
Received July 23, 2021, accepted August 6, 2021, date of publication August 11, 2021, date of current version August 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104150

A Multi-One Instruction Set Computer for
Microcontroller Applications
MARCO CREPALDI , (Member, IEEE), ANDREA MERELLO, AND MIRCO DI SALVO
Electronic Design Laboratory (EDL), Istituto Italiano di Tecnologia, 16152 Genova, Italy

Corresponding author: Marco Crepaldi (marco.crepaldi@iit.it)

ABSTRACT This work presents a simple integer-only instruction set architecture and microarchitecture
derived from One Instruction Set Computers (OISCs) and embedding multiple execution modes (mOISC),
capable of running at a reasonable performance level to enable basic usability inmicrocontroller applications.
The purpose of mOISC is to enable simple data transfer tasks and run small programs while maintaining
ultimate simplicity. We present the internal organization for a computer architecture including an 8 bit I/O
register, and 64 kB central Random Access Memory (RAM), organized in two-bytes words. The processor
can run code generated assuming an OISC or a Complex Instruction Set Computer (CISC) scheme (op-code
based), depending on the programmer’s demands and based on the initial setting of a register during start-up.
To enable practical applications and demonstrate successful exploitation of mOISC in view of integration
in a compiler back-end, we designed a custom Proof-of-Concept (PoC) software design toolchain based
on LLVM and clang. Although not targeting all the features of commercial ISA, the toolchain is capable
of compiling C code from LLVM intermediate representation or generating mOISC code translated from
ARM, x86, RISC-V, and MIPS assembly. The toolchain also enables practical Value Change Dump (VCD)
simulations output with graphical plots of the CPU state and associated symbols. A PoC microcontroller
system has been synthesized in a low power Field Programmable Gate Array (FPGA) and verified in a basic
wireless telemetry application including a Synchronous Peripheral Interface (SPI) RFM9x Long RAnge
(LoRA) transceiver and a MAX30205 Inter Integrated Circuit (I2C) temperature sensor, using its 8 bit
I/O port, with software bus interface implementation. mOISC occupies ∼6% of resources on a Cyclone
10LP FPGA, for 1397 Adaptive Look-Up Tables (ALUTs) and 461 dedicated logic registers. The measured
dynamic current consumption of the complete FPGA board with synthesized mOISC is 12mA at 100MHz
clock.

INDEX TERMS One Instruction Set Computer, microcontroller, instruction set architecture, compiler.

I. INTRODUCTION
One Instruction Set Computers represent the ultimate
simplicity in the implementation of calculators [1], [2].
Notwithstanding that they run with only a single instruction,
OISCs can implement Turing-complete machines, therefore,
at the cost of higher execution time and memory usage, they
can solve any computing problem. A well-known Turing-
complete OISC considers the subleq instruction [1]. In
subleq, three memory cells named a, b and c, are accessed
sequentially, to run both an arithmetic operation and con-
trol flow. subleq performs first and arithmetic operation,
i.e., mem[b] = mem[b]−mem[a], and based on the new
value of mem[b] control flow is implemented conditionally:

The associate editor coordinating the review of this manuscript and

approving it for publication was Gian Domenico Licciardo .

if mem[b] <= 0, then pc = c, otherwise pc += 3,
where pc is program counter. Being an instruction that
embeds both arithmetic operation and control flow, subleq
can be classified as belonging to a CISC, although it is
commonly referred to Reduced Instruction Set Computers
(RISCs) [2]. This minimalistic approach to implement a
computer (i.e., by compacting both data and control flow
in a single instruction) has been even specialized using
dedicated arithmetics to run encrypted and unencrypted
computation [3]. However, OISCs are only mainly applied to
computer teaching and in structural computing models [4],
[5], thus, so far, used in domains at a significant distance from
practical engineering.
subleq is not the only possible one-instruction capa-

ble of running universal computation. Besides Bit-Copying
Machines [6], Transport Triggered Architectures (TTA)

113454 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5881-3720
https://orcid.org/0000-0002-1913-4928

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

provide another way to implement Turing-complete
machines [7]. In TTA, the only instruction present is a move,
and depending on the accessed memory address, the oper-
ation applied on their values changes to run, for instance,
arithmetic operations or control flow. TTA architectures,
with enough arithmetic and logic capability, notwithstanding
their simplicity, have even been commercialized (refer to the
MaxQ processor [8]). On the other hand, subleq schemes
have not been implemented yet in practical computers, prob-
ably due to their reduced performance, hence, the necessity
to run multiple instructions to implement ordinary operations
required in practical programs. Indeed, in subleq, the emu-
lation of a processor requires a large amount of memory, and
typically multiple cores are required to provide acceptable
performance [1]. Implementation of stack and function calls
typically required in high-level languages are possible with
subleq (see for instance the C Higher subleq compiler in
[9], [10]). However, implementing a back-end for a modern
compiler assuming a single instruction is not straightforward,
even for low-complexity computers tailored to microcon-
troller applications. Moreover, a simple OISC, due to its
aggressive minimalism, fails to consider power consumption
aspects, that are instead fundamental in the design of current
integrated systems.

The design of a tiny CPU core remains an interesting
research topic, even today when microprocessors design is
totally focused on performance and energy efficiency opti-
mization, and designers just started considering, as a whole,
production impact on sustainability [11]. First, Internet-of-
Things (IoT) and Wireless Sensor Networks (WSN) applica-
tions require the revisitation of low-area-cost processors [12],
[13]. Second, next-generation sustainable electronics, will
probably require significant attention to silicon area [14]. Not
so recent considerations on electronic systems fabrication,
indeed, suggest that during a standard lifetime of a consumer
electronic device, the energy burnt by the system is lower
than the energy required by the fabs to produce its internal
electronics [15]: consequently, assuming the same number of
pieces, large silicon areas typically indicate larger environ-
mental impact. Cross-sectional approaches such as Design
Technology Co-Optimization have been considered to add
sustainability in the power consumption, area and cost trade-
off [16], thus enriching existing PACE analyzes [17]. These
approaches consider multiple performance points to optimize
a complete integrated system. However, from a practical
viewpoint, it is evident that silicon area will remain a fun-
damental feature in next generation sustainable electronics,
therefore posing the amount of combinational logic and reg-
isters required by digital circuits as a possible major player.
Moreover, complexity plays a very important role as typically
the environmental impact of semiconductor manufacturing
is directly proportional to the number of metal layers used
in the process back-end of line [18], hence on the intercon-
nection complexity, by design. Thanks to its minimalism,
OISC is an excellent paradigm for the implementation of
von Neumann computers with non-traditional materials [19],

and alternatives to ordinary silicon are highly demanded in
sustainable manufacturing [20].

Modern microcontrollers are all dominated by reduced
instruction sets, that enable efficient computation, pipelining,
and low power consumption, by shifting complexity to the
compilers. Notable examples that do not need introduction
are ARM and RISC-V ISAs, that, although targeted for ultra-
low power applications, are powerful enough, through their
optimized microarchitectures, to run general-purpose operat-
ing systems. These ISAs and their associated hardware are
supported by widespread consolidated software tools, com-
pilers and optimizers that enable efficient code generation.
Towards limited resources occupation, an open ISA that can
be efficiently synthesized from Register Transfer Language
(RTL) is the integer-only instruction set of RISC-V (RV32I)
that has proven very efficient area and resource occupation
on FPGA [21]. This instruction set can be widely extended
adding ad-hoc instructions and customized even using com-
mercial tool-chains engineered with leading compiler infras-
tructures. This notwithstanding, in general, the number of
resources used to implement speed-focused RV32I microar-
chitectures is still considerable (see [22], [23]) assuming
aggressive low-area requirements. With minimal synthesized
features, for an RV32I the number of LUTs FF and memory
elements required is on the order of 0.9 k, 0.4 k, and 1 k on
an Intel Cyclone-IV FPGA [21]. Area optimized implemen-
tations are possible (see for instance PicoRISCV [24]), that
are even synthesized with lower gate and register count. In
light of this, can a tiny CPU devised from a minimalistic
OISC model, provide reduced resource occupation and run
at a reasonable performance?

The object of this work is to design a minimal
but practically usable computer for basic microcontroller
applications by extending OISCs. We present an ISA with
an associated machine, named multiple One-Instruction Set
Computer (mOISC, or dynamic RISC, dRISC, for similarity
with ultimate RISC [2]) that can toggle among 14 run modes,
each corresponding to a single OISC, with low resource
occupation and based on a hybrid TTA/OISC scheme [25].
Notwithstanding its minimal instruction set, though with sig-
nificantly lower performance compared to commercial pro-
cessors, our computer can run basic microcontroller tasks to
enable wireless telemetry applications and implement both
SPI and I2C interfacing based on C soft cores. Thanks to its
simple organization, mOISC has the advantage of enabling
straightforward compilation directly from LLVM Interme-
diate Representation (LLVM-IR), or direct code translation
from other ISA. The known OISC in literature, are not capa-
ble of emulating commercial CPUs and running complex
programs mainly because they require a large amount of
memory in low resources FPGA [1]. By maintaining com-
patibility to subleq OISCs, mOISC, in a very limited logic
resource budget, has the advantage of making it possible thus
being capable of running code translated from x86, ARM,
RISC-V, and MIPS assembly. It has the advantage of being
modular and logic synthesis is possible including only the

VOLUME 9, 2021 113455

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 1. mOISC central memory mem[·] organization – OISC execution mode (a), and CISC execution mode (b).

instructions required by the application. mOISC implements
a very simple but effective interrupt mechanism in which the
CPU stops until a logic transition is detected at one or more
I/O pins. Ultra-low power consumption with reduced switch-
ing activity is generally possible by waiting, for instance, that
an energy conversion sub-system generates a stable voltage
using a wake-up signal. We present the mOISC organization,
a PoC microarchitecture, a basic compilation, code gener-
ation, and simulation toolchain, and we show results of a
test case implemented using commercial I2C and SPI chipset
demonstrating a LoRA over-the-air transmission with an Intel
Cyclone 10LP evaluation board and commercial rapid proto-
typing shields. Finally, we compare the resource occupation
and the performance of the processor with respect to state-
of-the-art open-source CPU implementations and simulation
models.

II. mOISC ARCHITECTURE
mOISC is based on a single instruction that for simplicity,
readability, and for its multiple significance we call exec.
We assume that the computer utilizes only absolute address-
ing and a single memory that includes both instruction and
data (von Neumann architecture). To pose a comparison
with respect to well known architectures, mOISC provides
an equivalent register-plus-memory addressing (with total
orthogonality, [26]), i.e., the same instruction is valid for
any memory address, registers included, without exceptions.
The mOISC instruction format has the same notation of
subleq-based OISC (i.e., subleq a, b −> c), and
program memory can be compactly expressed as, addr:
exec a, b −> c, where addr is the current memory
address, a, is the source memory address, b is the destina-
tion memory address, and c is the jump memory address.
a, b and c are also called operands. To run multiple OISC

schemes, a specific register called Machine Code Register
(MCR) is defined. mOISC can execute different run modes
based on the value of MCR, hence, exec assumes differ-
ent meanings, for instance, different OISC schemes such as
subleq or addleq. This way, by tolerating the overhead of
writing to MCR the machine issues at all effects instructions
of multiple types but it can work as an OISC by statically
setting a machine code without changes.

Based on the initial value of MCR during processor start-
up,mOISC can support two executionmodes. The first, called
OISC mode, is compatible with state-of-the-art subleq
machines (i.e., an instruction is encoded with 3 contiguous
memory locations). The second, we call CISC execution
mode, includes 4 subsequent addresses in program memory,
with the first one storing the associated instruction MCR
before the OISC memory addresses a, b and c. In this last
run mode, the MCR register value is made explicit at each
instruction. This trivial memory organization is inefficient
from the code size viewpoint but has the advantage of being
flexible, as the unused bits of the MCR can be used for mul-
tiple purposes, for instance, to implement other run modes or
to further extend the number of machine codes.

Fig. 1 shows the organization of the memory of mOISC
mem[·], which is a Random Access Memory (and can be
alternatively considered as a RAM-based register file) under
an OISC execution mode. To enable non-volatile storage
this memory can be implemented, e.g., as a Non-Volatile
RAM (NVRAM). In our mOISC prototype, memory is
32768 elements wide (0xFFFF), and each cell has a width
of 2 bytes for an overall of 64 kB. Each element value is
represented in two’s complement format. ThemOISC, being a
pure von Neumann architecture, has data and program mem-
ory collapsed in the same storage unit. Memory is divided
into three logic parts: Machine Memory (or, registers),

113456 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

TABLE 1. mOISC memory mapped machine registers.

TABLE 2. mOISC machine run modes (ISA) for the execution of the generic instruction exec a, b −> c, that are set by writing to MCR.

Program Memory, and Data Memory. While the 8 addresses
0x00–0x07 are fixed, the program and data memory size
depend on the program to be run. Each machine register
(where the first is the above-defined MCR) has a specific
function (see Sec. II-A and II-B for further details).

Fig. 1(b) shows the organization of the internal memory in
themOISC processor mem[·] under a CISC execution mode.
The organization is the same as for the OISC execution mode,
with the only difference in the opcode and operands packing.
In CISC mode the MCR is made explicit and consequently,
the program counter is advanced by 4 and not 3 as in OISC
mode.

The machine registers depicted in Fig. 1(a) and Fig. 1(b)
are summarized in Tab. 1, with read/write or read-only prop-
erties. Besides run mode, machine registers are used to set
and read the I/O port, its input-output direction, the internal
clock speed of the machine, to stop the CPUwhile waiting for
an I/O event on physical pins, and to read the last arithmetic
comparison results between mem[a] and mem[b], includ-
ing overflow status.

A. MACHINE CODE REGISTER AND mOISC RUN MODES
Tab. 2 shows all the possible machine run modes supported
by mOISC. At program counter level, the difference between
OISC and CISC execution modes is only given by the amount

of its increment. We use an additional number u to identify
the run mode of the machine: if u is 0, the program counter
is advanced by 3 memory addresses (OISC mode), and if u is
1 program counter is advanced by 4 addresses (CISC mode).
Observe that the execution of the machine does not change
between these two modes, as it differs only in the program
counter increment.

We have chosen to design mOISC with 14 run modes,
a good trade-off between simplicity and the performance
level required to manipulate integer data and implement a
basic bus interfacing. In OISC mode, after the MCR is set
with a specified 1 byte constant, and it is not overwritten,
all subsequent instructions will be of that type and the run
mode is maintained. We here report all the run modes. In
the description of each one we refer to a generic program
line identified as exec a, b −> c, with the operands a,
b, c defined previously. The processor program counter is
identified as pc. Since inmOISC each machine register has a
width of 1 byte, when MCR is set, e.g., an instruction exec
const.14, MCR is issued (whereconst.14 is a constant
value in the data memory), the processor considers the lowest
8 significant bits of the source operand, in this case implic-
itly computing 0x00FF & const.14. When operand b
is within 0x00–0x07, the machine always operates as a
move machine irrespective of the current setting of the oper-

VOLUME 9, 2021 113457

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

ational machine mode, but without control flow (i.e., always
pc = c). In this run mode and for these memory regions,
the computer can be defined as transport triggered. With
respect to subleq which implements universal computa-
tion, we have chosen to include other elementary instructions
to speed up computation in practical applications and save
memory.

Arithmetic and logic operations, i.e., SUBLEQ, MOVLEQ,
ADDLEQ, SHRLEQ, SHLLEQ, ORLEQ, ANDLEQ, XORLEQ,
XNORLEQ, apply the same conditional control flow of
state-of-the-art subleq OISC, by simply assuming a
generic operand op, for an opLEQ data flow in the form
mem[b] opmem[a]. This control flow is applied also to the
instruction PC. All the aforementioned arithmetic and logic
machine codes are not strictly necessary to enable practical
programming: only SUBLEQ, MOVLEQ, PC, MEM, MEMR, and
PCS are enough to implement computing, notwithstanding
lower performance compared to machines with a larger num-
ber of hardware-accelerated instructions.

Apart from the OISC instructions SUBLEQ and ADDLEQ
and the remainder logic instructions in which the same con-
trol flow of subleq is applied, we provided the last four
instructions to easily implement stack and function calls.
The instruction PC (with no conditional control flow on the
value of mem[b]) saves the current program counter on a
generic memory cell mem[b], where b can be any memory
address except machine memory (i.e., b > 0x07). a is a
dummy operand and is not considered during execution. This
instruction can be useful to store the program counter value
before jumping to a determined function. Practically, the
stored value needs to consider the memory offset required to
execute the jump therefore, in general, it needs to be updated
based on the instructions between the PC instruction address
and the jump instruction address to a function. Observe that
PC is a simple move instruction where mem[a] is program
counter.

The instruction MEM saves the content of a memory cell
in another memory cell whose address is specified, in turn,
in a third memory cell x, i.e., x = mem[b], mem[x] =
mem[a] where a and b can be any memory address. As
the program counter is automatically advanced, c is here a
dummy operand. This instruction is useful to emulate the
stack in the main mOISC memory. The stack can be very
simply represented by a data memory cell, for instance, called
m_ptr, that is initialized with a value corresponding to the
stack pointer at the beginning of the program. By adding an
offset to m_ptr and by applying the MEM instruction on it,
it is possible to read data from a generic memory cell. We
name this instruction as double depth addressing because it
operates with two nested memory addressing. This instruc-
tion can be applied to any memory cell, including machine
registers, except fromMCR (i.e., mem[b] > 0) that cannot
be updated using MEM. Since MEM is typically used to access
data values, we have chosen to exclude MCR to reduce the
number of comparisons applied on the value ofmem[b], thus
conceptually simplifying our control unit.

The instruction MEMR saves the content of the mem-
ory whose address is specified in another memory cell x,
i.e., x = mem[b], mem[a] = mem[x] where a and b
can be any memory address. Similarly to MEM, the instruc-
tion cannot be applied to MCR (i.e., a > 0). MEMR is the
complementary instruction of MEM, and it can be used to
pop values from the stack by using a pointer variable and
subsequently decreasing it by a specific offset. Observe that
MEM and MEMR, given the elementary architecture of this
computer, work at all effects as a load and store opera-
tion in typical RISC and CISC architectures. In conventional
processors typically a limited-sized register file is mostly
accessed, while data from memory, that requires a larger
number of clock cycles to be retrieved or saved, is specifically
accessed through dedicated load and store instructions.
In mOISC, given its absolute addressing, the memory can
be considered, indeed, as a large RAM-based register file.
Finally, the instruction PCS sets the program counter with
the value specified in mem[b]. This instruction can be effec-
tively used to return from function calls. The program counter
is set only if mem[b] is non-zero.

B. OTHER MACHINE REGISTERS
The CPU status and Halt Register (CHR, address 0x01)
provides the overflow status for the last executed SUBLEQ or
ADDLEQ operation, provides the operands comparison flags,
and halts the machine indefinitely until a new hardware reset
is issued. The machine is stopped only when 0xFF is written
to CHR. An overflow condition is detected only when a
SUBLEQ or ADDLEQ operation is run. If overflow occurs, the
CHR least significant bit (overflowflag,0x01) stays ‘1’ until
the next correct SUBLEQ or ADDLEQ is executed. Every time
an arithmetic SUBLEQ or ADDLEQ operation is run the 4th,
3th, and 2th least significant bits (operand flags) are updated
based on the last processed values mem[b] and mem[a].
If mem[b] > mem[a] then the value 0x02 is set (b is
bigger than a). If mem[b] < mem[a] then value 0x04 is
set (b is smaller than a). If mem[b] = mem[a] then value
0x08 is set (b is equal than a). Multiple bits set can occur
depending on the values of mem[a] and mem[b]. In any
other condition, CHR remains latched to the previous value.
CHR can be always read without impacting the CPU control
flow.

Writing IWR (address0x02) stops the processor andwaits
for an interrupt from a physical pin whose transition direction
0-to-1 or 1-to-0 is specified in the Interrupt Configuration
Register (ICR). The IWR bits are associated directly to a
physical IOR I/O pin, from 0 to 7. The bits set to 1 enable
the CPU to filter the expected pins for the specific transitions
specified using ICR. For instance, if IWR is set to 0x05, the
CPU will resume only if a logic transition occurs at IOR2 or
IOR0 (because 0x05 is 0b00000101). The IWR setting
is valid only if the direction of the IOR pins is in read-
mode. Particular attention must be taken while writing IWR
in moments other than bootstrap. For instance, if the value
0x00 is written the effect is the same as a CPU halt without

113458 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

recovery from any transition (at least one bit needs to be set to
make the machine sensitive to a logic transition). Moreover,
in case of interrupt wait on an I/O pin that has been configured
as an output, the requested condition will never be reached,
still resulting in a CPU halt.

ICR (address 0x03) sets the transition direction 0 to 1
or 1 to 0 for all the IOR pins of the CPU to be detected
during an interrupt wait trigger (see IWR). Bits set to logical
0, identify a 0-to-1 transition while bits set to logical 1,
identify a 1-to-0 transition. For instance, if ICR is set to
0x07, logic transitions expected for IOR2, IOR1 and IOR0
are 1-to-0 while for IOR3–IOR7 are 0-to-1 (because 0x07 is
0b00000111). The ICR setting is valid only if the direction
of the IOR pins is in input mode.

CSR (address0x04) sets the current CPU clock frequency.
The CPU speed is set on the fly, that is the clock is
immediately toggled without any delay given by the hard-
ware implementation of an internal Phase Lock Loop (PLL)
or, alternatively, an oscillator array. The possible CPU
speeds are hardware and implementation-dependent. ISR
(address 0x05) contains the indication of the pin that is set
after an IWR write occurred. The register is set immediately
after the specified trigger occurred and the value is made
available for the instruction immediately succeeding the pre-
vious IWR write. The bit set to logical 1, identifies that the
processor has been woken up on the specified IOR pin (that
implicitly toggled with the transition direction specified in
ICR). The IDR register (address 0x06) sets the input/output
direction of all IOR pins. Bits at logical 0, are in input mode,
bits at logical 1 are in output mode. IDR bits are associated
directly with a physical IOR I/O pin.

The IOR register (address 0x07) sets and reads the current
output and input logic values of the I/O pins. IOR bits are
associated directly to a physical IOR I/O pin, from 0 to 7.
Observe that an IOR write is masked using the IDR register,
therefore if IDR = 0xF0, setting the IOR register to 0x0F
has the effect of zeroing the high nibble because the 4 least
significant bits are in input mode (IDR = 0b11110000). A
read-write operation on IOR is always non-blocking.

C. ASSEMBLY LANGUAGE
We have considered a sufficiently simple assembly lan-
guage to to be able of writing basic programs without
the need of high-level languages and associated toolchains.
We have maintained a case sensitive syntax for compat-
ibility with Linux/Unix systems conventions. To increase
code readability, comments can be entered using the char-
acter # which is used to turn a complete line into a com-
ment. In the assembly file characters \n,\r are allowed
and do not represent addresses (the same as for #, that
is, an empty line in the assembly does not identify a data
memory address or an instruction). To make the code more
readable, the programmer can use \t or spaces to separate
labels with instructions/data. In general, every assembly line
identifies an address. Addresses are encoded incrementally
where address 0x0000 is the first non-commented line. The

first 8 addresses (0x0000–0x0007) must be reserved for
machine registers that are placed at the beginning of the
program and must be specified all, with no exceptions. The
value of IWR is discarded during the bootstrap sequence, i.e.,
when program execution starts for program counter equal to
zero. Starting from address 0x0008 program memory can
be specified. addr can be also omitted as it can be statically
computed at assembly time. If operand c is unspecified, it
is implicit that c contains the next instruction address (that
is added by the assembler program). Operands a and b are
mandatory.

When the programmemory is concluded, data memory can
be appended next. There are no limitations for both program
and data memory size as long as they fit mem[·]. In mOISC
a single data memory cell mem[x] stores one operand. The
data memory is then a collection of variables with symbolics
that can be utilized as operands a, b, c in the program mem-
ory section. ThemOISC data memory can be expressed using
the notation symbolic-address: value to identify the content
of the memory cell. Each data memory line is a program
variable (indeed called symbolic address), whose address is
calculated at assembly time. The data memory needs to be
declared after the program memory, with the only exception
of the first 8 addresses from 0x00–0x07 that include the
initial value of the machine registers. Variables, i.e., symbolic
addresses, are alphanumeric but they cannot start with a
number. Valid names are, e.g., t0, line1, lab.1, _a, bB,
$g.56. The character - is used to identify negative numbers
and cannot be used for variable names.

All values in the machine, program, and data memory
sections must be specified as decimal signed numbers.

1) OISC EXECUTION MODE
In OISC mode, the only instruction that is allowed is exec.
An example of mOISC assembly is given in Lst. 1.
The first 8 assembly lines specify the values of the machine

registers at start-up time. In this example MCR is 255 to set
the machine execution mode as OISC. The first instruction
of the routine memcpy is specified as a symbolic address
so that the subsequent code can implement jumps to it. All
the data memory identifies both variables and constants with
a specific symbolic address. Observe that it is possible to
have a mix of program and data memory in the assembly
(therefore, without keeping these two parts strictly separated).
This can be done only if the preceding and subsequent exec
instructions above and below a given data memory region
implement unconditional jumps to wrap data around. The size
of a data memory variable is 2 bytes (16 bit), while the size of
an instruction is 3 · 2 bytes (48 bit).

2) CISC EXECUTION MODE
In CISCmode, the internal organization of the programmem-
ory is modified, while data memory is unmodified. Indeed,
instructions are packed using 8 bytes, in particular given an
instruction nth, for each instruction the information MCR, a,
b and c is stored. The assembly syntax and conventions

VOLUME 9, 2021 113459

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

Listing 1. Example snippet of mOISC assembly code (OISC mode).

remain the same of the OISC mode, with the difference of
explicitly defining the setting of the MCR. For instance, the
following OISC mode code (machine registers not shown),

is equivalent to the following CISC mode code,

where subleq and movleq are the operational codes
(assembly mnemonics) associated to the values 255 and 238
ofMCR (i.e.,0xFF and0xEE), respectively.When operating
for b < 8, i.e., assuming a mov instruction, for simplicity a
movleq identifier is used. OISC mode assembly files can be
automatically converted in CISC assembly files by storing the
last value of MCR (that is set by exec <addr>, MCR,
where <addr> is a memory address that stores a valid
machine code) and applying it to the next instructions in

sequence. This type of translation is always applicable with
the foresight of making explicit the MCR at every possible
label. This way an OISC code can be translated into CISC
mode using a simple sequential scan.

III. PROOF-OF-CONCEPT IMPLEMENTATION
A. BLOCK SCHEME
Fig. 2 shows a block scheme of a proof-of-concept implemen-
tation of the mOISC ISA, including the 1 byte input/output
port, internal PLL for clock generation, and reset pin. The
design has been synthesized in a low-cost Cyclone 10LP
device with sufficient M9K block-RAM elements to sup-
port 32768 addresses at 16 bit data for central memory [27].
The PLL, I/O Buffer, and Memory block are built-in mega-
functions provided by the QuartusTM design software. The
proof-of-concept hardware does not include any bus and it
has been kept trivial to enable the easy verification with the
compiler and simulator that will be presented later on. All the
code has been written in RTL form. The processor firmware
is flashed by programming the Cyclone 10LP device through
initialization of all the RAM elements through a .mif file
generated by the compilation toolchain.

The microarchitecture accepts the main 50MHz clock
provided by the Cyclone 10LP evaluation kit to generate
four different clocks, 100MHz, 50MHz (re-clocked), 1MHz,
and 10 kHz, for respective CSR values 0x00, 0x40, 0x80
and 0xC0. The clocks feed a multiplexer controlled by
both CSR and a halt signal that completely gates the clock
propagation when the machine is halted. The multiplexed
system clock CLK is propagated in all internal sub-systems,
comprising a system RST signal that is derived from the
external reset pin of the FPGA through a debouncer (syn-
thesized assuming trigger event filtering of 16 CLK cycles).
The debouncer filters also the HALT signal from the CPU.
The Arithmetic Logic Unit (ALU) accepts as inputs the
current MCR value and the memory elements determined
during instruction fetch, i.e., mem[a] (MEM_A), mem[b]
(MEM_B) and mem[mem[b]] (MEM_MEM_B), used in dou-
ble depth addressing. To execute the PC instruction the ALU
accepts also the program counter PC as input so that it
can generate the value of DATA to be stored in memory
during the CPU cycle. To identify overflow and provide
comparison flags, the ALU provides also OVERFLOW and
CMP, 1 bit and 3 bit respectively (greater, lower or equal).
To permit set-up and hold timing constraints closure, all
the three outputs of the ALU are sampled used dedicated
registers.

In this implementation, the single mOISC memory is a
single port RAM with a parallel interface and includes write
and read enable signals WREN and RDEN. This interfac-
ing normally matches commercially available NVRAM that
can be utilized in future prototypes of the processor, for
instance with optimized microarchitecture or area occupa-
tion. Given the low availability of internal RAM on the used
Cyclone 10LP FPGA, the memory is addressed by 15 bit

113460 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 2. mOISC proof-of-concept microarchitecture block scheme.

only (MEM_ADDR), while data width is 16 bit (MEM_DATA
and MEM_Q). The interrupt mechanism of the CPU is han-
dled by the I/O CONTROLLER that utilizes a number of
register values to implement a wait cycle on the input port,
to filter the required transitions (low-to-high or high-to-
low) and block the CPU until these transitions are detected.
The I/O CONTROLLER considers the input data from the
I/O BUFFER (that provides separate input and output ports
for driving and reading physical pins defined by the IDR
register), ICR, and IWR to mask the I/O pins and set the
transitions edge type. The controller is invoked by using a
dedicated INTERRUPT signal that stops the CPU by rising
a CPU_STOP signal and by continuously determining the
transitions at theI/O BUFFER until one of them satisfies the
trigger condition. When detected, the controller sets the ISR
accordingly to the I/O pin that actually triggered the interrupt
(useful for the SW in case more than one I/O pin has been
activated in the IWR), returns in a wait state for a successive
interrupt trigger and issues signal CONTINUE for the CPU to
continue execution.

B. FINITE STATE MACHINE
The control unit of the CPU is implemented using a single
Finite State Machine (FSM) that uses the input and out-
put signals provided by the ALU, the I/O CONTROLLER,
and I/O BUFFER, to implement fetch, decode, execute and
write back on the single-port RAM. Although an FSM is
definitely not an optimized solution to implement a CPU
control unit, it permits ease of debugging and verification,
and moreover permits to flexibly add additional instructions
or remove the unnecessary ones as will be shown later.

Fig. 3 shows a simplified scheme of the mOISC internal
FSM. Execution mode is stored in an internal variable u that
can have the value 0 or 1 in OISC or CISCmode, respectively.
The CPU cycle starts assuming u is zero. First, mOISC reads
the value of the IOR provided by the I/O port and stores it
in the corresponding internal register. Machine registers are
named MR[] in this diagram (for instance MR[0] is MCR,
MR[1] is CHR, MR[2] is CHR, and so on). To compactly
express the use of IDR, i.e. MR[6], every time IOR is
written, a bitwise AND operation is assumed to be executed
(the IDR bits at logic ‘1’ identify an output direction). After
updating IOR, fetch is implemented in 6 clock cycles, that
is, reading a, b, c, mem[a], mem[b] and mem[mem[b]].
After fetch, the FSM jumps to different states according to
the value of the program counter. If pc < 8, the bootstrap
sequence is executed, and the value of mem[a] is first
stored in internal registers MR. If the program counter is zero
(i.e., the current pc is pointing to the initialization of the
MCR), the value of u is updated to save machine execution
mode and the program counter is increased by 1 to scan all the
machine register region. The bootstrap sequence continues
until pc reaches the value of 8, i.e. when the machine can
execute instructions normally. In CISC mode, during normal
execution and even during bootstrap whereafter u has been
set, the fetch phase considers the read and the storage of the
MCR in the internal register MR[0], preceding the reading
of a.

For pc ≥ 8, two possible executions are possible, one
for b < 8, and another otherwise. b < 8 indicates that the
current instruction will write its output to a machine register,
in the diagram indicated as TTA. The corresponding internal

VOLUME 9, 2021 113461

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 3. mOISC proof-of-concept microarchitecture FSM with detailed state transitions.

register MR[b] is then updated with the value mem[a]. At
this point, the CPU needs to handle three special cases, that
are i) a CPU stop, issued when b is 1 and mem[a] is 255,
ii) wait for interrupt instruction occurring for b = 2, and
otherwise iii) write back mem[b] in the machine register.
In the first case, the FSM jumps to a state where the STOP
is issued (CPU_HALT in Fig. 2). In the second case, (see
INT arrow in the diagram), the CPU writes back in the mem-
ory the value of MR[2] (using a memory address 0x02),
sets the INTERRUPT signal, and waits indefinitely until the
CONTINUE signal is asserted by the I/O CONTROLLER. At
the same time, it stores the current ISR value provided by
the controller in a temporary register reg. When CONTINUE
is asserted the content of reg is written back in memory at
the address 0x05, and in the internal register of the CPU
MR[5]. Next, the value of the IWR (i.e, MR[2]) is reset to
zero, the program counter is set to c, and the CPU is ready to
start a new cycle. In the third case, the machine simply needs
to implement write back to the memory and need to set the
program counter to the address c before restarting a newCPU
cycle.

When b ≥ 8, the machine needs to implement the normal
flow to handle operation (exec in the figure) and as the first
step, it decodes the instruction. The FSM next state depends
on the instruction type, and here four cases are possible,
i.e., PCS, MEMR, MEM, and all the remainder instructions. In
the case of PCS, that is MR[0] = 0, the program counter is
updated with the output DATA of the ALU, which is mem[b].
Here two cases need to be handled according to the value of
DATA. The machine needs to check if DATA is not zero and
the PCS instruction is implemented only if DATA is not zero,
otherwise, the operation is skipped and the program counter

is updated with the value of c. In the case of MEMR and MEM,
that is MR[0]= 0x11 and 0x22, the CPU needs to execute
the instruction by assuming that both a and mem[b] can fall
within the range of machine registers, and re-implement the
TTA control. Indeed, after write-back to memory (at address
a or mem[b], respectively) and program counter increment,
the system needs to consider again a and mem[b] in case
their value is lower than 8 and larger than 0 (i.e., MCR).
In such a case, the same condition of TTA applies again,
i.e., for CPU halt and wait for interrupt trigger. In case the
current instruction is other than the above, the LEQ states
are executed. Observe that the control flow associated with
the arithmetic and logic instructions is also valid for the
instruction PC because the program counter is simply made
available on DATA by the ALU. After program counter update
and write back, that vary based on the value of DATA, in
case of a SUBLEQ or ADDLEQ instruction is executed, the
machine needs to update the flags in CHR (i.e., MR[1]). CMP
and OVERFLOW, which are provided by the ALU, are used to
update MR[1] and to execute a write back on memory. After
these last operations, the CPU can execute another cycle.

IV. COMPILER AND SIMULATOR TOOLCHAIN
We have developed a complete simulation, RTL generation
and compilation toolchain with custom stages in Python to
increase portability across multiple operating systems. In
particular, we developed i) a bytecode simulator outputting
a VCD file that can be easily read using open-source viewers
such as GTKWave, ii) a C compiler/translator that processes
LLVM IR from clang to automatically generate assem-
bly code or, alternatively, translates assembly from LLVM
targets (x86, mipsel, riscv32, and arm) to mOISC,

113462 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 4. mOISC compilation and simulation toolchain implemented using python 3.

iii) an assembler program that generates binary files for the
simulator and a MIF file to be passed to the FPGA synthe-
sizer for hardware validation. The toolchain requires at least
LLVM 9.0 and GTK Wave to operate, which are available
both under Linux, MS WindowsTM, or macOS. The com-
piler/translator aims at supporting integers, integer vectors
and pointers, enough for a simple data transfer application.
It does not implement all opcodes from the targets nor all IR
instructions. Adding further supported types such as char
or struct declarations is possible and it does not require
extensions of instruction set of the machine. In this work,
we have used LLVM to compile source code and generate
both intermediate representation and commercial architecture
assembly [28]. In case of LLVM-IR compilation, only the
LLVM clang front-end is used. Compared to other works
where processors have been directly ported within an inter-
nal LLVM target (see, e.g., [29]), here, we have re-used the
existing LLVM targets.

Fig. 4 shows a conceptual block scheme of the complete
mOISC compilation and simulation toolchain. For the sake of
brevity, we herein report a high-level description of the tools
without going into specific details.

A. mOISC COMPILER
Targeting low-complexity applications, we consider the com-
pilation of a single source file (<source>), in this exam-
ple called sensor.c, the associated header file, and a
set of include files that define machine intrinsics in a
/lib/inc subdirectory. They include and associated file
mOISC.h and mOISC.c define the address of machine
registers and the built-in function memcpy. The mOISC

machine registers are defined as volatile integer pointers.
This way, reading and writing such registers can be achieved
using simple assignment statements, without the need of any
ad-hoc built-in instruction, as normally done in commercial
microcontrollers. The LLVM built-in function memcpy, nor-
mally referenced for x86 architectures assembly, is explicitly
defined to simplify assembly translation. The C-to-assembly
compilation is achieved using mc.py that internally defines
two flows, one that implements LLVM-IR compilation and
another that uses LLVM assembler output to translate it
into an mOISC assembly. Both flows consider the clang
front-end to generate IR or bytecode, respectively, and an
optional -spo argument (otherwise at default value 31500)
initializes the value of the stack pointer implemented as
a simple variable in the data memory. All the C code is
compiled by clang and llc (for direct translation) with-
out optimization (option -O0). For simplicity, we assume
that all variables are declared as int. mOISC operates at
16 bit and for both compilation and translation we sim-
ply represent data on 16 bit only. For a basic compilation
functionality, LLVM intermediate representation is abstract
enough to allow the non-consideration of types in the trans-
lation: for MSP430 targets (intrinsically at 16 bit) IR argu-
ments are automatically outputted with i16 and *i16 types,
while for ARM for example, arguments are 32 bit. Besides
types, the intermediate representation does not significantly
change without optimization flags, hence relaxing complex-
ity for mOISC code generation. In direct translation, for
instance, in x86 architectures, we considered only the least
significant word of 32 bit registers such as EAX, EBX,
ECX, and EDX, and we truncate negative signed numbers
accordingly.

VOLUME 9, 2021 113463

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 5. mOISC compiler standard calling convention implementation based on an example mc.py compilation output in CISC mode.

Observe that thanks to the ultra-simplified addressing
mode of the machine and the absence of register file, the
compilation from LLVM-IR and the translation from com-
mercial CPU assembly is straightforward: each register in the
Static Single Assignment (SSA) graph, can be considered at
all effects as a data memory variable in mOISC. LLVM-IR,
indeed, is based on a register machine with an infinite number
of registers [30], that perfectly matches the memory organi-
zation of our computer. A flat operand translation both from
assembly and LLVM-IR instructions is thus possible without
having to track and re-map the effective number of registers
in use in a register file, as needed for instance for other ISAs.

1) BASIC LLVM-IR COMPILER
In the case of LLVM-IR compilation (argument -arch ll
passed to mc.py) the software reads a set of lexer primitives
that define the syntax of the commands in a subfolder
/lib/arch/ll. Internally, it implements two different
calling conventions, standard and fast (argument -llcc
std or -llcc fast, respectively). The standard calling
convention, which uses the stack to pass function argu-
ments from the caller to the callee and to save the return
value, is detailed next. The fast calling convention, simi-
lar to the standard, not using the stack but simple move
instructions to copy caller variables to callee inner vari-
ables, is not reported for the sake of brevity. To imple-
ment a basic compilation for simple programs we have
considered the LLVM-IR instructions add, define, or,

alloca, getelementptr inbounds, and, global,
ret, ashr, icmp, sext_to, bitcast_to, shl, br,
inttoptr, load, store, call, sub, constant, labels
and memset intrinsic.

The LLVM-IR compiler outputs, for debug purposes,
an unlinked OISC mode code with extension .uasm in
which certain references to data memory cells (for instance
LLVM global definitions) are not yet substituted with
absolute memory values. The final OISC code generation
is completed by the linker internal module, that calcu-
lates absolute addresses and substitutes symbolic values with
the correct memory address to generate sensor.asm, the
OISC mode assembly that can be processed by the next
module. In CISC mode, the unlinked .uasm assembly is
post-processed by linking symbolics with a different con-
vention compared to OISC mode, because memory cells
have all different addresses compared to the OISC mode.
In CISC mode, moreover, the linker performs also a pro-
gram counter remapping by parsing and updating a reserved
_PCMCR_RETADDRBL variable used in the execution of call
returns. This has two different values inOISCmode andCISC
mode because instruction length is different. CISC mode
compilation, which generates a corresponding .fasm file,
is invoked using a -f flag at the command line.

Fig. 5 shows our implementation of the standard calling
convention from the LLVM-IR code generated by clang.
The stack pointer (herein defined as memory pointer) is
identified by the variable m_ptr that saves the address

113464 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

of the top of the stack. Let us assume that from a func-
tion called setTxPower that accepts one i32 argument,
another function called spiWrite having two arguments
is called. The compiler needs to keep track of the current
number of alloca, compactly na, that is the number of
stack variables of the current function, in this case, na = 1.
To implement the function call the compiler needs to push
the current stack pointer not to overwrite the stack data of the
caller, at an offset exceeding 1 of the caller na. In our simple
implementation, we assume that the number of alloca can
be statically computed at compile time. This is reasonable
for the present application domain and simple micro-control
code. With this hypothesis, after lexer and parser execution
we scan the complete file and populate an array of structures,
one for each function, in which both na and the number of
function arguments are stored. In our implementation, the
alloca variables address is computed by adding an offset
to m_ptr, thus not defining separate variables for them. In
general, na needs to be computed by the program at run-
time because a function may directly allocate memory on the
stack. Under this hypothesis, the calling convention described
further on still operates but an additional variable na needs to
be defined by the compiler, per function, to update the number
of allocated bytes in the stack.

When a call instruction is generated by the compiler,
i) the value of m_ptr is increased by na+ 1 and the current
m_ptr value is pushed (in this example, using imm.1 = 2),
and ii) the compiler pushes arguments in the stack in reverse
sequence, for an overall number of pushes corresponding to
the number of callee arguments (cl in this example). In this
example, two arguments need to be pushed, a constant value
9 (imm.8 in this example) and an inner caller variable %5,
that is identified by the compiler with suffix Var_ and post-
fix _setTxPower, i.e., Var_5_setTxPower. Next, step
iii), the compiler saves the newlink_register that stores
the return address from the callee. The link_register
stores the current program counter PC with an offset _OFF
(that is _PCMCR_RETADDRBL) that takes into account
the length of the next instructions to implement uncon-
ditional jump. In this example _OFF is subtracted from
link_register, therefore it is a negative number. The
unconditional jump, step iv) of the caller, is simply imple-
mented using a _NULL variable, subtracted by itself through
SUBLEQ that points to the label of the callee, spiWrite.
At this point, the stack includes both arguments of

the callee, the m_ptr of the caller, and the variable
link_register includes the return program counter
value after the callee returns. Let us consider the callee side,
starting from step vii). Although wasting one CPU cycle, for
simplicity the function start is generated by issuing a label and
an equivalent SUBLEQ NOP on a _NULL variable. At this
point, the callee pops the values of the arguments from the
stack at step viii), by storing them in the inner variables and
by decreasing the value of m_ptr. In this implementation,
values are saved to its inner variables Var_0_spiWrite
and Var_1_spiWrite, which are the two first variables

of spiWrite. In LLVM-IR, the numbering of the inner
variables in a function starts from %1. In our implementation,
because we assume to start from %0, there is a one-element
numbering gap between the function arguments and alloca
variables (in this example alloca starts from %3). The
callee function can, in general, implement other function calls
(or for example a call to itself in case it is a recursive func-
tion), therefore it is fundamental to push link_register
onto the stack besides m_ptr, step ix). By saving all the
previous states in the stack the callee can then allocate ele-
ments in the stack according to its alloca variables, by
using the offset address with respect to new callee m_ptr
not to change the caller stack pointer. To address a stack
element, the alloca implementation indeed needs to refer
to the current function stack pointer and increment it with
an offset calculated on the progressive enumeration of the
alloca variables.
After execution of the function, step x) at the callee

side, when returning, it is first necessary to pop the
link_register from the stack and restore it in the ded-
icated variable, so that the callee can update the program
counter as the last step. Depending on a void return or not,
the callee at step xi) needs to push the value to be returned
onto the stack, in this case, Var_9_spiWrite, and finally
set the program counter to the value of link_register in
step xii). At the caller side, it is just necessary to pop the return
value, step v), decrement m_ptr by the number of alloca
of the caller (in this case 1), and pop the old caller m_ptr,
step vi). Now, the stack pointer is restored to the previous
value before the function call and the caller stack variables
are preserved.

Fig. 6 shows the generated assembly output (in CISCmode
for the sake of brevity) for an example C code foo.c that
writes a progressive number from 0 to 10 (i.e., MAX) to IOR,
with all the I/O pins set as output. Observe that we have
compiled the code by removing the definition of function
memcpy normally present in mOISC.c. To show the usage
of the previously introduced standard calling convention, we
demand the writing of IOR to a minimal function foo that
has a single integer argument. On the top left of the figure,
an equivalent OISC mode code snippet for two instructions is
shown for completeness. The MCR values in the data memory
shown on the right are used to set the required machine mode
only in OISC mode. After the mandatory definition of the
machine registers, the compiler inserts an unconditional jump
to themain routine which is assumed not to exit and to include
an infinite while(1) cycle. Observe that MCR is 0 because
in this example the machine boots in CISC mode. Thereafter,
the compiler considers the LLVM-IR code and generates the
assembly code in sequence, first for the function foo and
later for the function main.
The functionfoo, whose entry point is defined by the label

foo:, first implements the steps vii) to xi) shown in Fig. 5.
After the function start, the argument value is stored in a
local function variable Var_0_foo that corresponds to a
pop of the single argument from the stack. Next, following the

VOLUME 9, 2021 113465

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 6. Example mOISC assembly with corresponding C code, generated using the basic LLVM-IR compiler (standard calling convention).

calling convention steps, the link_register is pushed
on the stack (m_ptr is incremented by 1, i.e., imm.0).
These operations conclude the callee function definition in
the scheme depicted in Fig. 5. Following the LLVM-IR code,
the argument of the function is put on top of the stack, i.e.,
loaded and stored on a local variable whose address is defined
using an alloca instruction, the first and only one of foo.
Hence, the value of Var_0_foo is stored in the stack in
position m_ptr + 1. Next, still following the LLVM-IR
code generated by clang, the same value is taken from
the stack and saved on a local variable Var_3_foo. Then,
the address of IOR is accessed using a memr instruction
that considers the indirect address of Global_mOISC_ior
(prefix %ma-). This indirect variable stores the address of
the memory cell whose value is the address of IOR. This
redirection, which is applied for the mapping of LLVM-IR
global variables, is necessary for mOISC, as no direct address
extraction instruction is available, while memory addressing
can be achieved only using double-depth addressing. In our
toolchain the mOISC.h header file includes the definition of
all machine registers as volatile integer pointers, therefore in
the code, this redirection is applied to all machine registers.
Next, the content of the local variable Var_3_foo is written
on the address pointed by Var_4_foo, i.e., IOR (step 1© in
the figure). At this point the function can return to the caller,
therefore implementing, the steps x), xi) and xii) defined
in Fig. 5. In this specific case, no return value needs to be
provided to the caller (the function is declared as void),
therefore the code generator considers only step x) and xii).

After function start (label main:), function main pushes
link_register onto the stack to implement the same
steps of foo. Next, since this function never returns any
value and implements an infinite loop, the compiler pushes
a constant zero in the position m_ptr + 1, correspond-
ing, in LLVM-IR, to the local variable %1, assumed to be
in the stack. This stack variable and also the next one,
i.e. %2 (accessed in the stack at offset 1 and 2) are pro-
vided by LLVM in the intermediate representation but they
are never used because the routine never returns. Next,
step 2©, the two assignment instructions in the C code
referred to the setting of CSR and IDR, are implemented
using the indirect addresses %ma-Global_mOISC_csr
and %ma-Global_mOISC_idr, by exploiting a double-
depth mem instruction with immediates imm.2 and imm.3
whose value is indeed 192 and 255, respectively.

At this point, the code implements an unconditional
jump to the next basic block number 6, which encodes
the infinite loop that has its entry point identified as
label Label_6_main, step 3©. The presence of such
unconditional jump at this point of the code originates from
the presence of a br label %6 instruction in LLVM-IR
immediately preceding label 6: that our compiler translates
without further optimization. Following the LLVM-IR out-
put, the integer variable i of the C code has been mapped to
be on the stack, in particular at position m_ptr + 3 (offsets
1 and 2 have been previously discussed). The value of i is
initialized at the value of imm.1, i.e., 0 as per initialization
of the for cycle in the C code, step 5©. As the next step

113466 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

(hierarchically identified as 4© in the code because referring
to a higher abstraction level), the compiler defines a further
basic block labeled as 7 (labeled Label_7_main) which
identifies the body of the for cycle. At this point of the
code, the value of i needs to be checked to implement the
termination condition of the for cycle. The value of i is
indeed popped from the stack (offset 3, i.e., imm.4), saved
in Var_8_main, and in turn copied to Var_9_main using
movleq, to provide a temporary variable to implement the
for condition.

In step 6©, Var_9_main is compared to imm.5 to
implementi <= MAX. In our implementation, the selection
scheme is the same used for direct ARM code translation (see
Sec. IV-A2 for further details) that exploits the control flow
of ANDLEQ and the comparison flags provided by the CPU in
CHR. In this particular case, a constant icmp_sle is used to
store the comparison flags that occur in the case of lower-
or-equal conditions. First, Var_9_main is compared to
imm.5 using a SUBLEQ instruction. Then, Var_9_main,
which will not be used anymore by definition of SSA, is
overwritten with the value of CHR. If i <= MAX the system
can continue toLabel_10_main to implement the function
call to foo. Otherwise, the CPU jumps to the basic block
15 (Label_15_main) to reiterate on Label_6_main,
therefore on the while(1) loop, step 11©.
The foo function call within Label_10_main, that

follows the steps i)-iv) shown in Fig. 5, considers the
local variable Var_11_main as temporary storage of the
value of i that is extracted from the stack (offset imm.4).
Var_11_main is then pushed onto the stack as argument
value, step 8©. The last step of the calling convention pro-
cedure implements the unconditional jump (step 9©). Because
foo returns void, the code that follows only pops m_ptr
from the stack to restore the caller stack pointer according to
steps v) and vi) of the calling convention. The last block 12
(labeled Label_12_main) implements the increment on i.
As usual, the current value is first extracted from the stack and
saved locally to Var_13_main. Next, a value of 1 is loaded
in Var_14_main that is in turn added to Var_13_main,
step 7©. Finally, the new value of Var_13_main is written
back onto the stack in the position corresponding to i. As
increment is necessary only in case the for cycle needs to
be iterated, the block concludes with an unconditional jump
to Label_7_main, step 10©.

2) TARGET DIRECT TRANSLATION
In case of direct translation from LLVM targets, in this imple-
mentation x86, arm, mipsel or riscv, invoked using the
-arch argument, the complete LLVM front-end and back-
end toolchain is utilized with both clang and llc. The
mOISC compilation utility in this case reads and parses the
assembly generated by LLVM, saved with the same extension
of the target machine, to generate both OISC and CISC code.
Translation is achieved using a set of primitives included in
subfolders /lib/arch, a collection of files for each LLVM
target. These primitives are a one-to-one direct translation

from target instructions to mOISC assembly. For instance,
given an ARM target, the simple instruction sub %1, %2,
%3, where %1 is the register that stores the result and %2 and
%3 are the operand registers or immediates, is mapped as,

where lines 1–6 are the corresponding instructions in
program memory and lines 7–9 are the required val-
ues that need to be appended (if not already present)
in the data memory. Observe that thanks to the simplic-
ity of mOISC, there is no difference when translating
instructions in case of register-register, register-immediate,
memory-register, or register-memory addressing because the
mOISC memory organization is flat. This ARM instruc-
tion is implemented by first moving %2 to a temporary
register _TMP using a MOVLEQ machine mode, _TMP is
updated in SUBLEQ mode with the difference _TMP - %3,
i.e., %2 - %3, and the result is moved back to %1 using
MOVLEQ. To implement branches, multiple options are
possible because the ISA implements control flow for
all arithmetic and logic instructions. In this implementa-
tion, we have exploited the CHR flags and ANDLEQ. For
instance, the ARM ble instruction is implemented as,

where _RESULT is the content of CHR in the preceeding
cmp instruction which implements a SUBLEQ between two
comparison operands. Here, the code checks if _RESULT
has equal and lower flags unset (i.e., on position 0x04 and
0x08 of CHR, overall _LE_FLAG = 12) by exploiting
the control flow of ANDLEQ. If unset, the routine jumps to
isNotLowerEq.%4, where %4 is the current target assem-
bly line, thus continuing execution. Otherwise, a SUBLEQ
unconditional jump to %1 is implemented using a _NULL
variable. Observe that mc.py needs to generate unique
names for each internal label that may be present in instruc-
tion translation, and here we have chosen to declare labels by
embedding the current target assembly line number %4 in our
implementation.
mc.py, by reading all the primitives at start-up time and

by parsing the target architecture assembly, is then able to
generate mOISC code although not globally optimized and
providing lower performance compared to the target ISA.
In a similar way with respect to the LLVM-IR compiler,
translation ends up with an unlinked assembly that is linked

VOLUME 9, 2021 113467

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

with the internal linker module. To generate CISC mode
assembly, the same flow of the LLVM-IR compilation case
is applied by re-using the same internal functions, i.e., CISC
remapper and Linker with PC remapper.

B. mOISC HARDWARE AUTOGENERATOR
We designed a mautogen.py utility that considers Quar-
tus project VHDL files templates (software version at
least 19.1) and auto-generates in a specific folder the com-
plete processor with embedded binary and by consider-
ing only the effectively used subset of instructions of
the mOISC ISA in the compiled software. The templates
are organized in static and dynamic source files. The
lib/autogen/static subdirectory comprises files that
do not change, while /lib/autogen/rules includes
files that need to be parsed and modified to generate the
final code. mautogen.py, which accepts a specific IOR pin
mapping with the argument -pincfg, first reads the OISC
mode assembly with an ASM Reader module, it parses
the dynamic files using a Template Parser, and finally,
the File Processing module generates the Quartus
project files for a Cyclone 10LP evaluation board. The ASM
Reader module detects the data memory variables end-
ing with MCR (therefore, those that define a valid machine
mode) to understand the number of utilized modes used in
the program. This information is passed to the Template
Parser that reads the dynamic files, parses specific com-
ments in theVHDL code and selects only the specific descrip-
tion parts that define the effectively used instructions in the
hardware. Finally, the File Processing module copies
the static files and the dynamic files with re-arranged code
and pin configuration in a specific folder.

C. mOISC ASSEMBLER AND SIMULATOR
m.py includes both the mOISC assembler and a text-based
interface simulator with the capability of generating VCD
files for graphical simulations, normally supported by EDA
graphical viewers. m.py considers the assembly code in both
OISC and CISC modes to generate i) a corresponding mem-
ory initialization file fpga.mif to be used in the Quartus
project to initialize internal RAM with FPGA firmware, ii) a
binary file of the assembled program (sensor.bin in this
example), iii) a text-based symbol file that identifies the
address of each program variable or label (with syntax name
@ value, where name is the symbol name and value is
the address). For ease of implementation, we designed two
separate assembler modules (both multi-pass) OISC mode
assembler and CISC mode assembler to generate
binary files because memory address differs in the two cases
as well as the content of the text strings that need to be parsed.

The program enables two types of simulations, one that
is text-based in which at every CPU cycle important vari-
ables specified by the argument -syms are printed on the
screen, and another that simply aims at generating a VCD file
to be processed for instance by gtkwave, an open-source

software that enables graphical representation for both dig-
ital and mixed-signal simulations [31]. In this last case, it
is mandatory to specify also the simulation time (-time
argument) and optionally the storage of debug information,
-debug. These, include the function names that are called
while running the code in a text-based format. The simulator
implements a behavioral Python description of the mOISC,
with a back-annotated number of clock cycles per mode from
the VHDL description. The program is read directly in the
binary format generated by m.py. The IOR read events and
the consequent ISR values following an IWR write event,
detected during execution, are acquired from the standard
input.

Fig. 7 shows a graphical output ofgtkwavewhile running
an example program sensor.c (see Sec. V for further
details). m.py generates VCD data for both CPU machine
registers, and based on the symbol file after compilation, it
can provide debug information to check the operation of the
CPU. In this example the cursor is placed corresponding to
the function SPIWRITE (called by RH_RF95_INIT), and
shows some of the internal data memory variables such as
M_PTR and some internal variables of the MAIN function.
IOR shows the four SPI signals involved in the communi-
cation with the RFM9x module. The VCD output feature
provided by the simulator combined with gtkwave form a
powerful verification tool, even for the design and the debug
of the compiler.

V. PROOF-OF-CONCEPT MICROARCHITECTURE
VALIDATION
Fig. 8 shows the test setup used to verify the correct opera-
tion of mOISC assuming a simple wireless telemetry appli-
cation in which environmental temperature is read using a
MAX3025 temperature sensor [32], and transmitted with
an RFM9x LoRA chip [33]. To implement the set-up we
took advantage of the Arduino connector available on the
Cyclone 10LP development board to provide the necessary
3.3V supply for both sensors and wireless transceiver. The
IOR pins (0 to 7) in the VHDL description has been syn-
thesized on pins B1, C2, F3, D1, G2, L14, G1, J2, the
50MHz input clock is assigned to E1 and the reset signal
RST is assigned to D9. The I2C pins SCL and SDA of the
MAX30205 are connected to IOR[7] and IOR[6], respec-
tively, the SPI pins CS,MISO, CLK, andMOSI are connected
to IOR[3-0], the RESET pin of the RFM9x is connected
to IOR[4] and a LED indicator on the development board
is connected to IOR[5]. To enable data reception from the
RFM9x transceiver an Adafruit Feather 32u4 RFM9x board
[34], programmed with the Arduino Integrated Development
Environment (IDE), including the same transceiver, has been
used as LoRA RX. The board outputs the received data in
a two bytes binary format (integer and fractional part) on a
virtual USB COM port, so that they can be processed and
printed on the screen according to the MAX30205 speci-
fications by a custom Python script. A typical temperature

113468 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 7. Example mOISC simulation output of the compiled bytecode from sensor.c (see Sec. V) viewed used gtkwave.
The simulation includes also debug information.

FIGURE 8. (a) mOISC proof-of-concept microarchitecture validation setup
using a cyclone 10LP development board and two commercial chipsets, a
RFM9x SPI transceiver and a MAX30205 body I2C temperature sensor. To
wirelessly receive temperature data, a separate system comprising a
LoRA receiver (LoRA RX) with USB virtual communication port has been
prototyped. (b) received data from mOISC read through the LoRA RX USB
virtual COM port on /dev/ttyACM0 using out custom python script.

data output transmitted by mOSIC and received through the
LoRA RX virtual COM port is given in Fig. 8(b). The IWR
mechanism has been verified using the pushbuttons included
in the Cyclone 10LP evaluation board with another custom
program not shown here for the sake of brevity.

Lst. 2 shows the C code of the main function in the
example program sensor.c used to verify system opera-
tion. Machine registers pointers are defined in the lib/inc
sub-directory file mOISC.c, and are identified with suffix
mOISC (for instance CSR address is given bymOISC_csr).

The program, after initialization of both SPI and I2C (that
are implemented using a shared global variable to determine
the I/O direction of the IOR port), runs the following opera-
tions: it initializes the LoRA transceiver and enters an infinite
loop, in which, i) at high clock speed (100MHz), it reads
the current temperature through I2C from the MAX30205,
ii) sends this data as through SPI to the RFM9x transceiver
in broadcast mode, iii) slows down the CPU to 10 kHz to
blink a LED on IOR[5], and iv) resets the CPU speed to
100MHz and repeats. The function delay implements an
empty for cycle. This very simple program demonstrates a
very basic solution to a wireless telemetry problem of remote
temperature sensing, and through the infinite loop, makes
it possible to measure the performance of the CPU while
running code obtained from LLVM-IR or the assembly of
different target machines.

A. MICROARCHITECTURE POWER CONSUMPTION
Fig. 9 shows the current consumption of the complete
Cyclone 10LP evaluation board with synthesized mOISC
while running sensor.c. To measure power consumption
we have built a custom USB cable with exposed 5V sup-
ply wires to enable current measurements using a Tektronix
TCP0030 current probe and an MSO4104 oscilloscope. As it
is not possible to measure the leakage power of the FPGA and
thus understanding the contribution that goes directly to the
processor, the only measurement possible in these conditions
regards dynamic power.Measurements show a IUSB = 12mA

VOLUME 9, 2021 113469

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 9. Measured current consumption of the USB port of the complete cyclone 10LP evaluation board while running sensor.c. The
LoRA transceiver and the temperature sensor take the supply voltage from the evaluation board.

Listing 2. sensor.c main function code snippet.

absorption from the 5V USB port supply, for a 60mW
power consumption, while running at 100MHz. At 10 kHz
the dynamic power consumption of the CPU is reduced by a
factor of 104 (estimated on the order of 60mW/104 = 6 µW)
and it is not possible, using our current probes, to appreciate

a variation with respect to the board static power. Observe
the peak current consumption increases after the activation
of the LoRA transceiver, which is designed to consume duty-
cycled current, i.e., only during packet transmission. Due to
the lack of available ports in the oscilloscope, we have shown
only one out of four SPI signals (SPI CLK). The digital
signals waveform sampling rate is dictated by the current
probe, hence, the I2C SCL and SDA signals are downsampled.

B. TRANSLATED/COMPILED CODE PERFORMANCE
Fig. 10 and Fig. 11 show the compiled code size and the
duration of the main loop shown in Lst. 2 of our sample
program sensor.c, translated from all the supported target
ISA and compiled using clang LLVM-IR. The execution
time is measured using aDSO9404A oscilloscope, by reading
the SPI clock cycle time. The worst results both in terms
of code size and execution are obtained with MIPS and
RISC-V intermediate microcode. This is due, in general, to
the higher number of assembly instructions emitted within
the same LLVM basic block. A basic block is a container
of instructions that execute sequentially [30], [35]. For MIPS
and RISC-V each operand in any assembly line is conceived
to save data at address c based on address a and b notwith-
standing mOISC naturally overwrites data at address b as a
function of data in a and b. Observe that direct translation
from commercial targets is typically implemented line by line
in a flat manner by mc.py. By running translation with these
assumptions, it is clear that the emitted code is larger and has
lower performance compared to the other targets.

When code is compiled from LLVM-IR, occupation is
still high, due to a lack of optimization and direct LLVM-IR
register translation. However, LLVM-IR compilation leads to
the best performance in terms of execution time thanks to the
possibility to handle code generation from a higher abstrac-
tion level language. For ARM and x86 target translation, the
obtained speed is higher, because in both cases the number

113470 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 10. mOISC proof-of-concept compiled code size assuming
different assembly ISA obtained using LLVM assuming same program
sensor.c, in both CISC and OISC mode.

FIGURE 11. mOISC proof-of-concept execution time of the sensor.c
main loop of the programs whose binary size in reported in Fig. 10.

of assembly instructions within each LLVM basic block is
lower compared to MIPS and RISC-V, notwithstanding the
large number of operands per instruction. ARM and x86,
indeed, enable to compactly combine multiple registers in
single instructions and calculate addresses more easily with
embedded offsets (see for instance movl in x86 or ldr/str
in ARM ISA). Therefore, the translator, that runs a flat line-
by-line translation, is capable of implementing a more opti-
mized code generation.

The CISC mode increases the memory occupation per
instruction (4 addresses versus 3 per instruction) but in terms
of efficiency and overall code size, it is advantageous. In
our simple software translator indeed, the generated OISC
code keeps alternating an MCR write and the execution of
the selected instruction, thus duplicating program memory
occupation and execution time because one instruction is
always wasted for setting MCR. The CISC mode code size
is scaled by an approximate factor of 2/3 w.r.t. those in OISC
mode.

C. RESOURCE OCCUPATION
Fig. 12 shows the area occupation of mOISC compared to
open-source CPU for similar application domains [24], [36],
[37]. We have synthesized all cores on the same Cyclone
10LP FPGAwith the same 50MHz clock in order to maintain

FIGURE 12. mOISC proof-of-concept synthesis results (full featured
processor with all instructions) against other open-source cores for 32 bit
and 16 bit ISA assuming the same cyclone 10LP FPGA target and the same
50 MHz clock.

a fair comparison, and by excluding the external memory
and the fabric FPGA JTAG interface from the count for all
processors. For mOISC we have included in the count the
logic required by the PLL. For the PicoRV core and RV32I,
we obtained non-zero memory bit elements (1024 and 2048
bit of M9K blocks) because register files are synthesized
using the FPGA RAM memory, hence it is fair to include
them as part of the core. We have synthesized mOISC with
all possible instructions. Notwithstanding that our proof-of-
concept disregards area and performance optimization and
implements a simple and underperforming FSM, it remains
the lower area count processor. Resource occupation remains
significantly lower compared to other pipelined non-bus
based 32 bit microarchitectures not listed here, based on
RV32I instruction sets. For instance, the RISC processor
in [38], although implemented on Spartan FPGA occupies
5578 LUTs and 1073 flip flops. mOISC resource occupa-
tion is lower compared to an open-source implementation
of the 16 bit MSP430 (Neo430). Further resource occupa-
tion reduction is possible, especially by utilizing a bus for
interconnecting the core with the memory and registers. With
an LLVM-IR compilation, the resulting assembly uses all
instructions besides XORLEQ and XNORLEQ. By running
synthesis with mautogen.py, therefore excluding these
two unused instructions from the ALU, the number of com-
binational ALUTs becomes 1393 with the same amount of
logic registers, thus saving 4 ALUTs compared to the full-
featured processor. Better results may be possible with ASIC
implementation. The amount of logic utilized, indeed, can be
more finely tuned compared to using the fixed logic fabric
of the FPGA. However, the synthesized silicon area severely
depends on available digital cells and this aspect deserves
separate investigation [39].

VI. ISA PERFORMANCE AND DISCUSSION
To compare the performance of the mOISC ISA combined
with our compilation toolchain to other known architectures,
we have run benchmark simulations assuming a simple Bub-
ble Sort algorithm applied on an integer vector of n ele-
ments, that needs to be fully re-ordered in ascending order

VOLUME 9, 2021 113471

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

FIGURE 13. Number of executed instructions to run the same bubble sort
algorithm on an integer vector V for different length n (5, 10, 15 and 20),
for an mOISC, a subleq OISC, and for known MIPS, RISC-V, and ARM
architectures, with corresponding compilers. The mOISC assembly is
generated using our basic LLVM-IR compiler.

(worst case, initialized as ordered in descending order). We
have decided not to consider the number of clock cycles
required to complete an instruction so that the performance
of the ISA (compiler included) can be compared indepen-
dently from the corresponding microarchitecture. We have
patched the open-source implementation of Higher Sub-
leq (see [1], [9], downloadable at [10]) to print out the
number of execution cycles once the execution finishes
(i.e., defining an int cycle, incremented in the simula-
tion loop and printed for ip < 0, namespace emulator,
routine sqemulatei). Observe that Higher Subleq imple-
ments stack with self-modifying code, and includes spe-
cific optimizations for subleq. For the evaluation of com-
mercial ISA, we have used Open Virtual Platform sim
(OVPsim

TM
) which provides several open-source models

and application programming interfaces for simulation of
known architectures [40]. For mOISC, we have compiled
the code using the LLVM-IR compiler with standard calling
convention. For MIPS, RISC-V, and ARM the compilation
toolchain provided with OVPsim have been used, in partic-
ular, mips-mti-elf-gcc, riscv-none-embed-gcc
and arm-none-eabi-gcc, respectively. The compiled
code includes also specific calls to intercept program comple-
tion, and to set machine registers for mOISC. Their impact is
included in our results but it is not significant in the overall
executed instructions count.

Fig. 13 shows the number of instructions required by
each specific ISA to complete the bubble sort algorithm as
a function of the number of elements to be re-ordered n.
Results confirm that the worst-case Bubble Sort complexity,
as expected, goes as O(n2), for all cases, irrespective of the
ISA. Compared to a pure subleq model, mOISC in OISC
mode runs 1.6× faster, and 3.3× in CISC mode. Other more
complex and more performing ISA complete the execution
with a significantly lower number of instructions, i.e.,∼2.3×,
∼2.6×, and ∼2.6× for MIPS, RISC-V, and ARM, respec-
tively. The results in terms of performance for CISCmode are
promising: even with such a limited instruction set and using
a simple compilation toolchain the obtained performance in

terms of coded instructions is roughly a factor two larger com-
pared to MIPS. Observe that the ARM, RISC-V, and MIPS
ISA instructions compactly encode also arithmetics with off-
set calculations required for fast accessing of the stack, while
mOISC includes only generic double-depth addressing and
offsets need to be explicitly calculated using other arithmetic
instructions.

Assuming another sample program that runs the bubble
sort algorithm on a 32 element integer vector, compared to an
ARM ATSAMD21, mOISC runs 57× slower, assuming the
same 50MHz clock (OISC mode), here accounting for the
real execution time and not only the number of instructions.
This is undoubtedly due, as previously introduced, to the lim-
ited instruction set, and, most importantly, to the slow fetch
and execute phases of our proof-of-concept implementation.
In OISC mode, indeed, the current prototype cycle time lasts
10 clock cycles for PCS and machine register writes (except
for IWR), 11 clock cycles for any LEQ or PC instruction,
12 clock cycles to write IWR, and 3 clock cycles to exit
from interrupt. MEMR and MEM require 11 clock cycles to
be completed. In CISC mode two additional clock cycles
are required to complete an instruction except when exiting
an interrupt block. This performance is aligned with the old
but still used Intel MCS8051 CPU, which requires 12 clock
cycles to run an instruction [41]. By synthesizing the 8 bit
8051 core in [42] on the same Cyclone 10LP FPGA (CPU
only), we obtain 982 ALUTs, 346 dedicated logic registers,
4096 memory bits, and a 9 × 9 DSP element. Adding up all
the contributions,mOISC, notwithstanding working at 16 bit,
provides lower resource occupation.

The slow execution speed of mOISC is intrinsic in the
architecture of themachine that assumes a pure vonNeumann
scheme with flat absolute addressing, unpacked instructions,
and no register file. The presence of very fast access storage,
such as a register file, would speed up execution speed, thus
leaving more time-consuming memory access instructions,
executed less frequently. By using an aggressive pipelin-
ing (which results in an increased number of registers at
implementation-level) we can ideally reduce the average
number of clock cycles to 4 per instruction. The other bottle-
neck refers to the single-port RAM that is used for the imple-
mentation of the central memory. By using a dual-port RAM
as suggested in [1], we can then speed up instruction fetch,
thus reducing by an additional factor 2 the number of clock
cycles. Moreover, another possible improvement regards the
use of a Harvard architecture in conjunction to pipeline.
However, increasing performance may impact our research
objective of reducing silicon area and number of resources for
environmental purposes. Moreover, the presence of a pipeline
impacts on real-time execution. As a matter of fact, slow-
speed CPUs can still find relevancy in some applications in
which physical quantities to be observed are somehow not
too fast, e.g., in smart agriculture applications, provided that
circuits can operate at reduced energy and aggressive duty
cycling. Our development could go in favor of such appli-
cation domain in which normally electrical energy can be

113472 VOLUME 9, 2021

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

extracted from solar cells, thus making our blocking interrupt
mechanism a potentially useful functionality.

To fully take advantage of our mOISC architecture (espe-
cially the various control flow options made available by the
ISA), therefore minimizing the number of MCR writes, it is
necessary to elaborate on a more sophisticated compiler or
alternatively integrate the mOISC ISA into LLVM targets.
Given the flexibility of mOISC, another possible improve-
ment point regards instruction parametrization. In the current
implementation, the MCR value is used as an index that
selects the instruction to be executed among a fixed instruc-
tion set; we could, instead, interpret theMCR value, extended
e.g. to the full 2 byte memory width, to compactly define
machine mode details. We can consider the synthesis of
ad-hoc modes by combining the already available arithmetic
and logic resources and outputs of the ALU, thus flexibly
re-using them to synthesize both control and data flow. For
instance, given a hardware comparator we can re-use it to
implement also jump if bigger or equal, or given arithmetic
and logic hardware blocks, we can route them and combine
their output to implement more complex math. This, inter
alia, goes in favor of a re-engineering of the control unit for
a more efficient implementation compared to a trivial FSM.

Cross-sectional approaches in the design of computing sys-
tems are highly demanded because, so far, processor design
has been focused on the minimization of operational energy
consumption, while carbon emission continues to grow due
to hardware manufacturing and infrastructure [11]. In this
respect, the referenced work states that low footprint cir-
cuit design is a potential opportunity for the reduction of
carbon emissions. In terms of architecture design, judicious
provisioning of the resources, hardware down-scaling, and
the incorporation of ad-hoc hardware modules can make a
difference in CO2 emissions. The reduced resource occupa-
tion of mOISC and the possibility to synthesize the hardware
based on the minimal set of actually used arithmetic and logic
operations goes in favor of the aforementioned directions.
These potential environmental impact advantages need to be
demonstrated through silicon implementation.

VII. CONCLUSION
We have presented an ISA, with associated proof-of-concept
microarchitecture, based on the extension of the minimalistic
OISC approach towards a practical implementation for use in
microcontroller applications. The proof-of-concept microar-
chitecture, even without encompassing specific area con-
straints, on a Cyclone 10LP FPGA achieves lower resource
occupation compared to area efficient implementations of
open-source 16 and 32 bit microprocessors. Although its per-
formance is limited due to its intrinsic minimalism, this CPU
has been proven to sustain low complexity wireless telemetry
applications. The ISA can be easily extended to 32 bit to
support a large memory capacity and thus larger programs.
We have implemented a simple assembly translator from
known ISA and a basic compiler from LLVM-IR that has
been demonstrated to work effectively for basic programs.

This work poses the basis for the devising of other ISA by
considering the co-design of compiler and hardware towards
more aggressive area minimization and lower complexity to
favor, possibly, sustainability in silicon implementation.

ACKNOWLEDGMENT
The author would like to thank Claudio Lorini, Electronic
Design Laboratory, for constructive discussions and support.
(Andrea Merello and Mirco Di Salvo contributed equally to
this work.)

REFERENCES
[1] O. Mazonka and A. Kolodin, ‘‘A simple multi-processor computer based

on subleq,’’ Jun. 2011, arXiv:1106.2593. [Online]. Available: http://
arxiv.org/abs/1106.2593

[2] F. Mavaddat and B. Parhami, ‘‘URISC: The ultimate reduced instruction
set computer,’’ Int. J. Electr. Eng. Educ., vol. 25, no. 4, pp. 327–334,
Oct. 1988.

[3] O. Mazonka, N. G. Tsoutsos, and M. Maniatakos, ‘‘Cryptoleq: A het-
erogeneous abstract machine for encrypted and unencrypted computa-
tion,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 9, pp. 2123–2138,
Sep. 2016.

[4] A. Yildiz, S. Gören, H. F. Ugurdag, B. Aktemur, and T. Akdogan, ‘‘Crucial
topics in computer architecture education and a survey of textbooks and
papers,’’ Int. J. Comput. Sci., vol. 43, no. 3, pp. 237–252, Aug. 2020.

[5] P. J. Nürnberg, U. K. Wiil, and D. L. Hicks, ‘‘A grand unified theory
for structural computing,’’ inMetainformatics. Berlin, Germany: Springer,
2004, pp. 1–16.

[6] O. Mazonka, ‘‘Bit copying—The ultimate computational simplicity,’’
Complex Syst. J., vol. 19, no. 3, pp. 263–285, 2011.

[7] P. Jääskelainen, A. Tervo, G. P. Vayá, T. Viitanen, N. Behmann, J. Takala,
andH. Blume, ‘‘Transport-triggered soft cores,’’ inProc. IEEE Int. Parallel
Distrib. Process. Symp. Workshops (IPDPSW), May 2018, pp. 83–90.

[8] MaxQ Family User’s Guide. Accessed: Jun. 25, 2021. [Online]. Available:
https://pdfserv.maximintegrated.com/en/an/AN4811.pdf

[9] Higher Subleq—Typeless Simplified C-Like Language Which Compiles
Into Subleq. Accessed: Jun. 25, 2021. [Online]. Available: https://esolangs.
org/wiki/Higher_Subleq

[10] 8l/hsq. Accessed: Jun. 25, 2021. [Online]. Available: https://github.
com/8l/hsq

[11] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei,
D. Brooks, and C.-J. Wu, ‘‘Chasing carbon: The elusive environmental
footprint of computing,’’ 2020, arXiv:2011.02839. [Online]. Available:
https://arxiv.org/abs/2011.02839

[12] N. Sakamoto, T. Ahmed, J. Anderson, and Y. Hara-Azumi, ‘‘Subleq�: An
area-efficient two-instruction-set computer,’’ IEEE Embedded Syst. Lett.,
vol. 9, no. 2, pp. 33–36, Jun. 2017.

[13] D. Bol, J. De Vos, F. Botman, G. de Streel, S. Bernard, D. Flandre, and
J.-D. Legat, ‘‘Green SoCs for a sustainable Internet-of-Things,’’ in Proc.
IEEE Faible Tension Faible Consommation, Jun. 2013, pp. 1–4.

[14] E. Brunvand, D. Kline, and A. K. Jones, ‘‘Dark silicon considered harmful:
A case for truly green computing,’’ inProc. 9th Int. Green Sustain. Comput.
Conf. (IGSC), Oct. 2018, pp. 1–8.

[15] T. G. Gutowski, M. S. Branham, J. B. Dahmus, A. J. Jones, A. Thiriez,
and D. P. Sekulic, ‘‘Thermodynamic analysis of resources used in manu-
facturing processes,’’ Environ. Sci. Technol., vol. 43, no. 5, pp. 1584–1590,
Mar. 2009.

[16] The Environmental Footprint of Logic CMOS Technologies.
Accessed: Jun. 25, 2021. [Online]. Available: https://www.imec-int.
com/en/articles/environmental-footprint-logic-cmos-technologies

[17] M. Badaroglu, J. Xu, J. Zhu, D. Yang, J. Bao, S.-C. Song, P. Feng,
R. Ritzenthaler, H. Mertens, G. Eneman, N. Horiguchi, J. Smith, S. Datta,
D. Kohen, P.-W. Chan, K. Chen, and P. R. C. Chidambaram, ‘‘PPAC scaling
enablement for 5 nm mobile SoC technology,’’ in Proc. Eur. Solid-State
Device Res. Conf., Sep. 2017, pp. 240–243.

[18] D. Kline, N. Parshook, A. Johnson, J. E. Stine, W. Stanchina, E. Brunvand,
and A. K. Jones, ‘‘Sustainable IC design and fabrication,’’ in Proc. 8th Int.
Green Sustain. Comput. Conf., Oct. 2017, pp. 1–8.

[19] W. F. Gilreath and P. A. Laplante, Computer Architecture: A Minimalist
Perspective. Boston, MA, USA: Springer, 2003.

VOLUME 9, 2021 113473

M. Crepaldi et al.: Multi-OISC for Microcontroller Applications

[20] J. C. Furgal and C. U. Lenora, ‘‘Green routes to silicon-based materials
and their environmental implications,’’ Phys. Sci. Rev., vol. 5, no. 1, p. 24,
Jan. 2020.

[21] The NEORV32 RISC-V Processor. Accessed: Jun. 25, 2021. [Online].
Available: https://github.com/stnolting/neorv32

[22] S. Bora and R. Paily, ‘‘A high-performance core micro-architecture based
on RISC-V ISA for low power applications,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 68, no. 6, pp. 2132–2136, Jun. 2021.

[23] N. M. Qui, C. H. Lin, and P. Chen, ‘‘Design and implementation of a
256-bit RISC-V-based dynamically scheduled very long instruction word
on FPGA,’’ IEEE Access, vol. 8, pp. 172996–173007, 2020.

[24] PicoRV32—A Size-Optimized RISC-V CPU. Accessed: Jun. 25, 2021.
[Online]. Available: https://github.com/cliffordwolf/picorv32

[25] MOISC-DRISC. Accessed: Jun. 25, 2021. [Online]. Available:
https://github.com/MarcoCrepaldi-iit/mOISC-dRISC

[26] L. Null and J. Lobur, The Essentials of Computer Organization and Archi-
tecture. Boston, MA, USA: Jones & Bartlett, 2010.

[27] Cyclone 10LP Evaluation Kit. Accessed: Jun. 25, 2021. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/programmable/products
/boards_and_kits/dev-kits/altera/cyclone-10-lp-evaluation-kit.html

[28] The LLVM Compiler Infrastructure. Accessed: Jun. 25, 2021. [Online].
Available: https://llvm.org

[29] J.-C. See,W.-K. Lee, K.-M.Mok, andH.-G. Goh, ‘‘Development of LLVM
compilation toolchain for IoT processor targeting wireless measurement
applications,’’ in Proc. IEEE 4th Int. Conf. Smart Instrum., Meas. Appl.,
Nov. 2017, pp. 1–4.

[30] K. Shigenobu, K. Ootsu, T. Ohkawa, and T. Yokota, ‘‘A translation
method of ARMmachine code to LLVM-IR for binary code parallelization
and optimization,’’ in Proc. 5th Int. Symp. Comput. Netw. (CANDAR),
Nov. 2017, pp. 575–579.

[31] GTKWave. Accessed: Jun. 25, 2021. [Online]. Available: http://gtkwave.
sourceforge.net

[32] MAX30205 Evaluation Kit. Accessed: Jun. 25, 2021. [Online].
Available: https://www.maximintegrated.com/en/products/sensors/
MAX30205EVSYS.html#product-details

[33] Adafruit RFM9x. Accessed: Jun. 25, 2021. [Online]. Available:
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

[34] Adafruit Feather 32u4 with LoRa Radio Module. Accessed: Jun. 25, 2021.
[Online]. Available: https://learn.adafruit.com/adafruit-feather-32u4-
radio-with-lora-radio-module

[35] LLVM Basic Block. Accessed: Jun. 25, 2021. [Online]. Available:
https://llvm.org/doxygen/classllvm_1_1BasicBlock.html

[36] HF-RISC SoC. Accessed: Jun. 25, 2021. [Online]. Available: https://github.
com/sjohann81/hf-risc

[37] A Very Small msp430-Compatible Customizable Soft-Core
Microcontroller-Like Processor System Written in Platform-Independent
VHDL. Accessed: Jun. 25, 2021. [Online]. Available: https://github.
com/stnolting/neo430

[38] D. K. Dennis, A. Priyam, S. S. Virk, S. Agrawal, T. Sharma, A. Mondal,
and K. C. Ray, ‘‘Single cycle RISC-V micro architecture processor and its
FPGA prototype,’’ in Proc. 7th Int. Symp. Embedded Comput. Syst. Design
(ISED), Dec. 2017, pp. 1–5.

[39] A. Boutros and V. Betz, ‘‘FPGA architecture: Principles and progression,’’
IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 4–29, 2021.

[40] Open Virtual Platforms (OVPsim). Accessed: Jun. 25, 2021. [Online].
Available: https://www.ovpworld.org

[41] MCS51 Microcontroller Family Users’ Manual. Accessed: Jun. 25, 2021.
[Online]. Available: http://web.mit.edu/6.115/www/document/8051.pdf

[42] Yet Another Free 8051 FPGA Core. Accessed: Jun. 25, 2021. [Online].
Available: https://github.com/jaruiz/light52

MARCO CREPALDI (Member, IEEE) received
the degree (summa cum laude) in engineering and
the Ph.D. degree in electronic engineering from
Politecnico di Torino (PoliTo), Turin, Italy, in 2005
and 2009, respectively. In 2008, he was a Visiting
Scholar at the Department of Electrical Engineer-
ing, Columbia University, New York City. After
the Ph.D., he held a postdoctoral position at the
VLSI-Laboratory, Department of Electrical Engi-
neering, PoliTo, and the former Istituto Italiano di

Tecnologia@PoliTo Center for Space Human Robotics (IIT-CSHR). He is
currently the Coordinator of the Electronic Design Laboratory (edl.iit.it),
IIT Center for Human Technologies, Genova. His scientific activity regards
the development of all-digital Impulse-Radio Ultra-Wide Band (IR-UWB)
systems and electronic systems design. He is the author or coauthor of more
than 90 publications and two international patents.

ANDREA MERELLO received the degree (summa
cum laude) in computer science from the Univer-
sitá di Genova, Italy, in 2008. He has been working
as a Software Engineer at the Electronic Design
Laboratory, Istituto Italiano di Tecnologia, since
2008. His main activities regard software devel-
opment in the field of Linux drivers, firmware
for bare-metal and ultra-low power electronics,
motor control, CAN bus, and wireless communi-
cation. He contributed to the development of sev-

eral open-source projects, including the Linux kernel with several patches.
He designed electronics boards for experimental and scientific setups and
several firmware and software for custom modules in the field of wireless
systems, robotics, and miscellaneous systems. He has coauthored one con-
ference, one international journal article, and one patent.

MIRCO DI SALVO received the degree in com-
puter engineering from the Universitá di Genova,
Italy, in 2011. He worked for automotive, telecom-
munication, and aerospace industries, before join-
ing the Istituto Italiano di Tecnologia, in 2014. He
first worked at ReHab Technologies. In 2017, he
joined the Electronic Design Laboratory. His cur-
rent activities regard the development of control
software for different types of robots and firmware
for motor control for robotic applications, radio

transceivers, experimental medical devices, and smart sensors. His technical
interests include parallel computing architectures and 3-D graphics.

113474 VOLUME 9, 2021

