
Received July 20, 2021, accepted August 4, 2021, date of publication August 11, 2021, date of current version August 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104117

Fast and Fair Computation Offloading
Management in a Swarm of Drones
Using a Rating-Based Federated
Learning Approach
DADMEHR RAHBARI 1, MUHAMMAD MAHTAB ALAM 1, (Senior Member, IEEE),
YANNICK LE MOULLEC 1, (Senior Member, IEEE),
AND MAKSIM JENIHHIN 2, (Member, IEEE)
1Thomas Johann Seebeck Department of Electronics, School of Information Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
2Department of Computer Systems, Tallinn University of Technology, 12618 Tallinn, Estonia

Corresponding author: Dadmehr Rahbari (dadmehr.rahbari@taltech.ee)

This work in the project ‘‘Information and Communication Technologies (ICT) programme’’ was supported by the European Union
through European Social Fund. This work was also supported by the European Commission under Horizon 2020 European Reseach Aera
(ERA)-chair Grant ‘COgnitive ELectronics (COEL)’ (Agreement number: 668995), Tallinn University of Technology Development
Program 2016-2022 (2014-2020.4.01.16-0032) and Estonian Centre of Excellence in ICT Research (EXCITE).

ABSTRACT Today, unmanned aerial vehicles (UAVs) or drones are increasingly used to enable and support
multi-access edge computing (MEC). However, transferring data between nodes in such dynamic networks
implies considerable latency and energy consumption, which are significant issues for practical real-time
applications. In this paper, we consider an autonomous swarm of heterogeneous drones. This is a general
architecture that can be used for applications that need in-field computation, e.g. real-time object detection
in video streams. Collaborative computing in a swarm of drones has the potential to improve resource
utilization in a real-time application i.e., each drone can execute computations locally or offload them to
other drones. In such an approach, drones need to compete for using each other’s resources; therefore,
efficient orchestration of the communication and offloading at the swarm level is essential. Themain problem
investigated in this work is computation offloading between drones in a swarm. To tackle this problem,
we propose a novel federated learning (FL)-based fast and fair offloading strategy with a rating method.
Our simulation results demonstrate the effectiveness of the proposed strategy over other existing methods
and architectures with average improvements of −23% in energy consumption, −15% in latency, +18% in
throughput, and +9% in fairness.

INDEX TERMS Swarm of drones, multi-access edge computing, collaborative computing, federated
learning.

I. INTRODUCTION
Autonomous swarms of unmanned aerial vehicles (UAVs) or
drones have attracted significant attention in different appli-
cation domains. When operating in a group, drones can pro-
cess the computation tasks independently or collaboratively.
A group of independent drones is subject to severe constraints
such as limited battery capacity, computing resource capabil-
ity, etc. On the other hand, collaboration between drones,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

i.e. offloading computations between them, yields many
advantages over a group of independent drones [1]. Indeed,
a swarm of collaborative and intelligent drones decreases
the overall energy consumption and cost, and increases the
throughput and quality of service (QoS) [2]. Generally,
a swarm of drones can be used for many applications such
as monitoring, detection, etc. [3], [4].

In a swarm, drones can execute computation tasks locally
or offload them to other devices if doing so is more efficient at
the swarm level. The scientific literature shows that consider-
ing the cloud as a centralized system is not always a suitable

113832 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8090-9377
https://orcid.org/0000-0002-1055-7959
https://orcid.org/0000-0003-4667-621X
https://orcid.org/0000-0001-8165-9592
https://orcid.org/0000-0003-3306-6148


D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

option for offloading, taking into account latency, QoS, and
energy consumption constraints. Moreover, there are some
environmental limitations for deploying datacenters in reli-
able positions. To overcome these problems, multi-access
edge computing (MEC) can be a more suitable architecture
than the cloud [5], [6]. Edge servers are closer to drones and
the communication is faster than through a cloud [7], [8];
however, the problems of latency and energy consumption
remain. Alternatively, drones can be on the edge and process
the received data from external [9] or internal sensors. The
efficiency of the latter architecture strongly depends on an
efficient resource allocation strategy [10].

Collaborative computing of drones can be organized in
centralized or distributed architectures. A centralized archi-
tecture can include the drones, edge servers, cloud, etc.,
where all computations are finalized in a server [6]. In case
the drones receive a large volume of data, there will be
many tasks to be executed. Since the resources of servers
are limited, we face a queue of tasks in each device. In the
centralized architecture, some tasks will be dropped; indeed,
when drones or the centralized server are busy and cannot
service tasks as soon as they enters the queue, the tasks have
to wait or be dropped. On the other hand, in a distributed
architecture, since each device can have a comprehensive
view of the network, a given device can execute the computa-
tion locally or offload it to other devices in the network. Yet,
the swarm of drones and communication between them with-
out any centralized node face some challenges such as latency
and energy consumption [11]. The processing capacity and
power of drones is lower than that of servers, which means
that providing appropriate and optimal methods for resource
management (orchestration) in a swarm of drones is highly
needed. A distributed resource orchestration is preferable
to a centralized one due to offloading some tasks to other
devices [12]. In fact, a distributed architecture decreases the
number of delayed and dropped tasks.

In our work, a task refers to a module (a component of
a software application) that includes some operations and
data. The computation task offloading process means trans-
ferring the task to other nodes if the resources or performance
of the current node is not sufficient [6]. There are different
meanings of distributed offloading. On the one hand, a dis-
tributed resource management method can offload tasks with
their data to other devices. In this way, due to transferring
data among several devices, data privacy is a serious chal-
lenge [13]. On the other hand, a distributed algorithm can
decide the destination of tasks for offloading without trans-
ferring any data of the tasks and only transmit the learning
model [14]. In our work, we consider the second meaning.
Given this, the main problem of this work is finding the
best destination of tasks for offloading by drones. This
takes place by means of a distributed strategy in a swarm of
drones. From an application perspective, the main challenge
addressed in this paper is to decrease the latency and energy
consumption for the execution of the mission-required com-
putations in the swarm of drones. Here, the latency means

delays in data transfer between drones, as well as delays in
the execution of tasks.

Machine learning (ML) algorithms are known to be suc-
cessfully applied in intelligent solutions for resourcemanage-
ment or computing problems with the mentioned issues [15].
Among these, federated learning (FL) is a distributed strat-
egy that has been used for MEC architecture [16]. The
FL spreads and also aggregates a learning model over the
network. Deep reinforcement learning (DRL) as a high per-
formance ML algorithm has been used in drone applications;
e.g. in [17], an extension of DRL with a convolutional neural
network (CNN) and transfer learning used for accelerating
the learning process has been proposed. However, this is
not a distributed strategy, because the algorithm is executed
in one device and not in cooperation with other devices.
In this paper, we propose a distributed DRL for the offloading
process in the swarm of drones.

DRL is a conventional reinforcement learning (RL)
method. RL considers the problem of a computational agent
that makes decisions using trial and error [18]. DRL includes
in-depth learning in solutions, allowing agents to make
decisions from unstructured input data without manually
engineering the solution space [19]. Q-learning (QL) is a
model-free RL algorithm to learn the quality of actions [20].
There exist extensions of this algorithm such as double
q-learning (DQL) [21]; the difference between DQL and
Q-learning is in the evaluation of actions. In the scientific
literature, FL has been combined with DRL; the resulting fed-
erated deep reinforcement learning (FDRL) is a distributed
version of DRL that can be used in MEC [22]. FDRL highly
reduces the network overhead, bandwidth consumption, and
latency by avoiding sending data towards a central entity.
FDRL is a parallel scheme that learns the whole of the
networks such as the properties of drones (e.g. energy con-
sumption, latency, bandwidth, and CPU frequency) and the
best drones in the swarm for offloading the modules. Since
drones cannot independently and efficiently support central-
ized schemes of DRL due to the above-mentioned restric-
tions, the FDRL concept is more suitable for a swarm of
drones based on wireless [23] and 5G networks [24].

One of the challenges of FL is aggregating learning model
weights. Let’s assume several drones are tracking an object.
It is possible that some of them do not have sufficient
resources and also that they are not in the right position
or have an unsuitable camera angle. The existing FL-based
strategies aggregate all of the learning models [14], [25]. This
builds some weakness in the offloading processes as follows.
First, due to the lack of drones in the right position [26],
proper data is not tracked and as a result, the local learning
algorithm cannot set the best weights. Second, drones that
do not have sufficient computational power to process also
participate in the aggregation operation, which will lead to
inadequate learning. To solve this problem, we propose to
rate the drones with their mentioned properties, then we can
update the model based on aggregating drones’ models with
the higher rating values. This method has two advantages,

VOLUME 9, 2021 113833



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

the first one is to build a suitable and efficient learning model
and the second one is to update the position of drones based
on the ratings received from their neighbors. In the following,
we explain the main objective of this work, i.e. computation
offloading management and our strategy to solve it.

To address the above issues, this paper proposes a novel
FL strategy based on DQL and the rating mechanism of
drones named FLR in MEC architecture. Drones can execute
related computation tasks locally or offload that to other
drones with FL-based cooperation in a distributed environ-
ment. FL helps drones to communicate together without
worrying about data privacy and improving the latency and
energy consumption. In fact, the learning model weights
are transferred within the swarm. Since each drone receives
many weights, we consider a rating method to gain the best
learning model and spread it to neighbors. For the distributed
offloading and keeping a balance between drones, a fairness
value is calculated based on the energy and latency of drones.

Themain contributions of this work are as follows.We pro-
pose a novel distributed offloading management strategy that
is based on online FDRL, which also relies on drone rat-
ing. The rating is computed and constantly (on offloading
events) re-computed for each drone, based on a set of its
current properties reflecting a drone’s potential to execute the
received task. Such task execution is subject to constraints
of required performance in terms of key parameters such
as energy consumption, latency, throughput, and fairness.
We consider a collaborative edge computing architecture in a
dynamic network formed by an autonomous swarm of drones.
An example of the application for this setup is real-time object
detection and/or tracking. We specifically include the het-
erogeneity of the drones and their respective configurations
(e.g., computational power and communication bandwidth
resources) in our system model. We compare the perfor-
mance of the proposed approach against that of well-known
benchmarks (random, greedy, and hierarchical offloading
methods). A comprehensive evaluation is performed based
on the number of drones. Our results show that the pro-
posed approach decreases the energy consumption by 23%,
latency in both communication and computation by 15%,
and increases the throughput by 18% and fairness by 9%, on
average, as compared to the benchmarks methods.

This paper is organized as follows. First, a survey of FL
related works and offloading methods in MEC is presented
in Section II. In Section III, we explain the architecture and
challenges for module offloading in MEC-based swarm of
drones. Then, the system model is presented in Section IV.
Next, in Section V, we present the FL-based offloading
framework in swarm of drones. After that in Section VI,
the performance evaluation demonstrates the effectiveness of
the proposed approach. Finally, in Section VII, a conclusion
and suggestions for future work are provided.

II. RELATED WORK
In this section, we first (in Subsection II-A) describe
resource management works in a group of drones in different

architectures including the cloud, edge, and IoT devices.
Then, we explain the concept of FL and related research
in MEC (in Subsection II-B).

A. RESOURCE MANAGEMENT IN A GROUP OF DRONES
IN DIFFERENT ARCHITECTURES
Here, we present the related works in resource management
which have used drones as end devices, edge devices, or edge
servers that work independently or collaboratively.

There exist works on resource management with dif-
ferent architectures including {cloud, edge servers, and
drones [5], [7], [27]}, {mobile users, drones [28]}, {wire-
less users, edge servers, and drones [29]}, {drones and edge
servers [30], [31]}, and {drones, edge servers, and smart
mobile devices [32], [33]}.

A swarm of drones has also been used in [34] for the
offloading and pricing problems. That researchwas simulated
based on a number of blockchain servers, edge servers,
drones, and IoT devices. The method was based on an
unsupervised hierarchical RL, Bayesian learning, and DL for
a stochastic Stackelberg game with multiple leaders under
incomplete information. An objective function as the payoff
was built using delay, energy, and cost of communication
and computation. However, time complexity analysis was not
provided.

Another type of architecture is said to be flat and includes a
group of droneswithout any centralized servers. Researchers
in [13] presented a distributed algorithm based on proximal
Jacobi alternating direction method of multipliers (ADMM)
to solve the Fog-Cloud-based computation offloading prob-
lem in a swarm of drones. They considered latency, reliability,
and energy consumption. The results showed the low compu-
tational complexity and reliability of the proposed approach
compared to the genetic algorithm (GA), centralized Jacobi
ADMM, and random offloading.

Authors in [35]–[37] worked on optimizing the energy
consumption in a swarm of drones. In [35], the drones are
classified into two types, i.e., user devices (UDs) and helper
devices (HDs) where HDs have more computing capability
thanUDs. There is also a cluster head for gathering and updat-
ing a learning automata for computation offloading. Their
method optimized the energy consumption in comparison
with locally, random, and traversing algorithms. However,
they did not consider what happens to the computation tasks
in the swarm when the cluster head (i.e. the master node)
becomes unavailable. In [36], the authors also applied two
classes of drones. Considering their respective computation
capability, one type was used for detection and the other
one for computation. There are specific pairs for each drone
for offloading the computations. They modeled the problem
with game theory by generalized Nash equilibrium strategy.
There was only one drone for updating the learning model.
In [37], the deployment and computation problem is solved
by a random best and better response (RAN-BBR) algorithm.
The authors clustered drones into some coalitions with the
same altitude. There was also a cluster head in each coalition.

113834 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

Their method is randomly executed in only one of the coali-
tions at each repetition and is not distributed.

Obviously, the presented systemmodel and learning strate-
gies in [35]–[37] are not fully distributed and the computation
offloading in each cluster also depends on the decision by the
cluster head, which limits those works. In fact, each time only
one drone is randomly aggregating the learning model and
the others do not have any aggregation at the same time, i.e.
it is a master and slave architecture. On the contrary, in our
proposed approach, all drones are updating and aggregating
their learning model. This has the advantage that all drones in
a swarm are aware of the status of the whole network to make
an efficient decision about local computation or offloading.

B. FEDERATED LEARNING FOR RESOURCE MANAGEMENT
Here, a definition of FL and its steps are provided. Then,
we discuss some related works in FL for solving the resource
management problems.

1) DEFINITION OF FL
FL allows devices to collaboratively train a global model
regarding the privacy of data and improve the latency and
energy consumption in all devices. This means FL has a
distributed structure. As a result, FL can enable ML model
training with MEC. In its basic concept, FL includes some
data owners denoted {device1,device2, . . . , deviceN } and the
model owner (FL server). There are three main steps in FL:

1) Step 1 takes place in the FL server, including the initial-
ization of the hyperparameters such as the global model
and the training process, e.g., learning rate.

2) In step 2, each devicei trains a model’s wi locally and
transfers it to the FL server.

3) In step 3, all collected local models in the FL server are
aggregated by

W =
1
N

N∑
i=1

wi (1)

where W is weight of global learning model and wi are
weights of learning model i.
Steps 2 and 3 are repeated until completed or until a desired

training accuracy is reached [16]. Using FL in MEC has the
following advantages: i) less data is required to be transmitted
to a central server; ii) no raw data and only the updated model
parameters are transmitted between devices for aggregation;
iii) FL enhances data privacy when the raw data of users need
not be transferred or sent to another device; iv) since tasks can
be executed locally, the latency is decreased.

2) FL-BASED METHODS FOR RESOURCE MANAGEMENT
Some research efforts dealt with improving the FL steps.
Authors in [38] classified some of them. These improvements
have been applied on training tricks [39], client selection [16],
[40], data compensation [41], hierarchical aggregation [42],
model compression [43], knowledge distillation [44], and
asynchronous update [45], [46]. The above works show that

in some implementations, the FL servers for synchronization
of the learning models can be replaced with regular nodes.

In recent years, FL has been used in drones’ applica-
tions such as wireless signal propagation, trajectory plan-
ning, deployment and placement, content caching, and data
routing in a multi-hop manner [23]. Typically, drones were
participants and an edge server or a cloud was an aggregator
of FL. In our paper, we propose the FL for finding the best
destination for offloading the tasks. Since our problem is dis-
tributed offloading in a swarm of drones as MEC, we present
the works related to cooperative computing in the following
subsections.

FL has been used for drones in different architec-
tures. In [47], a group of researchers provided a joint
Auction-Coalition technique for centralized FL. Their model
included some roadside units (RSU) as FL participants, i.e.
vehicles, and a cloud as owner FL and some drones. In that
network, drones were responsible for sending FL worker
trained model to the owner. They analyzed their proposed
approach with energy consumption and communication time.
However, their work was not compared with any other
research. The work presented in [48] was based on an Internet
of vehicles (IoV) system controlled by FL. That work is based
on a centralized FL server, some drones with local FL, and
also some vehicles. According to that research, the lowest
cost drones are matched to sub-regions, and then sensing
and local FL training are performed. One of the issues here
is that drones are dependent on a centralized system and
without it, the learning model cannot be updated. This work
was analyzed by profit and utility of drones without any
comparison with other methods.

Another architecture involves one or several drones and
edge servers in two layers of the network. In [14], an
FLmethod based on convolution neural networks andDLwas
provided for image classification tasks to reduce the com-
munication cost between the drones and the ground fusion
center (GFC). The results showed that FL has higher accuracy
with a lower cost than the centralized methods. However,
that work ignored latency and energy consumption in com-
munication and computation. The authors in [49] presented
a battery-constraint FL in drones with a centralized edge
server. They aimed to optimize the loss function in DRL for
improving the latency and energy consumption. However,
the moving of drones and their distances from edge server
were ignored.

Table 1 classifies the related works based on the network
architecture (Arc.), objectives, technique, environment, pros,
and cons, and whether they use distributed resource man-
agement (DRM). The study of the related works shows that
on one hand, most researchers used a swarm of drones as
a section of a larger architecture. Some of them aimed to
address the computation or communication challenges or
both of them. Interestingly, many of the works, despite having
a distributed architecture, do not use a distributed resource
management method and do not use the ability to interact
between devices. In fact, these works leave the decision about

VOLUME 9, 2021 113835



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

TABLE 1. Overview of distributed offloading methods.

the best resource management operations to a central server
such as a cloud or multiple edge servers. This is while the
drones themselves have the ability to process and decide on
this. On the other hand, these works indicate that working on
FL steps like the selection of learning model from devices
and aggregation model have some advantages but also pose
a number of challenges. Therefore, in our paper, we work
to fill this research gap, that is, to use the ability to interact
between drones with comprehensive learning throughout the
network, so that the challenges related to communication and
computation are also applied.

III. COLLABORATIVE EDGE COMPUTING ARCHITECTURE
IN A SWARM OF DRONES
As shown in Figure 1, in the assumed architecture, there
are only some drones without any edge server or cloud.
We consider, as an example application, that drones detect
in real time objects in the captured video streams. On the
one hand, these operations are computationally demanding;
on the other hand, due to the heterogeneity of drones, their

FIGURE 1. Collaborative edge computing architecture in swarm of drones.

respective computing capacity are different. This means that
some drones with high capacity can execute the process
locally and some others have to send their computation work-
load to other drones.

113836 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

Offloading modules to close-by neighbors can yield lower
latency, energy consumption, and privacy risk. Our objective
is to find the best destination for drones to offloading their
computations.

Some drones may not be able to perform tasks at a
given time due to insufficient battery, processing capacity,
or real-time constraints and may have to request their neigh-
bors to perform these tasks. FLR is a distributed process
suitable for the problem ofmanaging resource allocation. Yet,
it comes with challenges as outlined below.

A. CHALLENGES AND SOLUTIONS OF TASK OFFLOADING
IN DISTRIBUTED DRONES IN MEC
1) LATENCY
Slow and unstable communication is a serious problem. If the
drones send their modules to far-away drones in the net-
work, latency increases. However, clustering of drones helps
them to perform offloading to closer neighbor drones. In the
proposed approach, drones are not dependent on any edge
servers. As some nodes become offline, only the weights
are less trained or updated later, but the task performing or
offloading is done continuously, at least until there are enough
drones alive in the swarm.

2) ENERGY CONSUMPTION
Transferring data between drones increases energy consump-
tion. FL helps alleviating this problem. In FL, drone data are
not sent to other drones and only weights’ of the learning
models are transferred; thus, less energy is needed. Another
energy challenge is that drone’s switching off may affect
the learning performance. This can be solved by receiving
drones’ properties from neighbors. The drones know each
other’s characteristics and this is used in calculating rankings.
As a result, having this information in each device also helps
in offloading operations.

3) COMPLEXITY OF THE MODEL
Comparisons with other distributed learning methods show
that complexity is an important challenge. Some methods
use neural networks up to a cut layer and others ignore
communication weights to an aggregating server. FL is easier
to implement since the participants and the FL server are run-
ning the same global model in each cluster. Moreover, drones
may be physically close to each other. This introduces a col-
lision issue when they update local models to the neighbors.
As such, channel allocation policiesmay need to be combined
with the resource allocation approaches to address the colli-
sion issue. This means drones can predict the best trajectory
(see the outlook for future work in Section VII) for opti-
mizing sending their modules to others. Since FL provides
a global view of the network for all drones, they can thus
control their movement to avoid collision and find the
best neighbor for offloading. DQL can be considered to
model the dynamic environment of MEC and make opti-
mized decisions. As a solution, drone properties such as

CPU frequency, bandwidth, execution time, and energy con-
sumption can be used for presenting an objective function
for DQL. In fact, this learning algorithm finds the optimal
destination for offloading the modules. The size of model
updates can be another challenge. However, the high-speed
communication in modern technologies such as 5G helps
transferring large data fast.

IV. SYSTEM MODEL
FL can be used for addressing the above-mentioned issue
by training a shared global model from a swarm of drones.
In this paper, we propose a new module-offloading frame-
work employing FL for decision making to find the best
destination for offloading. Each drone becomes aware of the
drones around it without having to send its data to a central
system such as a cloud or a semi-centralized system such as
fixed edge servers to gain this knowledge.

Figure 2 presents the framework of module offloading
between drones by means of the proposed FL strategy. This
is a sequence diagram that shows what happens in each
drone and its neighbors in a swarm. The main contribution
of this work is the rating of neighbors and updating the
learning model with aggregating the higher-rated models, as

FIGURE 2. Framework of FLR for offloading in a Swarm of drones.

VOLUME 9, 2021 113837



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

highlighted by the green text.Moreover, there are two running
threads in each drone that execute instructions on different
processors simultaneously.

All terms used in this work are presented in Table 2.

A. SWARM OF DRONES
We consider multiple drones, each denoted as Di where
i = {1, 2, . . . , I }. The properties of each drone include
position (X ,Y ,Z ), CPU frequency, amount of RAM, commu-
nication bandwidth, idle power, and active power. To mimic
the heterogeneity of the drones in the swarm, at first, a certain
value of these parameters is considered and these sets of
values are then multiplied by one of the numbers in the set
{Drone;Type1 = 1, Type2 = 1.5, Type3 = 2, Type4 = 2.5,
Type5 = 3}. In other words, the values 1, 1.5, 2, etc. are
multiplying factors applied to the parameters’ values of the
first drone, in order to generate more drones’ configurations
with different values. For simulation purposes, we consider
5 types of drones in the environment. For example, for a
swarm of 50 drones, we may have 10 drones of each type.
Assumption 1: All drones are in the air. This means we

assume that the primary position of the drones is the air, thus
they are not in the idle, take off, armed, and payload modes.
They can be in other states such as hovering and flying.
Assumption 2: The camera’s angle of all drones is fixed.

Since the problem of this research is application module
offloading, setting the camera’s angle and finding the best
direction thereof in drones is not this research’s purpose.
Here, we assume that if an object is in the camera coverage
of a drone then the drone can track the object. However,
we consider distance between drones and objects to calculate
the performance value.

B. APPLICATION SCENARIO
An example of the application assumed for the objective of
the proposed analysis is object detection by drones based on
video streams sensed in real time. An application includes
several modules. Each module involves the data processing
elements. Data generated as output by each module may be
used as input by another module. This application model
creates a directed graph, with the vertices representing appli-
cation modules and directed edges showing the data flow
between modules [50].

Figure 3 illustrates possible involved embedded software
modules i.e. sensing, client, processing, storage, and actua-
tion. The sensing module can send camera video streams to
the client module. The client module executes pre-processing
of the sensor-generated data and transfers it to the pro-
cessing module. The processing module provides two types
of data, i.e. processed and action commands, that can be
transferred to storage and client modules, respectively. The
storage module can be used for saving of processing modules
for location-independent and scalable distribution. Moreover,
the client module can generate the actuation signal.

The above modules form an application for tracking
objects according to a workflow. For more clarification,

TABLE 2. Term definition.

it should be noted that the main objective of this research is
the management of computation offloading between drones
in a swarm, and we do not contribute to a solution for image

113838 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

FIGURE 3. Application modules.

processing or object tracking. Therefore, this research does
not deal with the content and type of modules, but according
to the size of the module and its arrival time in each drone,
it examines the execution capacity locally andmight make the
decision to send it to the neighbors according to their current
status. In other words, we look at each module as a black box
and decide the best place to run it.

The drones are constantly receiving data from their camera
sensors, and the application produces instances of modules
according to the data. In fact, each drone deals with a large
number of instances of modules during its in-field mission.
Each module needs resources to be executed; if the resources
in the drone are sufficient, the module is run locally; other-
wise, according to the offloading algorithm, it is transferred
to another drone. As mentioned in Section I, a module is a
task with operations and data.
Assumption 3: Regarding the resource capacity of the

drones, they can execute modules locally, but offloading is
required when a large number of module processing requests
are received on a drone but it is not able to process them.
In such a situation, the drone offloads modules to its neigh-
bors. The selection of best neighbor for offloading is pro-
cessed by FLR strategy. The size of the modules is such
that they do not need to be fragmented and a module can be
completely moved using 5G communication between drones.

C. LATENCY
Each drone, based on its available computing power, can
execute the modules locally or offload them to other neighbor
drones. Therefore, the total latency of a module depends on
whether it is executed locally or offloaded.

1) COMPUTATION LATENCY FOR LOCAL CASE
In the local execution of drone i (Di), latency can be expressed
as

LLoci =
ωm

fi
, (2)

whereωm is the size of modulem, and fi is the CPU frequency
of Di.

On the other hand, in the offloading case, there are two dif-
ferent latency components, i.e. for communication and com-
putation. There is a first latency component for transferring
a module between drones. The second latency component is
due to the fact that when the module is placed in a drone Di
for execution, the processors of the dronemay be busy and the
module will have to wait, thus there is a computation latency.

2) COMPUTATION LATENCY FOR OFFLOADING CASE
The execution of a module on each drone has latency [13].
Here, we offload an entire module, not just a part of it. Thus,
the computation latency can be calculated as

LComp
i =

ωm

fj
, (3)

where ωm is the size of module m, fj is the CPU frequency
of Dj.

3) COMMUNICATION LATENCY OFFLOADING CASE
The communication latency of that module [13] between Di
and Dj can be given by

LComm
i =

βωm

RDL(i, j)
, (4)

where S is the size of data for communication and β is a rate
of communication size. Since we transmit a module without
any division, βωm is the module size. Moreover, RDL(i, j) is
the distance-based link rate between Di and Dj that can be
given by

RDL(i, j) = Bij log2(1+
PTxd

−γi
ij hi

Ni
), (5)

where Bij is the bandwidth between Di and Dj, PTx is trans-
mitting power, hi is the complex Gaussian channel coeffi-
cient which follows the complex normal distribution CN(0,1),
Ni is the additive white Gaussian noise with zero mean and
variance δ2, and dij is the distance betweenDi andDj that can
be expressed by

dij =
√
(Dxi − D

x
j )

2 + (Dyi − D
y
j )
2 + (Dzi − D

z
j )
2 (6)

γi is the path loss exponent [51] that can be given by

γi =
ρi

d2ij
(7)

where ρi is the channel power ofDi. Since we are considering
a dynamic network, it is required to explain that dij value is
updated after each move of the drones in the environment.
This helps us to calculate exactly the communication latency
between drones. Moreover, this is also used for calculating
the communication energy consumption as will be explained
in Subsection IV-D.

VOLUME 9, 2021 113839



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

4) TOTAL LATENCY
Finally, the total latency can be calculated by identifying
the maximum value between local latency as LLoci and the
sum of the offloading communication latency as LComp

i and
offloading computation latency as LComm

i , i.e.

LToti = Max(LLoci , [LComp
i + LComm

i ]). (8)

D. ENERGY CONSUMPTION
We consider the energy consumption model for the com-
putation, communication, and moving of drones. Regard-
ing the resources capacity of each drone Di, the modules
can execute locally or be transferred to neighbors. Drones
consume energy while transferring a module; moreover,
the module execution also consumes some energy. Thus, total
energy consumption in module offloading is calculated based
on the communication, computation, and moving energy
consumption.

1) COMPUTATION ENERGY CONSUMPTION
In the local execution in each drone, the computation energy
consumption [13] can be expressed as

ELoc
i =

kf δi ωm
fi

(9)

On the other hand, the computation energy consumption in
offloading can by given by

EComp
i = ELoc

i +

N∑
j=1

kf δj
S
fj

(10)

where, kf δi and kf δj are the computational power ofDi andDj,
respectively and N is the number of modules. Thus, the total
computational energy consumption of drones’ swarm is the
sum of computation energy consumption in the local and
offloading modes.

2) COMMUNICATION ENERGY CONSUMPTION
We calculate the communication energy consumption based
on the transferring of modules between drones; the total
communication energy consumption is calculated as follows.

The transmitting energy consumption [13] can be calcu-
lated as

ETra
i =

N∑
j=1

PTx
βS

RDL(i, j)
(11)

and the receiving energy consumption can be given by

ERec
i =

N∑
j=1

PRx
βωm

RDL(i, j)
(12)

where PTx and PRx are the transmitting and receiving power
of Di and Dj, respectively.

The total communication energy consumption can be given
by

EComm
i = ETra

i + E
Rec
i . (13)

The total energy consumption is the sum of the communi-
cation and computation energy consumption:

ETot
i = EComp

i + EComm
i . (14)

3) DRONE’S MOVING ENERGY CONSUMPTION
There is a number of parameters in a drone’s energy model
like time of idle, armed, hovering, and horizontal flying
states, take-off speed, the distance of vertical flying upwards
and downwards, the altitude of hovering, and payload.

Drones evaluate their neighbors, thus after each rating
process according to Eq. 28, the drones with the lowest rating
value have to move to another position. The other drones
without movement also consume energy in the hovering state.

While moving the drones, we consider a padding distance.
If the drones are exactly at the border of the area, then part of
their camera coverage will be out of the area, which is useless.
The padding distance allows the drones to be positioned at a
certain distance from the boundary of the area so that we can
use the maximum camera coverage.

In this work, we assume drones are in the air and their
energy is calculated as follows [52].

The hovering energy can be expressed as

EH
i = (4.917H + 275.204)th, (15)

where, H and th are the altitude and time of hovering.
The flying horizontally energy can be calculated as

EFH
i = 308.709t f − 0.852, (16)

where, t f is the flying time.
The flying vertically upward energy can be given by

EFVU
i = 315Df − 211.261, (17)

where, Df is the distance of this flying. The flying vertically
backward can be calculated as

EFVB
i = 68.956Df − 65.183, (18)

Finally, the total moving energy consumption can be
expressed as

EMov
i = EH

i + E
FH
i + E

FVU
i + EFVB

i , (19)

E. FAIRNESS OF OFFLOADING
The fairness parameter helps us to evaluate the distribution of
offloading in all available drones in the neighborhood of each
drone.

The swarm of drones has a distributed structure, and our
proposed approach for offloading is also distributed. In order
to maintain a balance in resource consumption and module
processing, we aim at distributing the modules fairly. In fact,
the fairness value shows the justice of the offloading strategy
in a distributed environment. This parameter, known as Jain
index in [53], is based on only the energy consumption of
devices. In contrast, we propose to calculate this fairness

113840 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

parameter based on the sum of the total energy consumption
and the total latency as:

f (ETot
i ,LToti ) = We ∗ ETot

i +Wl ∗ LToti , (20)

where,We andWl are weighted coefficients for normalization
of the total energy consumption and the total latency. The
fairness of Di can be calculated as

Fi =
(
∑K

j=1 f (E
Tot
i ,LToti ))2

K ∗
∑K

j=1 f (E
Tot
i ,LToti )2

(21)

where K is the number of neighbor devices contributed in
the offloading, f (ETot

i ,LToti ) is based on the total energy
consumption and the total latency. The fairness value is in
the range [1/K , 1]. Higher values of fairness correspond to
higher performance.

V. FEDERATED LEARNING-BASED OFFLOADING
IN A SWARM OF DRONES
This section presents the FL-based offloading with Rat-
ing (FLR) strategy based on cooperation between drones.
We divide these steps into four phases, i.e. initialization of
drones and application, finding the best learning model in
each drone with a rating strategy and offloading, updating
learning model by neighbors of drones, and setting the new
position of drones. The pseudocode of the proposed approach
is given in Algorithm 1. We explain this algorithm based on
its four phases as follows.

A. Phase1: INITIALIZATION
All drones are placed in the environment area with random
positions. Since we consider heterogeneous drones, their con-
figurations are different. Next, the application modules are
mapped onto the drones.

B. Phase2: LOCAL LEARNING AND RATING OF DRONES
IN THE SWARM
This phase includes two important parts. 1) The learning
runs in a drone locally. 2) On a high-level process, the rating
method executes for evaluating drones in a swarm.

1) LOCAL LEARNING BY DQL
All potential neighbors of each drone are evaluated by their
distance as per Eq. (6). AllDj with a distance smaller than RN

(Neighborhood radius of drones) are considered as neighbors
of Di. This decision results in some clusters of drones. This
helps the drones to perform faster computation offloading
together.

Each drone calculates energy consumption, latency, and
fairness as per Eqs. (8), (14), and (21), respectively. If a drone
can execute the module locally under the given constraints,
it does so; otherwise, the offloading process starts.

In each drone, we execute a DQL algorithm. There are two
value functions for learning with random assignments [21].
As a result, we have two sets of weights for determining the

Algorithm 1 FLR: Federated Learning With Rating Method
1: Phase 1: Initialization
2: Place all drones in the area with random positions.
3: Map all the application modules to drones.
4: Phase 2: Local learning and rating of drones in the

swarm
5: Setting each drone in a cluster with dij < R.
6: for It=1 to MaxIteration do
7: for all drones do
8: Calculate LToti , ETot

i , and Fi as per Eqs.(8), (14),
and (21), respectively.

9: for allModules do
10: if module can run locally then
11: Run module in current drone.
12: else
13: Run DQL as Algorithm 2.
14: Rating current drone by Algorithm 3.
15: Phase 3: Cooperative learning
16: Update drones’ Qwith higher rated neigh-

bors as per Eq. (31).
17: Sends its Q to neighbors.
18: Updates neighbors’ Q as per Eq. (31).
19: Phase 4: Update drones’ position
20: Moving the lower rating drones.
21: Update neighbors based on new positions.
22: end if
23: end for
24: end for
25: end for

greedy policy and its value. In fact, double Q-learning decom-
poses the max operation in the target into action selection
and action evaluation. In DQL, Q is the quality, in this case,
it represents how useful a given action is in gaining some
future reward. The DQL steps of Algorithm 2 are as follows.

Algorithm 2 DQL

Input: PDim and TDim
Output: Q model

1: for all Environment steps do
2: Initialize Q1, Q2, and U by 0.
3: Observe state st and select action at .
4: Execute at , go to state st + 1, and rt .
5: U = (st , at , rt , st + 1).
6: end for
7: for all Update steps do
8: Update Q(st , at ) by Eq. (25).
9: Run gradient descent as Eq. (26).
10: Update Q2(st , at ) by Eq. (27).
11: end for

First, initialize the primary networkQ1, target networkQ2,
and reply buffer U with 0. Then, for all environment steps:

VOLUME 9, 2021 113841



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

1) Observe state st and select action at . The system state st
can be defined by

st = {Mt ,Ct } ∈ S (22)

where Ct is the available computation resources for
module t (Mt ).
For each module, at as the action t can be expressed by

at = {Ut ,Dt } (23)

where Ut is a computation frequency of module t that can be
provided by drone Dt .
2) Execute at and observe next state st+1 and reward rt that

can be given by

R(st , at ) = Avg(PDim ,
1

TDim
) (24)

where R(st , at ) is the average value of PDim and TDim as the
power and computation time of module m in Di, respectively.
3) Store (st , at , rt , st+1) in the reply buffer U.
Subsequently, for each update step:
1) Q(st , at ) value can be calculated by

Q(st , at ) = rt + αQ(st+1, argmax
α′

Q2(st+1, α′)). (25)

where α is the learning rate and α′ is the action related to
the target network Q2. Here, an action of global Q can be
expressed by argmax of α′ in Q2.
2) Execute a gradient descent (GD) step on

GD{(Q(st , at )− Q1(st , at ))2} (26)

3) Update the target network Q2(st , at ) by

Q2(st , at ) = αQ1(st , at )+ (1− α)Q2(st , at ). (27)

2) RATING OF DRONES IN THE SWARM
We propose a rating method for evaluating each drone in a
swarm. This helps the FL to find the best drone as a desti-
nation for offloading. Each drones can rate all its neighbor
drones. The rating value can be given by

Ratingj =
w1Bj + w2Ej + w3fj + w4Fj + w5Pj

w6Lj
(28)

where Bj is the bandwidth of Dj, Ej is the total energy con-
sumption of Dj, fj and Fj are the CPU frequency and the
fairness of Dj, respectively, Pj is the performance of Dj, and
Lj is the total latency of Dj. All wi are weighted coefficients
for the normalization of parameters.

The parameter Pj depends on the application type and
its mission. In the image object detection application, this
parameter can be the accuracy of the detected objects process,
which ranges from 0 to 1. Here, we calculate the average of
accuracy for object image detection based on proximity of
each drone to objects. According to Figure 4, each drone is
placed in a random position. Some drones may cover one or
more objects, and some other drones may not be able to cover
any object due to their poor position.

FIGURE 4. Drones with different performances.

For the example application, we assume that the perfor-
mance of each drone can be expressed by

Pj =

{
0, @Ok ∈ AreaDj

1− 1
C

∑C
k=1

1
d ′jk
, Otherwise (29)

where @Ok ∈ AreaDj means there is no object in the area
by Dj. C is the number of tracked objects and d ′jk is the

distance between drone j as (Dj) and object k as (Ok ) that
can be given by

d ′jk =
√
(Dxj − O

x
k )

2 + (Dyj − O
y
k )

2 + (Dzj − O
z
k )

2 (30)

According to Figure 4, drone D1 covers O1 and O2, drone
D2 covers O2, O3, and O4, drone D3 covers O2 and O3, and
drone D4 do not cover any objects. However, each drone has
a different Pj value as Eq. 29. In practice, Pj may also depend
on the application algorithm the configuration of the drones’
sensors.

The pseudocode for the proposed rating method is given in
Algorithm 3. Each drone sends its configuration and Qmodel
to neighbors. All neighbors, after receiving these data, send
their configuration and Q model to their neighbors. Then,
each drone, after receiving data from its neighbors, calculates
the rating values between neighbors and finds the higher
value. After that, the Q model of the drone is updated and
the rating and Q model are sent to the neighbors. In the next
step, all neighbors receive the configuration and Q model.
Then, drones with the lowest rating value move to a new posi-
tion and send their configuration and Q model to neighbors.
Finally, all neighbors update their configuration andQmodel.

C. Phase3: COOPERATIVE UPDATING OF THE LEARNING
MODEL
As we mentioned in the introduction, the basic traditional
FL steps are as follows. 1) It starts by sending a learning
model weights from one server to others. 2) Each node sends
the local learning model weights to the server. 3) The server
aggregates all received learning model weights to create

113842 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

Algorithm 3 Rating Drones
Input: Di

1: By Di:
2: Send configuration and Q to neighbors.
3: By Di’s neighbors:
4: Receiving configuration and Q model of drone.
5: Each neighbor sends its configuration and Q model to

neighbor.
6: By Di:
7: Received configuration and Q model from neighbors.
8: for j = 1 to NeighborsLast do
9: R[j] = Calculate rating value as Eq. (28).

10: end for
11: [Qsorted , Indexsorted ] = Sort neighbors based on rating

values.
12: Update Q model by aggregating drones with higher

Qsorted values.
13: Send rating and Q model to neighbors.
14: By Di’s neighbors:
15: for j = 1 to NeighborsLast do
16: Receiving configuration and Q model of Dj.
17: if R[j] is lowest in cluster then
18: Move Dj.
19: Calculate new neighbors.
20: Send configuration and Q model to neighbors.
21: end if
22: end for
23: Update neighbors’ configuration and Q model.

a global learning model and then sends the global learning
model to others.
Our approach is based on this flow, but at the swarm level.
In fact, in each cluster of a swarm, each drone aggregates
the learning model weights with the received learning model
from their neighbors. We execute these steps based on a
rating strategy to apply only a higher-rated drone’s learning
model. In Phase3, each drone updates its Q model based
on aggregation of its neighbor drones with higher rating (as
we shown in Figure 2). We need to maximize the expected
long-term utility of FLR that can be given by the following
control policy:

Wt+1 =

Nr∑
i=1

(
Bit
Bt
∗W i

t+1) (31)

whereWt+1 is the new weight, Nr is the number of neighbor
drones with higher rating values. Bit and Bt are the statistical
values of Di and its neighbors; and Bt is expressed as

Bt =
∑
i∈S

Bit (32)

where S is a set of drones with higher rating value.
After performing the update, each drone sends its Q model

to its neighbors. This process executes in all drones
simultaneously. Each drone, as soon as receiving the

neighbor Q model, can evaluate it and update its model by
aggregating based on neighbors with the higher rating value.
After updating the Q model, drone knows the destination of
module for offloading.

D. Phase4: UPDATE DRONES’ POSITION
To improve the drone’s QoS, we move away drones with low
performance. This performance is calculated based on their
ratings. According to the Pareto principle, 80% of a system’s
problems occur in 20% of its element [54]. Moreover, due to
the high mobility of the drones, they consume a lot of energy,
so this percentage is considered.

Thus, we update the position of 20% of the drones with
lower ratings and refer to this with η. It should be noted
that depending on the rating, different drones may change
position each time. After moving the drones, they update their
neighbors based on their new position. Finally, with finishing
these phases, the process repeats from phase 2 to phase 4 until
the maximum simulation time.

E. COMPLEXITY ANALYSIS
Here, we present the computational complexity of the pro-
posed approach, where the number of drones, tracked objects,
and modules are N , K , and M , respectively. In Algorithm 1,
Lines 1 to 5, we have placed N drones, mapped M modules,
and parallel setting of drones in the clusters with complexity
O(N ), O(M ), and O(N ), respectively. The complexity until
now can be calculated by O(N + M + N ) = O(N + M ).
The complexity of Lines 8 to 11 is O(1). In Line 13, we have
the DQL Algorithm 2 with complexity O(C · N ) = O(N ),
where C is the number of environment steps. In Line 14,
the rating of drones as Algorithm 3 is parallel-executed with
complexityO(K ·N+N ) = O(K ·N ). In the following part of
Algorithm 1, Lines 15 to 21, we have a complexity of O(N ).
Finally, the overall complexity of the proposed FLR can be
expressed as

O(N +M +M · N +M · K · N +M · N ) = O(M · K · N )

(33)

For implementing our sample application as object track-
ing, we need to use 2 to 20 drones for discovering an area.
Also, surveying the recent related works show that other
researchers tested their offloading method in a swarm includ-
ing 10 drones [13], [35], [36] even in a larger environment.
The complexity is linear w.r.t the number of nodes N and
to the number of tasks/modules, which is also confirmed by
the simulation results in Figure 11. Moreover, drones are
constantly capturing videos of the environment and have to
process them, due to the heterogeneity of the drones, in many
cases local computing is not effective and offloading is a
better solution.

VI. EVALUATION
In this section, we provide the simulation-based experimental
results and evaluate the performance of the proposed offload-
ing strategy. Firstly, we introduce the simulation environment

VOLUME 9, 2021 113843



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

in SubsectionVI-A, the evaluationmethods in SubsectionVI-
B and the devices’ configuration in Subsection VI-C. Sec-
ondly, in Subsections VI-D to VI-I the proposed offloading
strategy for drones is analyzed under different metrics and is
compared with the benchmark methods.

A. SIMULATION ENVIRONMENT
This work is simulated in the iFogsim [50] simulator as
a Java-based library. It is used for resource management
projects in IoT, edge, and fog computing. The default archi-
tecture of this simulator is hierarchical. This simulator has
classes to implement resource management strategies; we
have extended some classes i.e. ModulePlacement and Mod-
ulePlacementEdgeward for offloading, drone-based appli-
cation, controller for calculating output metrics. We made
those changes to implement different types of nodes involved
both in the proposed and the reference distributed computing
architectures. The evaluation metrics, e.g. the latency and
energy consumption, are implemented according to the equa-
tions in Subsections IV-C and IV-D.

B. EVALUATION METHODS
The proposed approach, referred to as FLR, is compared to
Random and Greedy [28] offloading approaches, and also
compared to an architecture involving edge servers referred to
as Hierarchical [14]. These benchmark approaches represent
the main state-of-the-art strategies for in-swarm offloading.

• Random: This approach is based on an architecture
including a swarm of drones with random offloading
method. In the underlying algorithm, after each drone
has received the Q learning model from its neighbors,
the offloading destination for modules are selected ran-
domly without any rating.

• Greedy: This approach is based on an architecture
including a swarm of drones with greedy offloading
method. In the underlying algorithm, after each drone
has received the Q learning model from its neighbors,
all neighbors are sorted based on their fairness as per
Eq. (21). Then the neighbor with maximum fairness
value is selected as the offloading destination of the
module.

• Hierarchical: Here, there are several drones and a num-
ber of edge servers and the proposed algorithm (FLR)
is now executed in this architecture. For evaluation,
we realistically considered the number of edge servers to
be equal to 10% of the total number of drones (N’). For
example, if there are 50 drones, 5 edge servers are added
to the network so that each edge server covers 10 drones.

C. CONFIGURATIONS
The configuration of devices is as shown in Table 3. For the
drones, the RAM ranges from 2 to 6 GB, the CPU frequency
from 2 to 6 GHz, and the bandwidth from 1 to 3 Mb/s.
The edge servers have more powerful resources, i.e. 8 GHz
CPU frequency, 12 GB RAM, and 8 Mb/s bandwidth [7].

TABLE 3. System parameters.

The simulated environment is 500m ∗ 500m ∗ 500m. The
minimum distance between drones is 10 m, and the mini-
mum and maximum distances (die) between drones and edge
servers are 200 and 500 m, respectively. The flying distance
Df (This value is based on the Euclidean distance traveled in
three directions x, y, and z.) is 10 m. The transmitting and
receiving powers of the drones are 1.258 and 1.181 W [13],
respectively. The simulation time (ST ) is 1000 s. We assume
that each drone has sufficient battery to be active during this
time.

D. ANALYSIS OF THE ENERGY CONSUMPTION
Here, we present a comparison of the total energy consump-
tion and also the computation energy consumption of the
drones.

Figure 5 shows the comparison results of the total energy
consumption for the proposed approach and benchmark
approaches introduced above. The horizontal axis in all fig-
ures represents the number of drones and the vertical axis
represents the energy consumption of the offloadingmethods.
Here the energy consumption is the sum of the individual
energy consumption for computation, communication, hov-
ering, and moving of the devices. According to Figure 5,
the proposed FLR has a lower energy consumption than
Hierarchical, Random, and Greedy. It can be seen that the
minimum total energy consumption is 1.58∗109 J (Joule) for
the proposed approach, whereas it is 3.25 ∗ 109, 3.12 ∗ 109,
and 3.32 ∗ 109 J for Random, Greedy, and Hierarchical,
respectively.

The reason behind this results is that the proposed approach
can perform a better offloading between drones. In fact,
it can find the best destination for module offloading. A very
important point in achieving this amount of improvement
in energy consumption is the ranking of drones (based on
their ratings). Because of this technique, only some (but
not all) low-performance drones have changed their position
according to Df , resulting in reduced energy consumption.
The Random and Greedy have higher energy consumption
because they do not use the distributed knowledge from their
neighbors to find the best drones for offloading. According to
Table 3, the edge servers have more RAM, CPU frequency,

113844 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

FIGURE 5. Comparison of the total energy consumption of the proposed
FLR method against that of the three benchmark methods.

and bandwidth than drones. As a result, the presence of
such devices causes higher total energy consumption of the
system. Finally, the existence of several relatively powerful
edge servers increases the computational and communication
energy consumption in the Hierarchical approach.

According to the application model in this research, when
it comes to the energy consumption, we focus on the com-
putation energy consumption. Figure 6 shows the average
computation energy consumption of all compared methods.
The proposed FLR approach has lower energy consumption
for communication than the three other methods. This is
achieved thanks to its fair and distributed offloading features;
indeed, FLR uses a rating method to offload modules to a
wide range of drones, not just some drones with sufficient
resources. This causes the resources in a swarm of drones to
be used in a balanced way.

FIGURE 6. Comparison of logarithmic average values of the computation
energy consumption of the proposed FLR method against that of the
three benchmark methods.

E. ANALYSIS OF THE LATENCY
Figure 7, 8, and 9 show the comparison of the average
computation, communication, and total latencies for the pro-
posed approach and the three benchmarks. We consider this
metric because it reflects how long it takes for a drone to
track an object in the environment, which is a key perfor-
mance indicator of the application, and especially critical for
high-performance real-time applications. The computation,

FIGURE 7. Comparison of the computation latency of the proposed FLR
method against that of the three benchmark methods.

FIGURE 8. Comparison of the communication latency of the proposed
FLR method against that of the three benchmark methods.

FIGURE 9. Comparison of total latency of the proposed FLR method
against that of the three benchmark methods.

communication, and the combined average latencies are pre-
sented as follows.

1) AVERAGE COMPUTATION LATENCY
Figure 7 shows the average computation latency of executing
modules in drones. This plot illustrates that the proposed
approach with the swarm of drones without any centralized
devices decreases the average computation latency. The aver-
age computation latency for Hierarchical ranges from 6.87 ∗
10−5 to 7.68 ∗ 10−5 ms, Random ranges from 5.57 ∗ 10−5 to
8.13 ∗ 10−5 ms, Greedy ranges from 6.66 ∗ 10−5 to 8.76 ∗
10−5 ms, and FLR range from 3.20∗10−5 to 3.47∗10−5 ms,
respectively. The average computation latency of the FLR is

VOLUME 9, 2021 113845



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

clearly lower than that of the other methods. The distribution
of modules among a large number of drones and also some
edge servers yields fair resource management, so, almost all
drones are equally busy and all computations executed with
cooperation between drones.

2) AVERAGE COMMUNICATION LATENCY
As we mentioned, the average communication latency
refers to the time it takes between sending a module
from a drone and receiving that module in another drone.
We calculate the average value of this metric. According
to Figure 8, the average communication latency for Hier-
archical ranges from 0.23 to 0.38 ms, for Random from
0.30 to 0.37 ms, and for Greedy from 0.30 to 0.35 ms.
The minimum communication latency provided by the FLR
strategy ranges from 0.26 to 0.28 ms. Based on this plot
we can say that in most cases the proposed approach can
transfer modules with lower latency than that of the other
methods.

3) AVERAGE TOTAL LATENCY
According to Figure 9, the proposed approach yields
the lowest average total latency. The simulation result
shows that the average total latency of Hierarchical ranges
from 0.23 to 0.38 ms, Random from 0.30 to 0.37 ms,
Greedy from 0.30 to 0.35 ms, and the proposed approach
from 0.26 to 0.28ms. It can also be seen that when the number
of drones is 50, the Hierarchical method has the highest
latency due to transferring modules between edge servers and
drones. However, some edge servers with a significant dis-
tance from drones have a larger latency than an architecture
including a swarm of drones.

F. ANALYSIS OF THE FAIRNESS
To evaluate the fairness of offloading, let’s consider
Figure 10. Generally, the minimum fairness is obtained for
Random which ranges from 83% to 89% and for Greedy
which ranges from 84% to 96%. On the other hand, the max-
imum value is obtained for the proposed approach which
ranges from 92% to 98%. This chart indicates that the pro-
posed approach provides higher distribution of the offload-
ing process. This metric does not have better values in
the Hierarchical method than the others due to the forced
offloading by edge servers to a number of drones on their
domain.

G. ANALYSIS OF THE EXECUTION TIME
Figure 11 indicates the time spent for executing all workloads
in the simulator. The proposed approach has lower execution
time than the others when the number of drones is 10, 25,
and 100. This shows that our strategy based on the fairness
of offloading and rating of drones improves the distribution
of computations in a swarm. Also, the lower latency of the
FLR for decisions about local computing or finding the best
destination for offloading decreases the execution time more
than the other methods.

FIGURE 10. Comparison of the fairness in offloading modules of the
proposed FLR method against that of the three benchmark methods.

FIGURE 11. Comparison of the execution time of the proposed FLR
method against that of the three benchmark methods.

H. ANALYSIS OF THE THROUGHPUT
We also analyze the throughput of the system. Figure 12
shows that the FLR strategy can transfer larger volumes
of data at the same time than the other offloading strate-
gies. In the proposed approach, the minimum throughput
is 8.53∗103 MB/s and the maximum is 9.36∗104 MB/s. The
main reason for this result is the distribution of the proposed
algorithm and rating of drones.

FIGURE 12. Comparison of the throughput of the proposed FLR method
against that of the three benchmark methods.

113846 VOLUME 9, 2021



D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

I. IMPROVEMENT PERCENTAGES OF FLR AS COMPARED
TO THE BENCHMARK METHODS
Table 4 summarizes the improvement percentages of the pro-
posed FLR approach as compared to the benchmark methods.
The rows include total energy consumption, average total
latency, throughput, and fairness values. The columns show
the name of the parameter, and the difference (in percentage)
with the compared methods. The previously presented results
and this table show that, as compared to Hierarchical, Ran-
dom, and Greedy, the proposed FLR approach reduces total
energy consumption by −23%, −23%, and −24%, respec-
tively (−23% on average). Regarding total latency, FLR’s
improvements over Hierarchical, Random, and Greedy are
−11, −19, and −16%, respectively (−15% on average). For
the throughput metric, FLR’s improvements over Hierarchi-
cal, Random, and Greedy are +25%, +10%, and +11%,
respectively (+18% on average). Finally, in fairness, FLR
is superior to Hierarchical, Random, and Greedy by +7%,
+11%, and +9%, respectively (+9% on average).

TABLE 4. Improvement percentages of FLR as compared to the other
methods.

J. DISCUSSION
In this research, we focused on the computation offload-
ing problem in a swarm of drones and solve it with a dis-
tributed strategy. To do this, we considered the limitations and
assumptions as follows.

1) We assumed all drones are in the air considering a suit-
able distance for avoiding a collision. This can be extended
as a challenge for more efficiency.

2) The camera’s angle of all drones is fixed, thus if an
object is in the camera coverage of a drone then the drone
can track the object. Optimizing the camera’s angle can save
in the moving of each drone in a swarm. This can be another
extension of this research.

3) Since the focus of this research was not image or
video processing optimization, regarding the quality of object
tracking by drones, we only considered the distance between
drones and tracked objects for the performance. This aspect
could benefit from further research.

4) We assume that each drone has sufficient battery to
be active during the simulation time. Working on renewable
energy resources can be considered as another extension of
this work.

5) Drone’s moving energy consumption was modeled
and calculated according to research that we cited in the

same subsection. Implementing a swarm of drones with
the proposed approach in this research would benefit
from the exact analysis and designing the systemmodel based
on the devices.

VII. CONCLUSION
This paper proposes a novel federated learning based fast
and fair offloading strategy with a rating method in a swarm
of drones. The rating is constantly computed for each drone
(on offloading events) based on a set of its current properties
such as available performance, energy, communication, and
fairness that reflect a drone’s potential to execute the received
task.

The experimental comparison with state-of-the-art
benchmark methods show that, on average, the proposed
distributed offloading strategy can reduce energy consump-
tion and latency by 23% and 15%, as well as increase
throughput and fairness by 18% and 9%, respectively. Thus,
a swarm of drones in MEC can be used for different mis-
sions with improved resource management in a distributed
structure.

Still, there are a few limitations to this work, highlighted
in what follows. For presenting a fully complete system
model for a swarm, we would need to consider a high perfor-
mance trajectory planning for placing and moving the drones.
This challenge can be solved by different strategies such
as machine learning. For future work, trajectory planning
of drones can be investigated, i.e. the drones can predict
their trajectories based on energy consumption, latency, and
QoS. FL can provide the basis for trajectory planning based
on learning of local energy consumption and collaboration
between devices. Using or proposing a suitable channel mod-
eling for a swarm of drones is a second aspect to be consid-
ered. Lastly, due to the already complex issue of resource
management, the simultaneous design of resource manage-
ment and application has not be conducted in this paper; this
is something worth of further research.

REFERENCES
[1] S. Zaidi, M. Atiquzzaman, and C. T. Calafate, ‘‘Internet of flying things

(IoFT): A survey,’’ Comput. Commun., vol. 165, pp. 53–74, Jan. 2021, doi:
10.1016/j.comcom.2020.10.023.

[2] W. Feng, J. Tang, Y. Yu, J. Song, N. Zhao, G. Chen, K.-K. Wong,
and J. Chambers, ‘‘UAV-enabled SWIPT in IoT networks for emergency
communications,’’ IEEE Wireless Commun., vol. 27, no. 5, pp. 140–147,
Oct. 2020, doi: 10.1109/MWC.001.1900656.

[3] J. Zheng, T. Yang, H. Liu, T. Su, and L. Wan, ‘‘Accurate detec-
tion and localization of UAV swarms-enabled MEC system,’’ IEEE
Trans. Ind. Informat., vol. 17, no. 7, pp. 5059–5067, Jul. 2021, doi:
10.1109/TII.2020.3015730.

[4] K. Kuru, ‘‘Planning the future of smart cities with swarms of
fully autonomous unmanned aerial vehicles using a novel frame-
work,’’ IEEE Access, vol. 9, pp. 6571–6595, Jan. 2021, doi: 10.1109/
ACCESS.2020.3049094.

[5] W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng, ‘‘When UAV swarm
meets edge-cloud computing: The QoS perspective,’’ IEEE Netw., vol. 33,
no. 2, pp. 36–43, Mar. 2019, doi: 10.1109/MNET.2019.1800222.

[6] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019, doi: 10.1016/j.sysarc.2019.02.009.

VOLUME 9, 2021 113847

http://dx.doi.org/10.1016/j.comcom.2020.10.023
http://dx.doi.org/10.1109/MWC.001.1900656
http://dx.doi.org/10.1109/TII.2020.3015730
http://dx.doi.org/10.1109/ACCESS.2020.3049094
http://dx.doi.org/10.1109/ACCESS.2020.3049094
http://dx.doi.org/10.1109/MNET.2019.1800222
http://dx.doi.org/10.1016/j.sysarc.2019.02.009


D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

[7] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, ‘‘Online computation
offloading and traffic routing for UAV swarms in edge-cloud computing,’’
IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 8777–8791, Aug. 2020, doi:
10.1109/TVT.2020.2994541.

[8] Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, ‘‘Response
delay optimization in mobile edge computing enabled UAV swarm,’’ IEEE
Trans. Veh. Technol., vol. 69, no. 3, pp. 3280–3295, Mar. 2020, doi:
10.1109/TVT.2020.2964821.

[9] H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, and Z. Han, ‘‘Edge com-
puting resource allocation for unmanned aerial vehicle assisted mobile
network with blockchain applications,’’ IEEE Trans. Wireless Commun.,
vol. 20, no. 5, pp. 3107–3121, May 2021, doi: 10.1109/TWC.2020.
3047496.

[10] L. Sun, L. Wan, and X. Wang, ‘‘Learning-based resource alloca-
tion strategy for industrial IoT in UAV-enabled MEC systems,’’ IEEE
Trans. Ind. Informat., vol. 17, no. 7, pp. 5031–5040, Jul. 2021, doi:
10.1109/TII.2020.3024170.

[11] A. Mukherjee, S. Misra, V. S. P. Chandra, and N. S. Raghuwanshi,
‘‘ECoR: Energy-aware collaborative routing for task offload in sustainable
UAV swarms,’’ IEEE Trans. Sustain. Comput., vol. 5, no. 4, pp. 514–525,
Oct. 2020, doi: 10.1109/TSUSC.2020.2976453.

[12] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, ‘‘Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,’’ IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2nd Quart., 2021, doi:
10.1109/COMST.2021.3058573.

[13] X. Hou, Z. Ren, J. Wang, S. Zheng, W. Cheng, and H. Zhang, ‘‘Dis-
tributed fog computing for latency and reliability guaranteed swarm
of drones,’’ IEEE Access, vol. 8, pp. 7117–7130, Jan. 2020, doi:
10.1109/ACCESS.2020.2964073.

[14] H. Zhang and L. Hanzo, ‘‘Federated learning assisted multi-UAV net-
works,’’ IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14104–14109,
Nov. 2020, doi: 10.1109/TVT.2020.3028011.

[15] U. Challita, A. Ferdowsi, M. Chen, and W. Saad, ‘‘Machine learn-
ing for wireless connectivity and security of cellular-connected UAVs,’’
IEEE Wireless Commun., vol. 26, no. 1, pp. 28–35, Feb. 2019, doi:
10.1109/MWC.2018.1800155.

[16] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, ‘‘Federated learning in mobile edge net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 22,
no. 3, pp. 2031–2063, 3rd Quart., 2020, doi: 10.1109/COMST.2020.
2986024.

[17] X. Lu, L. Xiao, C. Dai, and H. Dai, ‘‘UAV-aided cellular
communications with deep reinforcement learning against jamming,’’
IEEE Wireless Commun., vol. 27, no. 4, pp. 48–53, Aug. 2020, doi:
10.1109/MWC.001.1900207.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, Nov. 2018.

[19] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, ‘‘An introduction to deep reinforcement learning,’’ Nov. 2018,
pp. 219–354, vol. 11, no. 3, arXiv:1811.12560. [Online]. Available:
http://arxiv.org/abs/1811.12560

[20] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[21] H. A. A. Van Guez and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., Mar. 2016, vol. 30,
no. 1, pp. 2094–2100.

[22] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, ‘‘In-edge AI:
Intelligentizing mobile edge computing, caching and communication by
federated learning,’’ IEEE Netw., vol. 33, no. 5, pp. 156–165, Sep. 2019,
doi: 10.1109/MNET.2019.1800286.

[23] B. Brik, A. Ksentini, and M. Bouaziz, ‘‘Federated learning for
UAVs-enabled wireless networks: Use cases, challenges, and open
problems,’’ IEEE Access, vol. 8, pp. 53841–53849, Mar. 2020, doi:
10.1109/ACCESS.2020.2981430.

[24] S. Niknam, H. S. Dhillon, and J. H. Reed, ‘‘Federated learning for
wireless communications: Motivation, opportunities, and challenges,’’
IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020, doi:
10.1109/MCOM.001.1900461.

[25] Y. Wang, Z. Su, N. Zhang, and A. Benslimane, ‘‘Learning in the
air: Secure federated learning for UAV-assisted crowdsensing,’’ IEEE
Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1055–1069, Apr. 2021, doi:
10.1109/TNSE.2020.3014385.

[26] Z. Ullah, F. Al-Turjman, U. Moatasim, L. Mostarda, and R. Gagliardi,
‘‘UAVs joint optimization problems and machine learning to improve the
5G and beyond communication,’’ Comput. Netw., vol. 182, Dec. 2020,
Art. no. 107478, doi: 10.1016/j.comnet.2020.107478.

[27] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, ‘‘EC-SAGINs: Edge
computing-enhanced space-air-ground integrated networks for internet of
vehicles,’’ IEEE Internet Things J., early access, Jan. 19, 2021.

[28] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, ‘‘Joint deployment and
task scheduling optimization for large-scale mobile users in multi-UAV-
enabled mobile edge computing,’’ IEEE Trans. Cybern., vol. 50, no. 9,
pp. 3984–3997, Sep. 2019, doi: 10.1109/TCYB.2019.2935466.

[29] H. Wang, H. Ke, and W. Sun, ‘‘Unmanned-aerial-vehicle-assisted com-
putation offloading for mobile edge computing based on deep reinforce-
ment learning,’’ IEEE Access, vol. 8, pp. 180784–180798, Oct. 2020, doi:
10.1109/ACCESS.2020.3028553.

[30] B. Yang, X. Cao, C. Yuen, and L. Qian, ‘‘Offloading optimization in edge
computing for deep-learning-enabled target tracking by internet of UAVs,’’
IEEE Internet Things J., vol. 8, no. 12, pp. 9878–9893, Jun. 2021, doi:
10.1109/JIOT.2020.3016694.

[31] R. Li, X. Li, J. Xu, F. Jiang, Z. Jia, D. Shao, L. Pan, and X. Liu,
‘‘Energy-aware decision-making for dynamic task migration in MEC-
based unmanned aerial vehicle delivery system,’’ Concurrency Comput.,
Pract. Exper., pp. 1–18, Nov. 2020, Art. no. e6092, doi: 10.1002/cpe.6092.

[32] X. Zhang, J. Zhang, J. Xiong, L. Zhou, and J. Wei, ‘‘Energy-efficient
multi-UAV-enabled multiaccess edge computing incorporating NOMA,’’
IEEE Internet Things J., vol. 7, no. 6, pp. 5613–5627, Jun. 2020, doi:
10.1109/JIOT.2020.2980035.

[33] J. Zhang, L. Zhou, F. Zhou, B.-C. Seet, H. Zhang, Z. Cai, and J. Wei,
‘‘Computation-efficient offloading and trajectory scheduling for multi-
UAV assisted mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 2114–2125, Feb. 2020, doi: 10.1109/TVT.2019.2960103.

[34] A. Asheralieva andD. Niyato, ‘‘Distributed dynamic resourcemanagement
and pricing in the IoT systems with blockchain-as-a-service and UAV-
enabled mobile edge computing,’’ IEEE Internet Things J., vol. 7, no. 3,
pp. 1974–1993, Mar. 2020, doi: 10.1109/JIOT.2019.2961958.

[35] W. Liu, Y. Xu, N. Qi, K. Yao, Y. Zhang, and W. He, ‘‘Joint
computation offloading and resource allocation in UAV swarms with
multi-access edge computing,’’ in Proc. Int. Conf. Wireless Com-
mun. Signal Process. (WCSP), Oct. 2020, pp. 280–285, doi: 10.1109/
WCSP49889.2020.9299713.

[36] K. Yao, J. Chen, Y. Zhang, L. Cui, Y. Yang, and Y. Xu, ‘‘Joint com-
putation offloading and variable-width channel access optimization in
UAV swarms,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2020, pp. 1–6, doi: 10.1109/GLOBECOM42002.2020.9322587.

[37] K. Yao, Y. Xu, J. Chen, Y. Gong, Y. Yang, C. Yao, and Z. Du, ‘‘Dis-
tributed joint optimization of deployment, computation offloading and
resource allocation in coalition-based UAV swarms,’’ in Proc. Int. Conf.
Wireless Commun. Signal Process. (WCSP), Oct. 2020, pp. 207–212, doi:
10.1109/WCSP49889.2020.9299672.

[38] R. Yu and P. Li, ‘‘Toward resource-efficient federated learning in mobile
edge computing,’’ IEEE Netw., vol. 35, no. 1, pp. 148–155, Jan. 2021, doi:
10.1109/MNET.011.2000295.

[39] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[40] T. Nishio and R. Yonetani, ‘‘Client selection for federated learning with
heterogeneous resources in mobile edge,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), May 2019, pp. 1–7, doi: 10.1109/ICC.2019.8761315.

[41] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, ‘‘Deep gra-
dient compression: Reducing the communication bandwidth for dis-
tributed training,’’ Dec. 2017, arXiv:1712.01887. [Online]. Available:
http://arxiv.org/abs/1712.01887

[42] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Client-edge-cloud hierar-
chical federated learning,’’ 2019, arXiv:1905.06641. [Online]. Available:
http://arxiv.org/abs/1905.06641

[43] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar,
‘‘Expanding the reach of federated learning by reducing client
resource requirements,’’ 2018, arXiv:1812.07210. [Online]. Available:
http://arxiv.org/abs/1812.07210

[44] D. Li and J. Wang, ‘‘FedMD: Heterogenous federated learning via model
distillation,’’ in Proc. NIPS Workshop Federated Learn. Data Privacy
Confidentiality, Dec. 2019, pp. 1–8.

113848 VOLUME 9, 2021

http://dx.doi.org/10.1109/TVT.2020.2994541
http://dx.doi.org/10.1109/TVT.2020.2964821
http://dx.doi.org/10.1109/TWC.2020.3047496
http://dx.doi.org/10.1109/TWC.2020.3047496
http://dx.doi.org/10.1109/TII.2020.3024170
http://dx.doi.org/10.1109/TSUSC.2020.2976453
http://dx.doi.org/10.1109/COMST.2021.3058573
http://dx.doi.org/10.1109/ACCESS.2020.2964073
http://dx.doi.org/10.1109/TVT.2020.3028011
http://dx.doi.org/10.1109/MWC.2018.1800155
http://dx.doi.org/10.1109/COMST.2020.2986024
http://dx.doi.org/10.1109/COMST.2020.2986024
http://dx.doi.org/10.1109/MWC.001.1900207
http://dx.doi.org/10.1109/MNET.2019.1800286
http://dx.doi.org/10.1109/ACCESS.2020.2981430
http://dx.doi.org/10.1109/MCOM.001.1900461
http://dx.doi.org/10.1109/TNSE.2020.3014385
http://dx.doi.org/10.1016/j.comnet.2020.107478
http://dx.doi.org/10.1109/TCYB.2019.2935466
http://dx.doi.org/10.1109/ACCESS.2020.3028553
http://dx.doi.org/10.1109/JIOT.2020.3016694
http://dx.doi.org/10.1002/cpe.6092
http://dx.doi.org/10.1109/JIOT.2020.2980035
http://dx.doi.org/10.1109/TVT.2019.2960103
http://dx.doi.org/10.1109/JIOT.2019.2961958
http://dx.doi.org/10.1109/WCSP49889.2020.9299713
http://dx.doi.org/10.1109/WCSP49889.2020.9299713
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322587
http://dx.doi.org/10.1109/WCSP49889.2020.9299672
http://dx.doi.org/10.1109/MNET.011.2000295
http://dx.doi.org/10.1109/ICC.2019.8761315


D. Rahbari et al.: Fast and Fair Computation Offloading Management in a Swarm of Drones

[45] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun, L. Do, and
M. Kopp, ‘‘Asynchronous federated learning for geospatial applications,’’
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases.
Cham, Switzerland: Springer, Sep. 2018, pp. 21–28.

[46] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konečný, S. Mazzocchi, H. B. McMahan, T. Van Overveldt,
D. Petrou, D. Ramage, and J. Roselander, ‘‘Towards federated learning
at scale: System design,’’ 2019, arXiv:1902.01046. [Online]. Available:
http://arxiv.org/abs/1902.01046

[47] J. S. Ng, W. Y. B. Lim, H.-N. Dai, Z. Xiong, J. Huang, D. Niyato,
X.-S. Hua, C. Leung, and C. Miao, ‘‘Joint auction-coalition formation
framework for communication-efficient federated learning inUAV-enabled
internet of vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4,
pp. 2326–2344, Apr. 2021, doi: 10.1109/TITS.2020.3041345.

[48] W. Y. B. Lim, J. Huang, Z. Xiong, J. Kang, D. Niyato, X.-S. Hua,
C. Leung, and C. Miao, ‘‘Towards federated learning in UAV-enabled
internet of vehicles: A multi-dimensional contract-matching approach,’’
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5140–5154, Aug. 2021,
doi: 10.1109/TITS.2021.3056341.

[49] S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, ‘‘Battery-
constrained federated edge learning in UAV-enabled IoT for B5G/6G
networks,’’ Phys. Commun., vol. 47, Aug. 2021, Art. no. 101381, doi:
10.1016/j.phycom.2021.101381.

[50] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275–1296, Jun. 2017, doi: 10.1002/spe.2509.

[51] Q. Wu, Y. Zeng, and R. Zhang, ‘‘Joint trajectory and communica-
tion design for multi-UAV enabled wireless networks,’’ IEEE Trans.
Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018, doi:
10.1109/TWC.2017.2789293.

[52] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz,
‘‘Comprehensive energy consumptionmodel for unmanned aerial vehicles,
based on empirical studies of battery performance,’’ IEEE Access, vol. 6,
pp. 58383–58394, Oct. 2018, doi: 10.1109/ACCESS.2018.2875040.

[53] S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi,
‘‘Context-aware multi-objective resource allocation in mobile
cloud,’’ Comput. Elect. Eng., vol. 44, pp. 218–240, May 2015, doi:
10.1016/j.compeleceng.2015.02.006.

[54] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, ‘‘Highly reli-
able architecture using the 80/20 rule in cloud computing datacen-
ters,’’ Future Gener. Comput. Syst., vol. 77, pp. 77–86, Dec. 2017, doi:
10.1016/j.future.2017.06.011.

DADMEHR RAHBARI received the B.Sc. degree
in computer engineering from Iran University of
Science and Technology, Iran, in 2007, the M.Sc.
degree in artificial intelligence from IAUM, Iran,
in 2010, and the Ph.D. degree in information secu-
rity from the Department of Computer Engineer-
ing and Information Technology, University of
Qom, Iran, in 2020. From 2008 to 2020, he was
a designer, a programmer, and a consultant in soft-
ware engineering and information technology with

companies, and a Lecturer and a Researcher with UAST, IAU, TVU, PNU,
and MSRT universities in Iran. He is currently a Postdoctoral Researcher
with the Communication System Research Group, Thomas Johann Seebeck
Department of Electronics, School of Information Technologies, Tallinn
University of Technology, Estonia. His major research interests include
resource management and security in distributed computing and machine
learning. He has been invited to be a program committee member and an
editorial board member of some international conferences and journals.

MUHAMMAD MAHTAB ALAM (Senior Mem-
ber, IEEE) received the M.Sc. degree in electrical
engineering from Aalborg University, Denmark,
in 2007, and the Ph.D. degree in signal processing
and telecommunication from the INRIA Research
Center, University of Rennes1 France, in 2013.
He joined Swedish College of Engineering and
Technology, Pakistan, in 2013, as an Assistant Pro-
fessor. He did his postdoctoral research at Qatar
Mobility Innovation Center, Qatar, from 2014 to

2016. In 2016, he joined as the European Research Area Chair and an
Associate Professor with Thomas Johann Seebeck Department of Elec-
tronics, Tallinn University of Technology, where later he was elected as
a Professor, in 2018. Since 2019, he has been the communication sys-
tems research group leader. He has more than 15 years of combined aca-
demic and industrial multinational experiences while working in Denmark,
Belgium, France, Qatar, and Estonia. He has several leading roles as PI in
multimillion Euros international projects funded by the European Commis-
sion (H2020-ICT-2019-3), ‘‘951867,’’ and NATO-SPS (G5482), Estonian
Research Council (PRG424), and Telia Industrial Grant. He is the author or
coauthor of more than 100 research publications. He is also a Contributor in
two standardization bodies (ETSI SmartBAN and IEEE-GeeenICT-EECH),
including ‘‘Rapporteur’’ of work item: DTR/SmartBAN-0014 and Applying
SmartBAN MAC (TS 103 325). His research interests include wireless
communications—connectivity, NB-IoT 5G/B5G services and applications,
and low-power wearable networks for SmartHealth.

YANNICK LE MOULLEC (SeniorMember, IEEE)
received the M.Sc. degree from the Université
de Rennes I, France, in 1999, and the Ph.D.
and HDR (accreditation to supervise research)
degrees from the Université de Bretagne Sud,
France, in 2003 and 2016, respectively. From
2003 to 2013, he successively held a Postdoctoral
Researcher position, an Assistant Professor posi-
tion, and an Associate Professor position with the
Department of Electronic Systems, Aalborg Uni-

versity, Denmark. He then joined the Thomas Johann Seebeck Department
of Electronics, Tallinn University of Technology, Estonia, first as a Senior
Researcher, from 2013 to 2016, and has been on a professorship, since
2017. He has supervised or co-supervised more than 50 M.Sc. students and
11 Ph.D. students. He has been involved in more than 20 projects, including
five as a PI, a co-PI, or a co-main applicant; one such notable project was
the H2020 COEL ERA-Chair project, from 2015 to 2019. His research
interests include embedded systems, reconfigurable systems, the IoT, and the
application thereof. He is a member of the IEEE Sustainable ICT Technical
Community and the IEEE Circuits and Systems Society.

MAKSIM JENIHHIN (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer engi-
neering from Tallinn University of Technology,
in 2004 and 2008, respectively. He is currently a
Professor of computing systems reliability with the
Department of Computer Systems, Tallinn Univer-
sity of Technology. He has published more than
120 research papers on these topics and served
in executive committees for a number of IEEE
conferences, including the Program Chair role for

ETS, DDECS, and NORCAS; a guest editor for journals; and a PC member
for many scientific events. He participated in numerous EU research projects
in FP6, FP7, H2020, and COST frameworks. He is also a Project Coordinator
for H2020 MSCA ITN RESCUE (2017–2021)—Interdependent Challenges
of Reliability, Security, and Quality in nanoelectronic systems design, and
a Founder of the Biannual European–Latin American Summer School on
Design Test and Reliability. His research interests include nanoelectronics
lifetime reliability and manufacturing test topics, deep learning methods and
HW architectures, electronic design automation (EDA) tools and method-
ologies for computing systems modeling, verification and debug, and inter-
ference analysis of functional and extra-functional design aspects, such as
resilience and security.

VOLUME 9, 2021 113849

http://dx.doi.org/10.1109/TITS.2020.3041345
http://dx.doi.org/10.1109/TITS.2021.3056341
http://dx.doi.org/10.1016/j.phycom.2021.101381
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1109/TWC.2017.2789293
http://dx.doi.org/10.1109/ACCESS.2018.2875040
http://dx.doi.org/10.1016/j.compeleceng.2015.02.006
http://dx.doi.org/10.1016/j.future.2017.06.011

