, ‘‘The fuzzing
book,’’ in The Fuzzing Book. Saarbrücken, Germany: Saarland University,
2019.

[30] T. D. Cook, D. T. Campbell, and A. Day, Quasi-Experimentation: Design
& Analysis Issues for Field Settings, vol. 351. Boston, MA, USA:
Houghton Mifflin, 1979.

TAMARA GUTIERREZ received the B.S. degree
in computer science from the University of Chile,
Santiago, Chile, in 2020, where she is currently
pursuing the M.S. degree in computer science.
Since 2018, she has been working with the Space
and Planetary Exploration Laboratory (SPEL),
University of Chile, developing the flight software
of the SUCHAI series of nanosatellites. Her work
focused on the testing and quality assurance of the
flight software.

ALEXANDRE BERGEL received the Ph.D. degree
in computer science from the University of Bern,
in 2005. Since 2009, he has been an Associate
Professor and a Researcher with the University of
Chile. He and his collaborators carry out research
in software engineering. His effort is about design-
ing tools and methodologies to improve the over-
all performance and internal quality of software
systems by employing profiling, visualization, and
artificial intelligence techniques. He has a strong

interest in applying his research results to the industry. Several of his research
prototypes have been turned into products and adopted by major companies
in the semiconductor industry and certification of critical software systems.
He authored the book Agile Visualization, Agile Artificial Intelligence and
coauthored the book Deep Into Pharo.

114020 VOLUME 9, 2021

T. Gutierrez et al.: Systematic Fuzz Testing Techniques

CARLOS E. GONZALEZ received the B.S. degree
in electrical engineering from the University of
Chile, Santiago, Chile, in 2014, where he is cur-
rently pursuing the Ph.D. degree in electrical engi-
neering. From 2011 to 2014, he worked with
the Space and Planetary Exploration Laboratory
(SPEL), University of Chile, developing the first
nanosatellite of the country. His work focused on
the development of the flight software and com-
munication system of the SUCHAI satellite. From

2014 to 2016, he worked as a Research Engineer with the Advanced Mining
Technology Center (ATMC), University of Chile, developing software for
geostatistical applications in the mining industry. Since 2015, he has been
a Lecturer of the Computer Networks and Computer Organization courses
with the University of Santiago of Chile (USACH).

CAMILO J. ROJAS received the B.S. degree
in electrical engineering and the M.S. degree in
computer science from the University of Chile,
in 2012 and 2020, respectively. From 2011 to
2012, he worked in the first Chilean nanosatel-
lite project, the SUCHAI project, being a devel-
oper in the Communication Group. From 2012 to
2016, he worked at Synopsys Chile as a Software
Developer with the TCAD Group. After 2016,
he returned to the University of Chile and started

working as a Researcher with the Advanced Laboratory for Geostatistical
Supercomputing (ALGES Laboratory), the Space and Planetary Exploration
Laboratory (SPEL Laboratory), where he is currently developing the flight
software to be programmed in future satellitemissions, and researching about
remote sensing techniques to be applied in space environments.

MARCOS A. DIAZ (Member, IEEE) received the
degree in electrical engineering from the Univer-
sity of Chile, Santiago, Chile, in 2001, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Boston University, USA, in 2004 and
2009, respectively. He is currently an Assistant
Professor with the Electrical Engineering Depart-
ment, University of Chile. His research interests
include related to the study of ionospheric turbu-
lent plasma, incoherent scatter radar techniques,

low-frequency-radio-astronomy/space instrumentation, and nano-satellite
technologies. He is responsible for the Space and Planetary Exploration
Laboratory, the Multidisciplinary Laboratory, Faculty of Physical and Math-
ematical Sciences, University of Chile, where the nanosatellite-based space
program at the university is being developed.

VOLUME 9, 2021 114021

