
Received July 21, 2021, accepted August 4, 2021, date of publication August 11, 2021, date of current version August 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3103930

A Video Game-Crowdsourcing Approach to
Discover a Player’s Strategy for Problem
Solution to Housing Development
ARTURO SILVA-GÁLVEZ 1, RAÚL MONROY 2, JOSE E. RAMIREZ-MARQUEZ 3,
AND CHI ZHANG4
1School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico
2School of Engineering and Science, Tecnologico de Monterrey, Ciudad López Mateos, Mexico City 52926, Mexico
3Enterprise Science and Engineering Division, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
4School of Economics and Management, Beijing University of Technology, Beijing 100124, China

Corresponding author: Arturo Silva-Gálvez (artsg130994@gmail.com)

This work was supported in part by the Consejo Nacional de Ciencia y Tecnología Políticas, and in part by the Instituto Tecnológico y de
Estudios Superiores de Monterrey.

ABSTRACT The Video game-Crowdsourcing model to recollect data motivates people to participate by
entertaining them. Research showed that the solutions players make in this model are competitive against
experts in the area. Yet, the studies in the area focus onmimicking people’s behavior, including theirmistakes.
Therefore, we use a Video game-Crowdsourcing to model a problem of interest to find strategies for it.
To describe matches from the video game we created, we designed a representation that simplifies the
discovery of strategies. Our experimentation compares high score matches against low score ones to find
the best behaviors. We played 13 matches employing a known strategy for the problem to validate the
methodology. Then, we applied the methodology to matches from players. The results suggest that extracting
sub-sequences is a process to find strategies and that we can use them to design algorithms to improve current
algorithmic solutions for that problem.

INDEX TERMS Crowdsourcing, strategy, video game, housing development problem (HDP).

I. INTRODUCTION
Nowadays, it is impossible to picture a life without technol-
ogy; this fact gives feedback to Big Data. Every day, people
generate a large amount of information through sensors in
different locations connected to the internet [1]; all of it
composes a Big Data collection. Such data can be analyzed
with tools design for Big Data and enhance decision-making
processes. From this idea surged a concept called Crowd-
sourcing. Instead of collecting data that generates daily,
crowdsourcing achieves solutions using the skills of a huge
crowd of volunteers [2], [3]. Its objective is to broadcast a
specific problem to individuals with certain knowledge [4].
A wide range of applications uses crowdsourcing, from iden-
tifying solutions for unsolved problems to building virtual
prototypes or 3-D designs [4]. Their objective is to detect
novel, high-quality solutions; the range of applications it
can cover is extensive. Some recent applications include
smart cities [5], genetic variability [6], and Natural Language

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

Processing research employing tools like Amazon Mechan-
ical Turk [3]. Very rarely, crowdsourcing is used to uncover
the decision-making process and strategizing that users fol-
low during problem-solving. Extracting this knowledge and
discovering strategies is of paramount importance if one aims
to improve the general solutions to problems. Those solutions
are applicable in many contexts.

In a crowdsourcing task-solving environment, it is vital
to have active participants; therefore, creating the need to
motivate them. Studies suggest various reasons for people
to participate in a platform [7]. Going from giving money,
entertainment, networking, or skill training, a crowdsourcing
strategy has several options to attract people [7]. Given the
popularity of video games, a well-known source of enter-
tainment, recent studies in crowdsourcing have used them
to attract more people to their platforms [8]–[10]. This
approach, we call Video game-Crowdsourcing, seeks to give
people satisfaction while participating in an experiment [7].
In addition to usual video games, Video game-Crowdsourcing
collects data from a match according to an objective; the pri-
mary goal of a Video game-Crowdsourcing is not to entertain

114870 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0394-5555
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0002-0965-1446
https://orcid.org/0000-0003-3181-4480


A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

the player. These types of approaches have shown that a
crowd can obtain solutions competitive against experts [10].

Areas such as health, exercise, education, commerce, envi-
ronmental behavior, among others [7] have applied Video
game-Crowdsourcing for some problems. The type of video
game depends on the application and the target crowd.
In tasks where the crowd performs predictions or large quan-
tities of homogeneous tasks, studies commonly use a scor-
ing or leaderboard games [7]. Different applications, like
problem-solving or content generation, use more complex
mechanisms to entertain participants [7].

Existing research in the use of Video game-Crowdsourcing
has centered around player modeling. They attempt to model
the behavior of a user while gaming. There are many aspects
of what counts as player behavior. One such aspect is how
a player navigates in a game [11]. This is often carried out
through visual models, such as the use of heat maps [12];
the definition of regions where most actions happen [13]; the
use of one-hot encoding [14]; or the use of traces [15]. Other
applications for player modeling aim to create human-like
agents, which may act either as an associate or as an
opponent [16]–[21].

In this paper, we are interested in the strategy that a player
follows while finding a successful or competitive solution to
a problem; this is a new paradigm that prioritizes solution and
strategy development rather than the solution itself. Themoti-
vation behind our work is to help improve existing algorith-
mic solutions to a problem. To take a few steps towards that
goal, we have selected a key part of the HousingDevelopment
Problem (HDP) [22], [23]. In our version of HDP, a player has
a piece of land and a set of different house types. The player’s
job is to place as many houses as possible, under the restric-
tion that the houses ought to be connected by a road; this ver-
sion of the HDP shares characteristics with the well-known
two-dimensional Bin Packing Problem (2DBPP). We have
developed a video game that crowdsources strategies from
the HDP, giving the players entertainment as a reward. The
application is a web page that stores the decisions of a player
in real-time. With that information, we can reconstruct the
whole match.

To discover player strategies, we have abstracted out a
typical match, where the player may place a house or a
road in space S ⊂ R2 to one limited to a finite number of
places, using a mesh. Furthermore, we represent a game as
a sequence of plays; each play denotes the placement of a
house (complying with the restriction of connectivity) plus a
displacement to a position where the player will either place
the next house or finish the game. Since a match is now a
sequence of plays, or a sequence of symbols, where each
symbol denotes a single play, we have used Sequitur [24].
Sequitur extracts sub-sequences of plays of frequent occur-
rence, giving us a grammar structure through which we may
express a player strategy.

Using this approach, we have discovered strategies used
by players who achieved high scores. Some strategies resem-
ble ones proposed in the literature [25]. Others seem to be

variants thereof but have not been reported so far. Interest-
ingly, matches from players who did not do good at our
HDP have little or no grammar structure when represented
through our abstraction. As a result, these matches contain no
pattern that can be allegedly said to convey a strategy. While
there is a novelty in the strategies we have found, evaluating
their significance, for example, at solving the general 2DBPP,
is beyond the scope of this paper. Here we focus on the
process of finding strategies from players.

The ultimate aim of this research is the identification of
novel and powerful heuristics for the solution of interesting,
but often complex, real problems. This paper takes some
important steps towards this end. In summary, our research
makes three main contributions:

1) An abstract representation of a video match to express
a player’s match as a sequence of plays.

2) A means to identify the strategy, if any, followed by a
player in a match. Good players follow a clear strategy
through which they achieve a high score. We have
identified a strategy not reported on in the literature.

3) A video game representation for the HDP.

The rest of our paper is organized as follows: In Section II,
we show the related work. In Section III, we describe the
problem of interest we chose to work with, approaches to
solve it, and other similar problems. Section IV presents the
Video game-Crowdsourcing model we designed. Section V
explains our reasons to represent a match with a specific
method and shows the steps to transform one match of our
video game into it. In Section VI, we detail the methodology
we followed to find the strategies players use in the video
game, and we discuss the results of extracting strategies.
Section VII discusses our results. Finally, in Section VIII,
we describe the conclusions and guidance for future research
derived from this work.

II. RELATED WORK
A. VIDEO GAME-CROWDSOURCING
Video games are well known for being ludic. Each year,
people spend millions of hours playing video games [26] for
reasons that include procrastination and stress relief, among
others. When used for crowdsourcing, video games make
people contribute to achieving solutions to a problem without
even being aware of it.

Video game-Crowdsourcing has applications in different
areas involving cybersecurity, computer vision, among oth-
ers. For example, Peekaboom [27] is a web video game that
helps the construction of computer vision algorithms gath-
ering massive amounts of data from many people. Further,
players have reported spending around 12 hours daily on
Peekaboom. Not only has Video game-Crowdsourcing been
employed to collect a paramount amount of data, but also
to collect solutions with a quality comparable to that of an
expert; an example of this is image tagging, as documented
in [10], [28]. In particular, Bio-Games [10] has been used to
ask the crowd to label images of red blood cells; here, partic-
ipants got an error of 2% compared to the result of experts.

VOLUME 9, 2021 114871



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

Bio-Games has also been used to facilitate the process of
training medical students for disease classification.

Other studies combined the knowledge of people to
improve the performance of machine learning models.
EyeWire is a video game that maps a three-dimensional
reconstruction of neurons from the retina into images of
two-dimensional slices [9]. The objective of the video game
is to follow the trace of a neuron. To do so, the player can
color pixels near a neuron or in a new place. Since the video
game does not know the correct answer, it needs to compare
different solutions to return a score. If a player colors spaces
that many others did, the match will obtain a high score.
The purpose of this video game is to aid a convolutional
neural network train to detect neural boundaries. This net-
work encourages the players to focus their attention on places
where the algorithm is not confident of its answer.

Another application of Video game-Crowdsourcing is
to complement algorithmic solutions to a problem. This
approach has been used, for example, in the context of the
robust Facility Location Problem (FLP) [8]. FLP consists of
a set of demand centers that represent potential locations for
opening facilities. The objective is to find places to open
facilities while minimizing the opening cost and the cost
associated with a customer traveling to that facility. The
robust version requires a good response when the failure of
a facility occurs.

A problem that crowdsourcing applications face is the
issue of unmotivated participants. A video game, Cell Evo-
lution, introduced a cooperative crowdsourcing model using
blockchain technologies to study crowd intelligence [29].
There, players need to develop a single cell. However,
the world of this video game depends on millions of cells. For
example, the world is affected negatively if a player decides to
upload a toxic cell. This paper studies the interaction among
people but concludes that motivational effects are hard to
measure.

One method to overcome this obstacle in crowdsourcing
approaches is by separating excellent ideas from mediocre
ones. To do that, methods like Majority voting [30], Bag of
Lemons [30], and the Diverse Bag of Lemons (DBLemons)
strategies [30] help ranking solutions to avoid the ones of
unmotivated participants.

B. MATCH REPRESENTATION
A classic game model [31] definition divides a video game
into six components: (1) The rules that define the game,
(2) a quantifiable outcome, (3) scores assigned to the out-
come, (4) player actions to get an outcome, (5) attach-
ment from the player to the outcome, and (6) negotiable
consequences.

We are interested in identifying the strategy a (successful)
player uses to obtain a good score. However, extracting infor-
mation from a game is not an easy task. The issue is the size
of the play space a player has in most video games. Research
focuses on providing representation for a match to reduce this
space [11]–[13].

One method to represent a video game consists of divid-
ing the map of the into regions. Cavadenti et al. [13] pro-
posed one version of it for a single map video game called
The Ancients 2 (DOTA2). The representation locates spaces
where most of the player’s actions happen and selects them
as regions. This methodology can mine frequent patterns
of winning matches and explain the difference between a
player and a reference behavior model from the best players.
A recent study employs an algorithm called TRACE [32] to
represent a match for a similar video game [15].

A representation of a match abstracts details of the video
game that may hide a player’s strategy. It gives a structure to
the steps of a person. We can consider a match as a sequence
of plays. Here, the strategy should be observable through the
complete sequence for that match. The structure of a strategy
for a video game can be decomposed in many different ways;
studies about player modeling think of it as a set of rules.
One method to explain it consists of using descriptors, called
patterns. Patterns can be expressed as conditionals to evaluate
if they are present or not in a match [33]. As an example,
a pattern can describe a match where the user played action 1
(A1) after action 4 (A4); it will be A4→ A1 = True.

C. PLAYER MODELING
Playermodeling is concernedwith improving the abilities of a
computer by generating algorithms capable of following the
behavior of a player under a video game environment [34].
There are three approaches in which an algorithm can mimic
a player to achieve the final goal [34].

1) Model actions: The algorithm links the state of a game
together with a set of applicable plays; then, it selects
one via a likelihood function. This approach is similar
to a greedy algorithm, in which the algorithm does not
evaluate anything but the current state [16], [35].

2) Model based on tactics: Those models have several
plans that complete a local goal, making the algorithm
follow a series of actions until it reaches the goal. Then
the model will evaluate which tactic to use next. The
algorithm keeps using tactics until it fulfills the final
goal [36].

3) Model based on strategies: The algorithm uses tactic
models and features to organize the distinct tactics and
order the series of actions that will reach the final
goal [18].

Modeling strategies is one of the possible approaches
researchers in the area use. Although the objective is the
same, existing applications that use a model based on strate-
gies are different. They can predict the initial strategy [37],
generate the strategy [20], [36], predict the strategy of the
opponent [19], or finish amatch achieving specific goals [38].

In the literature, we can find algorithms that model the
strategy by predicting actions given a state in the game.
Some of them use machine learning to represent a strat-
egy [39]–[42]. Those models consist of a set of rules: R =
{(s0, a0, e0), (s1, a1, e1), . . . , (sn, an, en)} where si is a state

114872 VOLUME 9, 2021



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

of the video game, ai is the action to make in that state, and ei
is the effect that occurs to the current state by performing ai.
It is important to notice that ei might not be explicit in these
models, but every action ai they take at state si produces the
new state ei. At this set of rules, two triplets can be the same,
and a rule may not produce a new state existing at another rule
from the set. The first statement indicates that in the set of
rules it can exist two triplets such that (si, ai, ei) = (sj, aj, ej),
for i 6= j. The second statement says that a rule r in the set R
can affect ei such that no rule element of R has a state s = ei;
in that case, the algorithm uses a method to find the closest
state of a rule to the unknown one and make its action.

One research that uses this method works in a robot soccer
game [20]; they define a rule with specific descriptions of
the objects on the map. The state involves three components:
the coordinates of the player’s robots, the opponent’s robots,
and the ball. The action tells the coordinates of where the
player’s robots should move. At every step, the algorithm
compares the current game field situation with the strategy’s
rules to select the closest one. Since the algorithm focuses on
predicting actions, a rule in the strategy may not connect with
others; there might also be duplicate ones. Using a dataset of
matches, they extract sequences of game situations, and with
a clustering algorithm, they visualize the relations between
them. Knowing the different game situations, they believe it
is possible to improve strategies for robot soccer games.

Another method to represent a strategy focuses on the
whole plan; they do not have the two statements of the
models that predict actions. The set of rules for this
type of method consists of actions and states R =

{(s0, a0), (s1, a1), . . . , (sn, an)}. The difference is that the
actions do not produce an unknown state, and the set does
not have repeated rules. Therefore, every action a of a rule in
R produces a state s of one rule r in R; also there is no pair
(si, ai) = (sj, aj), for i 6= j and i, j taking values from 1 to
n. Nevertheless, this second approach might not be viable for
every video game. For multi-agent video games, the player
has no full control. For example, in Super Mario Bros [39],
the objects and the map are not always the same, and the
player cannot modify those variables, then it is necessary to
decide the action in real-time. In different video games, like
puzzle-type, the user is the only one controlling the features.
Such games allow the use of whole plan models.

One thing these models have in common is that they define
a strategy with a set of rules. Each rule consists of a con-
dition that evaluates one state of the game and the action
to proceed if the condition holds. To obtain that set, they
follow one of two approaches. In the first one, they start
with an initial set of rules, selected based on experience,
and use a database with matches to train their model [18],
[36]. The second one uses a database of experts to train their
algorithm [19], [20], [37], [38].

A group of video games that attracted a lot of research is
Real-time strategy games. In them, players control a set of
units distributed on a map, and actions occur in real-time,
meaning that they cannot store information during turns [43].

Existing studies apply Bayesian approaches to predict initial
strategies [37], evolutionary algorithms to define the behavior
according to a set of rules [18], and Case-Injected Genetic
algorithm to generate strategies [36]. These studies establish
the rules based on experience or a structure that guides the
video game. Another research by Ontañon et al. [38] builds a
framework for Wargus, a video game. To train their system,
they use traces from experts with the actions made to com-
plete specific goals. At execution time, it creates a plan tree.
That tree consists of goals it wants to fulfill and the actions
needed to do it.

A more recent approach uses a video game of a 2DBPP to
get human players [16]. The study got ten players and build
decision trees using their matches to create strategies. They
solve the problem by creating a plan that packs one item at
a time. However, they do not make a distinction between the
solution of the players. The problem is that they can create
a heuristic using a solution that performed poorly against the
others.

III. THE HOUSING DEVELOPMENT PROBLEM
The main goal of this document is to provide insight into
strategies people apply to a problem of interest. To be of
interest means that there are currently people working on it
and that a single method does not guarantee the best solution
for all instances. The one we found suitable for this study is
the Housing Development Problem (HDP). It consists of sup-
plying people with affordable houses. Variations of the HDP
problem might include different features an architect needs
to consider for this objective, like environmental, aesthetics,
or communication.

FIGURE 1. HDP aims to comply with the supply of affordable houses. The
main goal is to have as many houses as possible on the available land for
building a residential area. The real scenario considers features like
aesthetics, environment, and communications.

The HDP surged because in high-demand areas at some
places in the United States [44] or cities like Hong Kong [45],
there are not enough affordable multifamily housing to meet
the demand. This problem is of interest to the architecture
community. Their job is to ensure that the environment in
which people live satisfies their needs, using the land as best
as possible. When residents are satisfied with the place they
live, their quality of life improves [46]. To create a living
environment, the architect must analyze distinct features like

VOLUME 9, 2021 114873



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

the number of houses, access to the different zones of the
complex, and other things that can come into their mind.

Recent studies showed interest in distinct aspects of this
problem, like satisfaction or environmental issues [47], [48].
Other studies, more related to ours, evaluated different ways
of housing affordability [22]. There, the results suggest that
increasing the development of moderately priced houses will
be affordable over time. What drives these studies is the goal
of supplying people with inexpensive housing in walkable
neighborhoods [22].

A generalization of the HDP is the Spatial Configuration
problem; it is a problem all physical designs must face.
It consists of finding the best locations and dimensions of
a set of interrelated objects that give the best performance
to the design [23]. Examples of this optimization objective
include component packing, route path planning, process and
facilities layout design, and architectural layout. The goal of
the architecture layout is to find the best location for places
in a building restricted to certain conditions [49]; the HDP is
similar, but its objective involves the objects in a residential
complex.

After analyzing the HDP, we saw that it shares character-
istics with another problem of interest to the scientific and
industrial communities. The problem is the 2DBPP. There
exist different types of Bin Packing Problems; each of them
has its characteristics. The classical 2DBPPs consist of a
set of rectangular items that need to be packed into 2D
bins [50]. One variant of the problem works with irregular
shape items [51]. A recent study tackles this problem with an
approach using video games to train decision trees and obtain
Human-Derived-Heuristics [16].

IV. VIDEO GAME DESIGN
Before making the Video game-Crowdsourcing for the HDP,
we need the components that describe the HDP. Building
residential areas involve several aspects of urban planning
and design, production cost, construction law, lack of infras-
tructure, municipal allocation, taxation, financing, among
others [52]. All the characteristics can turn this problem into
one that is not easy for everyone to understand due to the num-
ber of decisions available. The benefit of this crowdsourcing
model is entertainment. Therefore, participants need to under-
stand and enjoy the video game. Hence we will focus on one
of the many aspects a HDP needs to optimize, maximizing
the total number of houses, given the land for construction,
subject to restrictions of connectivity. The variables we need
to consider to simulate this problem are the available land for
construction, the models of houses, and the roads that connect
the houses.

A limitation on architectural problems like Housing Devel-
opment is the available land for construction [53]; the initial
shape of the land depends on the project. Another factor
that affects the area available for houses involves the distinct
objects that the architect includes in the residential complex;
they can be trees, lakes, parks, among others. Changing the
shape of the land in the video game can abstract other objects.

This paper, nevertheless, considers just one figure for the
land. Evaluating the strategies on different land shapes is
beyond the scope of the study.

A residential complex needs connectivity between its
buildings; it must have one entrance linked to all the houses.
The entry allows people to get to their homes either by car
or by walking. Assuming that there is just one access, all the
houses are connected. The video game uses this assumption to
make the player link all the buildings between them. A player
can use an object that represents a road tomeet the restrictions
of connectivity. The video game, however, does not model the
entrance.

A. INITIAL STATE
The initial state of the video game presents the player with
two objects. One is a fixed polygon; the other one can
change between four options. The fixed polygon represents
the available land to place houses; the other object repre-
sents the objects the player can put. The first three possi-
bilities the player has are different polygons; they simulate
houses. The fourth option is a rectangular figure that repre-
sents a road. The player can choose to place any of these four
objects at any time during a match.

B. GAME PLAY
The objective of the video game is to maximize the num-
ber of non-overlapping houses (x) in the land. Equation (1)
represents the goal of the HDP in the video game without
the restriction of connectivity. Here y is the number of roads
and al , ahi and ar the area of the land, a house, and a road.
The video game uses a function that ensures a house object
is touching the polygon of a road and that all the road objects
in the land create a bigger one to verify the restriction of
connectivity.

max
x

s.t. : al − xahi − yar ≥ 0 (1)

C. EVALUATION FUNCTION
The evaluation function needs to be oriented to the goal of the
Video game-Crowdsourcing model; our goal is to maximize
the total number of houses. That will encourage players to
focus their solutions on the objective we have. Therefore,
the score in the video game depends just on the number of
houses in the solution. Such a solution consists of the final
set with the roads and houses in the land, knowing they all
meet the restriction of connectivity.

D. INTERFACE
The implementation of the Video game-Crowdsourcing
considered two points to select the tools. The first one
is the ease of distribution among people, which we
resolved using a web page, a media capable of getting
into a large group of people. The project is avail-
able in a Github repository (https://github.com/ArturoSG3/
Bin-Packing-Videogame). To create it, we used Phaser2,
a framework of Javascript that has functions for video game

114874 VOLUME 9, 2021



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

design. The result of the program is the interface presented
in Figure 2.

FIGURE 2. Ongoing match of the video game, the red figure represents a
house placed in the land; the gray one is a road. The player needs to
move the pink figure to the green square to add another red figure. The
player must place as many red figures as possible.

The second point is the data capture in real-time; for
this, we need a platform capable of storing information.
Javascript can use Cloud Firestore, a NoSQL database from
Firestore that works in real-time. It receives the informa-
tion on every play a player performs. The tools we selected
meet the requirements of the two points we need for the
Video game-Crowdsourcing model. For a more detailed
description of the video game, follow this link to download
a short video (https://github.com/ArturoSG3/Bin-Packing-
Videogame/blob/gh-pages/assets/Houssle.mp4).

V. MATCH REPRESENTATION
We designed our video game to store all the information
required to replay every match held by a player. One match
from the video game consists of all the plays the person
made. Furthermore, each play contains four components: the
action, the options are: orient (O), place (P) or eliminate
(E); the object, that can be a house (H ) or a connection (C);
the position represented as a coordinate in the land; and the
orientation of the object.

Obtaining a strategy from a player’s match is not straight-
forward because the strategy is reified throughout all the plays
of that match. The action space of our video game is huge;
there are too many options for a play. Those possibilities
make it hard to discover a strategy using our video game
representation. To reduce the play’s space, we have abstracted
out much of the detail from a video game’s match.

A. SEQUENCE OF HOUSES
In the first step of abstraction, we aim to section the land to
build a new representation. We split it using a 10×10 grid of
bricks of the same size. The reason behind this amount is the
number of houses that can be inside one brick. Each one has
enough space to fit one house and a piece of road that serves
as connectivity to the neighborhood.

Using the grid division, we can transform the coordinate
space of the video game. The new one changes a coordinate
(x, y) into (i, j), where x and y are the coordinates in the land,

and i and j are integer numbers in discrete space. The grid
defines the space for i and j; i is the number of column, and
j is the row. Then, we transform the position parameter of all
elements in the match into the grid coordinates.

We think that the strategy is in the order a player placed
the houses regardless of the orientation and figure of one
house. Therefore, we can abstract more details from the
sequence. The sequence includes actions for eliminating
or orienting objects and connectivity plays. Following our
hypothesis, we can remove those plays from the sequence.
The ones remaining are one option for the action, place,
and one for the type, house; additionally, we can remove
the orientation. An element in the transformed sequence is
[Place,House, (i, j)]; we will represent them just with the
position for simplicity. Table 1 shows an example of the
abstractions at this step, applied to a sequence of two plays.

TABLE 1. Sample of two plays using the original representation of the
video game, the grid coordinates, and the sequence of houses.

B. REPRESENTING A MATCH USING
A SEQUENCE OF MOVEMENTS
To reduce the play’s space even further, we introduced a
new relation between two plays called a movement. Such
abstraction needs a complete match. A movement consists of
two consecutive plays, both in different bricks of the grid.
It starts capturing when the player positions the first house;
then, the player moves the pointer to the place of the second
house; at last, placing the second house. The movement
denotes the displacement of going from the first house to
the second one. To describe the complete match, we capture
every displacement that occurs in a match. There are four
different types of movements we defined for this research:
• N and S movements: Represented with the cardinal
points. These movements are detected when there is a
row change. They are vertical movements.

• E and W movements: Represented with the cardinal
points. These movements are detected when there is a
column change. They are horizontal movements.

• Diagonal movements: Represented with the cardinal
points. These movements are detected when the amount
of column and row change are the same. (NW, SW, NE,
and SE).

• Special movements: These movements occur when a
player moves and next reaches a border. The name has
a + sign depending on the edge reached. For example,
a NW+ movement happens when the player places the
next house in a brick that can be reached by going north,
N , one time and thenmoves to thewest asmany bricks as
required to reach the border. The column and row change

VOLUME 9, 2021 114875



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

can be different; the player can move one row and nine
columns, but they must end in a border. There are also
movements like N+W+, which are when they reached a
corner. Figure 3 shows an example of a NW+.

FIGURE 3. Images of how movements look in the video game. The
difference between a) and S movement is the order of the first
and second house, same as b) and W movement. For the diagonal and
special movements, the name will change depending on the cardinal
direction.

If a movement does not belong to any of the classes listed
above, it will be labeled ‘‘unknown’’. For example, when a
player moves a different number of rows than columns with-
out reaching a border. Themovement cannot be denoted using
the symbols defined above. So it is tagged as ‘‘unknown’’,
meaning that there might be strategies that our representation
cannot express.

To express a match with movements, we can transform the
ordered pairs from the abstract sequence into the four types
of movements or an unknown one. However, a movement
requires two plays. To define a complete match, we need to
describe the first and last movements. The first play does
not have a preceding one; we use a different attribute to
represent it. The video game stores the first house play as an
attribute with three different values: corner, border, or center,
depending on the square it lies in. We use this attribute to
define the first movement in this representation. The last
play does not have a subsequent one. To represent the final
movement, we use a null one. However, we believe that the
strategy is in the repeated sub-sequences of the match. Since
both the first and last movements are unique, they will never
be in a repeated sub-sequence. For that reason, we abstracted
those two movements.

For our representation, we took advantage of the similari-
ties between the HDP and the 2DBPP. Our representation can
detect all the movements of Bottom-Left (BL). In the video
game, a player that uses this strategy begins placing a house
on the bottom left corner of the land. The next movements
consist of putting houses to the right of the previous one.

FIGURE 4. Example of Bottom-Left in our video game. Figure a) is how it
would look in the video game. Figure b) shows how we interpret the
movements. Each circle represents a house; their number is the order of
placement. The arrows represent a movement, and their name is
according to the groups we defined.

FIGURE 5. The approach begins by collecting matches from our video
game-crowdsourcing in a database. Then, we transform each match into
our representation and perform a filter using pareto’s principle. The next
step is to obtain patterns with sequitur. Finally, we perform pattern
filtering to select the strategies that characterize the best players.

When there is no more space for another one to the right,
the player searches for the bottom-most left available posi-
tion. The player repeats these actions until there is no more
space to place another house. Figure 4 shows an example
of how the BL strategy works for this video game and its
representation in a movement sequence.

VI. EXPERIMENTS AND RESULTS
In this section, we describe the results of applying our
method to different matches. Our experimentation had two
parts validation and testing. It is worth mentioning that those
names are not related to the terms used for machine learning.
Figure 5 summarizes our approach to detect video game
player strategies.

A. DATABASE
Our sample consists of volunteers between 20-60 years with
at least a degree in high school. We obtained 113 matches

114876 VOLUME 9, 2021



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

with scores from 4 to a maximum of 24. With a confidence
level of 95% and an error of 8%, we calculated the size of the
sample (n) we need as follows:

n =
1.952 · 0.2 · 0.8

0.082
≈ 97 (2)

Since our database contains more than 97 users, we can say
that the highest score for our video game is 24±2 with a 95%
confidence interval, meaning that it exists the possibility that
the strategies we find are not the best.

The next step is to find the best players. To identify them,
we ordered them by the score each player got. According to
Pareto’s principle, 20% of the causes generate 80% of the
consequences, and the other 80% produce 20% [54] Appeal-
ing to this principle, we defined a threshold to distinguish
the high score matches; 20% of our matches have a high
score, belonging to the best players, and 80% a low one. The
threshold we found indicates the person with the lowest score
of the high score group; it is 19 points. The amount of positive
samples is 24, belonging to the top 20% of the scores. Those
matches correspond to the ones where the associated player
placed more houses, the objective of the video game.

We did not consider the worst matches for the analysis;
they belong to the low 20% of the 113 matches. They per-
formed an average of 6 movements; the best matches did 20.
Analyzing the sequences with the lowest scores, we saw a few
repeated sub-sequences. According to our definition, they did
not follow a strategy; their movements can be considered
random. Those matches can generate noise in the negative
class, leading to false conclusions. Therefore, the negative
group consists of 60% players above the lowest and below
the best; they are 64. Figure 6 shows the division of all the
matches we collected.

FIGURE 6. Database collected from the video game-crowdsourcing
platform.

B. VALIDATION EXPERIMENT
This experiment validates themethodology for distinguishing
a particular strategy on a match. The objective is to prove that
we can describe a strategy using sub-sequences. To confirm
the strategy, we need to recognize how the users played
their matches. We use synthetic matches to know their plays.
They consist of one played following the actions of a known
strategy, for example, Bottom-Left. We crafted those matches
following the strategy carefully to obtain a high score.

TABLE 2. Bottom-left style strategies sequences and amount of matches
in the synthetic class that uses them.

We decided to use strategies similar to Bottom-Left (BL)
for two reasons. First, we designed the representation for
detecting this strategy; a sequence can describe all its move-
ments. Second, we want the experiment to simulate players
that use different strategies. BL has variants by changing
the starting position and the directions. Table 2 shows the
movement sequences of the variants we used of Bottom-Left
from Figure 7.

FIGURE 7. Five different variations of the strategy of bottom-left.

In the strategies like BL, we can find two main repeated
sub-sequences or patterns, presented in Table 3. The Straight
patterns in BL are the movements to the right or E ; it can
be a single movement or more than one. The Change of Line
pattern happens when the player cannot place another house
to the E ; it is a NW+ movement. We can also find this pattern
with Straight ones surrounding it, for example, E−NW+−E .

TABLE 3. Bottom-left strategies patterns.

The synthetic class consists of 13 matches using a variant
of Bottom-Left; Table 2 shows the distribution by strategy.
The reason for that amount is because to test it with people
we have 24 positive and 64 negative matches from players.
We need to find strategies in a proportion of 24/64, meaning
that the synthetic matches should be 24 or less. The times we
used a strategy in the synthetic match, as Table 2 indicates,
was to show that we can find strategies that appear few times
in the positive class or what is the least amount of matches we
need from a strategy to detect it as high scoring. Because we

VOLUME 9, 2021 114877



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

found that limit by repeating strategies from 1 to 4 times, and
our amount is less than 24, adding more matches does not
provide extra information to this experiment.

Since we do not know the strategy of the actual high score
matches from our database, we have to substitute the positive
class. Putting the synthetic matches instead of the positive
group allows us to have a control group for this experiment.
It serves us to prove that the strategies we find are the ones
with the highest scores.

1) EXTRACTING PATTERNS WITH SEQUITUR
Using patterns, we can define a strategy for a given match as
a sequence of plays with elements in common. Those happen
to be repeated sub-sequences of plays. Finding patterns or
repeated sub-sequences is a job that several algorithms can
fulfill [32], [55], [56]. Depending on the task, some of them
can perform better than others.

Sequitur is an algorithm that extracts hierarchical struc-
tures from a text where the context does not matter [24].
It analyzes a sequence of characters and builds grammat-
ical rules in linear time. The rules obtained belong to
sub-sequences in the text that appear at least twice. By apply-
ing Sequitur to a match, those rules happen to be the repeated
sub-sequences of movements.

To detect strategies from the matches, we use a version of
Sequitur available for python. The version receives a string as
input and outputs rules for each repeated sub-sequence. Our
input must represent eachmovement in the sequence with one
character; if not, the results of Sequitur might not be accurate.
Since we have 21 different movements, we can denote each
one with a distinct letter.

To use Sequitur, we need sequences ofmovements from the
matches; Sequitur can analyze one string at a time.We need to
decide on a method to obtain patterns of the synthetic class.
One option is to apply Sequitur to a sequence composed of
all the matches; the other to all of them individually. The first
method can find patterns that appear once in more than one
match, and the patterns that happened at least twice in one
match. However, in practice, it finds more redundant patterns,
ones that can be described by others. For example, if we have
the patterns E − E − E and E − E , the first one is redundant
because we can explain it with the second one.

Since both methods can define the same amount of strate-
gies, but the second one uses fewer patterns and avoids
redundancy, we applied Sequitur to the individual matches
for our experiments. In total, this method obtained 19 differ-
ent patterns for the 13 sequences from the synthetic group;
in Table 4, we show some of the patterns, avoiding redundant
ones.

2) DETECTING STRATEGIES
A match can be described as a short sequence of plays and
patterns, whereas a strategy is a description of the process to
achieve one match. In this research, we detect strategies man-
ually by combining patterns. A more sophisticated method
could achieve different results. In this validation experiment,

we know the strategies we want to detect. Our goal is to verify
that the patterns we found can build them.

TABLE 4. Patterns obtained by applying sequitur to the synthetic matches
individually. We show 8 of the 19 we got, avoiding redundancy.

The 8 patterns shown in Table 4 resemble those found in the
sequences of Table 2. Before we detect a strategy, we need to
reconstruct amatch using the patterns we found. For example,
we can build a BL strategy using patterns number 2 and 5 of
Table 4 as in equation (3), where the symbol ∗ indicates that
the pattern appears one or more times.

EE∗NW+EE∗NW+EE∗, . . . ,NW+EE∗ (3)

Using equation (3), we can create the Algorithm 1 to play
a match using a BL strategy. Additionally, with the patterns
of Table 4 we can create an algorithm for all the strategies we
used in the synthetic matches, meaning that we can detect a
strategy by finding sub-sequences.

Algorithm 1 Bottom-Left Algorithm

→ Start in the Bottom-Left corner.
while Land has empty space do
→ Place House
if There is space to the right then

move E
else

move NW+

3) COMPARISON WITH NEGATIVE CLASS
One of the goals of the research is to find strategies that lead
to high scores. The comparison between classes shows how
players with low scores deviated from high score players.
We perform the analysis in two steps. The first one is to
detect the difference in the strategies players use in each
class. The second is to find the patterns that characterize the
best players. The comparison shows us what sub-sequences
players make more frequently in the synthetic class than in
the negative.

To detect the differences, we applied Sequitur to the 64
negative matches. In total, we got 23 patterns. If we consider
the relation of patterns bymatches, the negative class has 0.36
patterns/match, whereas the synthetic has 1.46. To under-
stand the difference between strategies, we analyzed the
sequences of the negative class. We can divide them into two

114878 VOLUME 9, 2021



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

groups according to their sequence, random, or patterns with
random changes. The first group performs all of its moves
such that there is no repeated sub-sequence. The second group
has some patterns, but they have many intermediate random
movements between them. Therefore, we cannot explain the
match without going through specific details. According to
this test, a high score depends on following a strategy faith-
fully, avoiding random movements.

To find the patterns that characterize the synthetic matches,
we perform two tests. The first one is Fisher’s exact test, and
the second is a permutation test. To build the contingency
table for Fisher’s exact test, we found if each pattern appeared
in the matches divided by class. We present an example of
this table for one pattern in Table 5. With a significance
level of 0.05, 12 out of the 19 patterns approved this test.
Those patterns can describe three strategies: Bottom-Right,
Bottom-Left, and Top-right.

TABLE 5. Contingency table for pattern W −W − NE+.

To do the permutation test, we compare the average fre-
quencies of both classes, the average times a pattern appears
in the sequences of a class. We compare the average frequen-
cies for the 19 patterns we got by applying Sequitur to the
synthetic group. First, we calculate the average frequency
for each pattern in both classes; then, with a permutation
test, we confirm if there is a significant difference between
both groups for the times a player uses a pattern. The per-
mutation test makes a re-sample for both classes; it takes all
the frequencies, sorts them, and re-assigns them randomly
to the matches. Our test performs 10, 000 permutations. For
each one, we calculate the difference between the average
frequency of both classes. To test if there is a significant
difference, we use a 95% two-tail test. We present an example
of a permutation test for one pattern in Figure 8.

FIGURE 8. Permutation test graph for one pattern. The red lines represent
the original difference of the average frequencies.

The test passed 14 patterns of the 19 we had; all of them
belong to a strategy we used for the synthetic matches. The
first six are the Straight patterns with W or E movements.
The other ones are Change of Line patterns that belong to
Bottom-Left, Bottom-Right, or Top-Right. The strategies that
this test could not detect appeared two times or less in the
synthetic matches.

Both tests arrive at the same conclusion, even though the
first one approves fewer patterns. They suggest that using
one of the three strategies with more representation in the
synthetic class will lead to a high score.

C. TESTING EXPERIMENT
After validating our methodology with synthetic matches,
we performed the test with real ones. The objective is to detect
patterns from the best players to explain their strategy. The
patterns we got allowed us to detect several strategies, some
of them existing in the literature. The groups we use in this
experiment come from the initial division of the 113 players.
The experiment concludes by comparing the negative class
with the positive as in the validation experiment.

D. EXTRACTING PATTERNS WITH SEQUITUR
Following the same strategy as in the validation experiment,
we applied Sequitur to all the 24 matches from the positive
class. The algorithm found 24 patterns. Those patterns will
serve us to detect strategies and compare the positive class
with the negative in the following sections.

E. DETECTING STRATEGIES
Using the 24 patterns, we detected five strategies presented
in Figure 9. From the strategies, we can see that three are
variants of Bottom-Left. For the other two, we could not find
a similar version in the literature; we named them Snail and
Rodent; Algorithms 2 and 3 implement their steps.

FIGURE 9. Strategies detected with patterns from players.

To produce Algorithm 2, we used some of the 24 patterns,
as we did to build BL strategy in the validation experiment.
That algorithm can produce a match using the Snail strategy.
It begins placing houses in one direction until it reaches
an obstacle; then, it turns to continue putting houses. This
process repeats, always turning in the same direction until
there is no space where to turn. Figure 9 1) is the result of

VOLUME 9, 2021 114879



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

this algorithm, where each circle is a house and the lines are
a move.

Algorithm 2 Snail Algorithm

→ Start in the Top-Right corner.
Directions = [E, S, W, N]
Current = 0
while Land has empty space do
→ Place House
if There is space in Directions[Current] then

move Directions[Current]
else

Change Current direction.

The second algorithm we found is Rodent. This algorithm
will focus on filling the external borders first. Then it uses
another strategy to fill the center. It does not matter the order
in which the borders are filled. In Figure 9 2) the player is
placing houses (circles) in different positions at the border.
Each arrow is a move to where the next house will be. The
green square in the middle represents where the player will
not put a house until there is no place left in the borders.

We constructed Algorithm 3 using some of the 24 patterns
we extracted. It selects one of the four borders of the land
and fills it. Then, it chooses any other border and continues
until the four are full. At last, to fill the center, the player uses
a different strategy. It is important to notice that Snail is a
variant of Rodent. However, a Rodent strategy might start at
the Top border and continue with the Bottom one; it can also
use different strategies to fill the center.

Algorithm 3 Rodent Algorithm

→ Start in any corner.
Borders = [Left, Right, Top, Bottom]
Current = 0
while At least one border has empty space do
→ Place House
if There is space in the current border then

Place house in that border.
else

Change current border.

Use strategy to fill the center.

F. COMPARISON WITH NEGATIVE CLASS
In the validation phase, we analyzed the difference between
the synthetic and negative groups in two steps. The first one
consisted of finding the differences in the negative sequences.
Since the negative group does not change, the results remain
the same. Regarding the second one, the procedure for
Fisher’s exact test and the permutation test is equal, but in
this case, we used the 24 patterns we got from the positive
class in this experiment.

Fisher’s exact test approved 6 patterns; with them, we can
describe completely one strategy, Snail. Besides, some of the

patterns belong to the strategies of Rodent and Bottom-Right.
This test suggests that these two strategies can give good
results when used to complement other strategies. For exam-
ple, the Rodent strategy needs to do something different to
fill the center of the land. The permutation test approved 12
patterns. They belong to three of the five strategies: Snail,
Bottom-Right, and Rodent.

The remaining two strategies that this test did not detect
might be present in both classes. However, players in the
positive one could add different movements to complement
the strategy, as we saw when we analyzed the sequences,
causing the number of patterns for one strategy to drop.
Another possibility is that the number of movements players
in the negative class used of those strategies is close to the
amount from the positive group, resulting in a similar average
frequency. However, the test can confirm that using one of the
three strategies that passed the test as the main one will lead
to a high score.

VII. DISCUSSION
One of the contributions of this research is the method to
represent a match of the video game. Our sequences of plays
are a way in which pattern extractors can find relevant moves
a player makes. Other research can use it to represent matches
from video games that behave similarly.

The validation experiment tested our methodology to
extract patterns and detect strategies using synthetic matches.
Since we could recognize all the strategies on those matches,
the experiment proves our process can identify the strategy a
player follows in a match.

The validation experiment allows us to confirm that the
strategies we found in the testing experiment are the ones fol-
lowed by the best players. In the testing experiment, we found
that the strategies of Snail, Bottom-Right, and Rodent lead to
a high score. Our results suggest that if we use one of these
three strategies to solve the HDP, we will have a good solu-
tion. However, we need to create the algorithm and compare
it with others to confirm it.

Although, our results might be biased because of the sam-
ple size we have, meaning that there is a chance the strategies
we found are not the best, or there might be others. Future
research might need to increase the number of matches to
perform the analysis to avoid this issue.

VIII. CONCLUSION
The model of Video game-Crowdsourcing can collect solu-
tions from people with different skills. An important step
to analyze strategies from this model is problem selection.
It defines the problem that the crowd will solve and the strate-
gies we can extract. While developing the solution model,
we took into account two aspects. First, we considered the
problem we chose and how to make it for people to enjoy it.
Also, we oriented our solution model to find strategies for the
problems of interest we selected.

A limitation related to Video game-Crowdsourcing is that
it needs thorough dissemination for people to know the video

114880 VOLUME 9, 2021



A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

game. This approach uses entertainment as the method to
attract people. However, some people might lose interest
because entertainment is not something they can measure,
like getting paid. To attract more players, we need a previous
phase to promote the video game and let people give it a
chance to entertain them. Another limitation of our work is
the abstractions to the original problem and to the match of a
player. Each step is a simplification of the real problem and
might provoke that our results are not faithful to our goal. For
example, a player can make a movement we do not recognize,
which avoids our model to find a strategy. Nevertheless, they
allowed us to obtain strategies and prove that finding repeated
sub-sequences is one method for finding strategies.

An interesting finding of this study was that people use
strategies existing in the literature to get high scores. One rea-
son could be because they had applied it to another problem.
Another reason is that it came to them as they were solving
the video game.

Also, it is important to note that the objective of this study
was to find the strategies to get the best solutions. For a
different application, it might be relevant to know the path that
people took to get a low score. The methodology to achieve
it is the same, but instead of finding patterns for high score
players, we need to apply Sequitur to the low score players
and make the analysis. Nevertheless, in this study, negative
cases served us to contrast the matches with the positive ones.

Future research for this study should focus on four things.
The first is to create algorithms that use the patterns we found
and compare the solutions with existing techniques to solve
the HDP or similar ones like the 2D Bin Packing Problem.
The second is to expand the database we build to improve
our results. The third branch for research to focus on is trying
differentmethods to extract patterns and detect strategies. The
last one is to modify the abstraction of the HDP to include
more features in the strategies.

The results of our study are promising, suggesting that
we might find new strategies that could lead to high score
solutions for problems of interest. Even with few matches,
we could detect strategies that exist in the literature. So, this
motivates the continuation of our study so that with major
deployment researchers in algorithmics can find strategies
that lead to better solutions to problems of interest.

REFERENCES
[1] Y. Hajjaji, W. Boulila, I. R. Farah, I. Romdhani, and A. Hussain, ‘‘Big

data and IoT-based applications in smart environments: A systematic
review,’’ Comput. Sci. Rev., vol. 39, Feb. 2021, Art. no. 100318, doi:
10.1016/J.COSREV.2020.100318.

[2] Z. Xu, Y. Liu, N. Y. Yen, L. Mei, X. Luo, X.Wei, and C. Hu, ‘‘Crowdsourc-
ing based description of urban emergency events using social media big
data,’’ IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 387–397, Jun. 2020,
doi: 10.1109/TCC.2016.2517638.

[3] Z. Nouri, H. Wachsmuth, and G. Engels, ‘‘Mining crowdsourcing
problems from discussion forums of workers,’’ in Proc. 28th Int.
Conf. Comput. Linguistics, Barcelona, Spain, 2020, pp. 6264–6276, doi:
10.18653/v1/2020.coling-main.551.

[4] J. Füller, K. Hutter, and N. Kröger, ‘‘Crowdsourcing as a service—
From pilot projects to sustainable innovation routines,’’ Int. J.
Project Manage., vol. 39, no. 2, pp. 183–195, Feb. 2021, doi:
10.1016/j.ijproman.2021.01.005.

[5] L. Tan, H. Xiao, K. Yu, M. Aloqaily, and Y. Jararweh, ‘‘A blockchain-
empowered crowdsourcing system for 5G-enabled smart cities,’’ Com-
put. Standards Interfaces, vol. 76, Jun. 2021, Art. no. 103517, doi:
10.1016/j.csi.2021.103517.

[6] M. Peña-Chilet, G. Roldán, J. Perez-Florido, F. M. Ortuño, R. Carmona,
V. Aquino, D. Lopez-Lopez, C. Loucera, J. L. Fernandez-Rueda,
A. Gallego, and F. García-Garcia, ‘‘CSVS, a crowdsourcing database of
the Spanish population genetic variability,’’ Nucleic Acids Res., vol. 49,
no. D1, pp. D1130–D1137, Jan. 2021, doi: 10.1093/nar/gkaa794.

[7] B. Morschheuser, J. Hamari, J. Koivisto, and A. Maedche, ‘‘Gam-
ified crowdsourcing: Conceptualization, literature review, and future
agenda,’’ Int. J. Hum.-Comput. Stud., vol. 106, pp. 26–43, Oct. 2017, doi:
10.1016/j.ijhcs.2017.04.005.

[8] L. E. P. Estrada, D. Groen, and J. E. Ramirez-Marquez, ‘‘A serious
video game to support decision making on refugee aid deployment pol-
icy,’’ Procedia Comput. Sci., vol. 108, pp. 205–214, Jan. 2017, doi:
10.1016/j.procs.2017.05.112.

[9] J. S. Kim, M. J. Greene, A. Zlateski, K. Lee, M. Richardson, S. C. Turaga,
M. Purcaro, M. Balkam, A. Robinson, B. F. Behabadi, M. Campos,
W. Denk, and H. S. Seung, ‘‘Space–time wiring specificity supports direc-
tion selectivity in the retina,’’ Nature, vol. 509, no. 7500, pp. 331–336,
May 2014, doi: 10.1038/nature13240.

[10] S. Mavandadi, S. Feng, F. Yu, S. Dimitrov, R. Yu, and A. Ozcan,
‘‘BioGames: A platform for crowd-sourced biomedical image analysis and
telediagnosis,’’Games Health J., vol. 1, no. 5, pp. 373–376, Oct. 2012, doi:
10.1089/g4h.2012.0054.

[11] L. Chittaro, R. Ranon, and L. Ieronutti, ‘‘VU-Flow: A visualization
tool for analyzing navigation in virtual environments,’’ IEEE Trans.
Vis. Comput. Graphics, vol. 12, no. 6, pp. 1475–1485, Nov. 2006, doi:
10.1109/TVCG.2006.109.

[12] A. Drachen and A. Canossa, ‘‘Analyzing spatial user behavior in computer
games using geographic information systems,’’ in Proc. 13th Int. MindTrek
Conf., Everyday Life Ubiquitous Era (MindTrek). New York, NY, USA:
ACM, 2009, pp. 182–189, doi: 10.1145/1621841.1621875.

[13] O. Cavadenti, V. Codocedo, J.-F. Boulicaut, and M. Kaytoue, ‘‘What
did I do wrong in my MOBA game? Mining patterns discriminat-
ing deviant behaviours,’’ in Proc. IEEE Int. Conf. Data Sci. Adv.
Anal. (DSAA), Montreal, QC, Canada, Oct. 2016, pp. 662–671, doi:
10.1109/DSAA.2016.75.

[14] N. Y. Khameneh and M. Guzdial, ‘‘Entity embedding as game representa-
tion,’’ in Proc. Experim. AI Games Workshop, Oct. 2020, pp. 1–7.

[15] E. Carlini and A. Lulli, ‘‘Analysis of movement features in multiplayer
online battle arenas,’’ J. Grid Comput., vol. 17, no. 1, pp. 45–57,Mar. 2019,
doi: 10.1007/s10723-018-9470-2.

[16] N. Ross, E. Keedwell, and D. Savic, Human-Derived Heuristic Enhance-
ment of an Evolutionary Algorithm for the 2D Bin-Packing Problem (Lec-
ture Notes in Computer Science), vol. 12270. Cham, Switzerland: Springer,
Sep. 2020, pp. 413–427, doi: 10.1007/978-3-030-58115-2_29.

[17] G. N. Yannakakis and J. Togelius, ‘‘A panorama of artificial and
computational intelligence in games,’’ IEEE Trans. Comput. Intell.
AI Games, vol. 7, no. 4, pp. 317–335, Dec. 2015, doi: 10.1109/
TCIAIG.2014.2339221.

[18] A. Fernandez-Ares, A. M. Mora, J. J. Merelo, P. Garcia-Sanchez,
and C. Fernandes, ‘‘Optimizing player behavior in a real-time strategy
game using evolutionary algorithms,’’ in Proc. IEEE Congr. Evol. Com-
put. (CEC), New Orleans, LA, USA, Jun. 2011, pp. 2017–2024, doi:
10.1109/CEC.2011.5949863.

[19] B. G. Weber and M. Mateas, ‘‘A data mining approach to strategy predic-
tion,’’ in Proc. IEEE Symp. Comput. Intell. Games, Milan, Italy, Sep. 2009,
pp. 140–147, doi: 10.1109/CIG.2009.5286483.

[20] V. Svatoĉ, J. Martinoviĉ, K. Slaninová, and T. Bureš, ‘‘Improving strategy
in robot soccer game by sequence extraction,’’ Procedia Comput. Sci.,
vol. 35, pp. 1445–1454, Jan. 2014, doi: 10.1016/j.procs.2014.08.204.

[21] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and R. Malaka, ‘‘Dun-
geons & replicants: Automated game balancing via deep player behavior
modeling,’’ in Proc. IEEE Conf. Games (CoG), Osaka, Japan, Aug. 2020,
pp. 431–438, doi: 10.1109/CoG47356.2020.9231958.

[22] T. A. Litman, ‘‘Affordable-accessible housing in a dynamic city why and
how to increase affordable housing development in accessible locations,’’
Victoria Transp. Policy Inst., Victoria, BC, Canada, Tech. Rep., Mar. 2021.
[Online]. Available: https://www.vtpi.org/aff_acc_hou.pdf

[23] J. Michalek, R. Choudhary, and P. Papalambros, ‘‘Architectural layout
design optimization,’’ Eng. Optim., vol. 34, no. 5, pp. 461–484, Jan. 2002,
doi: 10.1080/03052150214016.

VOLUME 9, 2021 114881

http://dx.doi.org/10.1016/J.COSREV.2020.100318
http://dx.doi.org/10.1109/TCC.2016.2517638
http://dx.doi.org/10.18653/v1/2020.coling-main.551
http://dx.doi.org/10.1016/j.ijproman.2021.01.005
http://dx.doi.org/10.1016/j.csi.2021.103517
http://dx.doi.org/10.1093/nar/gkaa794
http://dx.doi.org/10.1016/j.ijhcs.2017.04.005
http://dx.doi.org/10.1016/j.procs.2017.05.112
http://dx.doi.org/10.1038/nature13240
http://dx.doi.org/10.1089/g4h.2012.0054
http://dx.doi.org/10.1109/TVCG.2006.109
http://dx.doi.org/10.1145/1621841.1621875
http://dx.doi.org/10.1109/DSAA.2016.75
http://dx.doi.org/10.1007/s10723-018-9470-2
http://dx.doi.org/10.1007/978-3-030-58115-2_29
http://dx.doi.org/10.1109/TCIAIG.2014.2339221
http://dx.doi.org/10.1109/TCIAIG.2014.2339221
http://dx.doi.org/10.1109/CEC.2011.5949863
http://dx.doi.org/10.1109/CIG.2009.5286483
http://dx.doi.org/10.1016/j.procs.2014.08.204
http://dx.doi.org/10.1109/CoG47356.2020.9231958
http://dx.doi.org/10.1080/03052150214016


A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

[24] C. G. Nevill-Manning and I. H. Witten, ‘‘Identifying hierarchical struc-
ture in sequences: A linear-time algorithm,’’ J. Artif. Intell. Res., vol. 7,
pp. 67–82, Sep. 1997, doi: 10.1613/jair.374.

[25] S. Jakobs, ‘‘On genetic algorithms for the packing of polygons,’’ Eur. J.
Oper. Res., vol. 88, no. 1, pp. 165–181, Jan. 1996, doi: 10.1016/0377-
2217(94)00166-9.

[26] L. V. Ahn, ‘‘Games with a purpose,’’ Computer, vol. 39, no. 6, pp. 92–94,
Jun. 2006, doi: 10.1109/MC.2006.196.

[27] L. von Ahn, R. Liu, and M. Blum, ‘‘Peekaboom: A game for
locating objects in images,’’ in Proc. Conf. Hum. Factors Comput.
Syst. (SIGCHI), Montreal, QC, Canada, Apr. 2006, pp. 55–64, doi:
10.1145/1124772.1124782.

[28] T. Ivanjko, ‘‘Crowdsourcing image descriptions using gamification:
A comparison between game-generated labels and professional descrip-
tors,’’ in Proc. 42nd Int. Conv. Inf. Commun. Technol., Electron. Micro-
electron. (MIPRO), Opatija, Croatia, May 2019, pp. 537–541, doi:
10.23919/MIPRO.2019.8756841.

[29] K. Xin, S. Zhang, X. Wu, and W. Cai, ‘‘Reciprocal crowdsourcing: Build-
ing cooperative game worlds on blockchain,’’ in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Las Vegas, NV, USA, Jan. 2020, pp. 1–6, doi:
10.1109/ICCE46568.2020.9043129.

[30] I. Lykourentzou, F. Ahmed, C. Papastathis, I. Sadien, and K. Papangelis,
‘‘When crowds give you lemons: Filtering innovative ideas using a diverse-
bag-of-lemons strategy,’’ in Proc. ACM Hum.-Comput. Interact., vol. 2,
2018, pp. 1–23, doi: 10.1145/3274384.

[31] J. Juul,Half-Real: Video Games Between Real Rules and Fictional Worlds.
Ann Arbor, MI, USA: MIT Press, 2005.

[32] E. Carlini, A. Lulli, and L. Ricci, ‘‘TRACE: Generating traces from
mobility models for distributed virtual environments,’’ in Proc. Euro-Par,
Parallel Process. Workshops. Springer, 2017, pp. 272–283.

[33] L. Ca nete-Sifuentes, R. Monroy, M. A. Medina-Pérez,
O. Loyola-González, and F. Vera Voronisky, ‘‘Classification based
on multivariate contrast patterns,’’ IEEE Access, vol. 7, pp. 55744–55762,
2019, doi: 10.1109/ACCESS.2019.2913649.

[34] S. C. J. Bakkes, P. H. M. Spronck, and G. Van Lankveld, ‘‘Player
behavioural modelling for video games,’’ Entertainment Comput., vol. 3,
no. 3, pp. 71–79, 2012, doi: 10.1016/j.entcom.2011.12.001.

[35] M. B. Johns, H. A. Mahmoud, D. J. Walker, N. D. F. Ross, E. C. Keedwell,
and D. A. Savic, ‘‘Augmented evolutionary intelligence: Combining
human and evolutionary design for water distribution network opti-
misation,’’ in Proc. Genetic Evol. Comput. Conf. (GECCO), New
York, NY, USA, Jul. 2019, pp. 1214–1222, doi: 10.1145/3321707.
3321814.

[36] S. Liu, S. J. Louis, and M. Nicolescu, ‘‘Using CIGAR for finding effective
group behaviors in RTS game,’’ in Proc. IEEE Conf. Comput. Inteligence
Games (CIG), Niagara Falls, ON, Canada, Aug. 2013, pp. 1–8, doi:
10.1109/CIG.2013.6633652.

[37] G. Synnaeve and P. Bessiere, ‘‘A Bayesian model for opening prediction in
RTS games with application to StarCraft,’’ in Proc. IEEE Conf. Comput.
Intell. Games (CIG), Seoul, South Korea, Aug. 2011, pp. 281–288, doi:
10.1109/CIG.2011.6032018.

[38] S. Onta nón, K. Mishra, N. Sugandh, and A. Ram, Case-Based Planning
and Execution for Real-Time Strategy Games (Lecture Notes in Computer
Science), vol. 4626. 2007, pp. 164–178, doi: 10.1007/978-3-540-74141-
1_12.

[39] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, ‘‘Imitating human
playing styles in super Mario bros,’’ Entertainment Comput., vol. 4, no. 2,
pp. 93–104, Apr. 2013, doi: 10.1016/j.entcom.2012.10.001.

[40] N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, ‘‘Robust
player imitation using multiobjective evolution,’’ in Proc. IEEE Congr.
Evol. Comput., Trondheim, Norway, May 2009, pp. 652–659, doi:
10.1109/CEC.2009.4983007.

[41] J. Muñoz, G. Gutierrez, and A. Sanchis, ‘‘Towards imitation of human
driving style in car racing games,’’ in Believable Bots: Can Computers
Play LikePeople? Berlin, Germany: Springer-Verlag, 2012, pp. 289–313,
doi: 10.1007/978-3-642-32323-2_12.

[42] I. V. Karpov, J. Schrum, and R. Miikkulainen, ‘‘Believable bot navigation
viaplayback of human traces,’’ in Believable Bots: Can Computers Play
LikePeople? Berlin, Germany: Springer-Verlag, 2012, pp. 151–170, doi:
10.1007/978-3-642-32323-2_6.

[43] A. J. Fernández-Ares, P. García-Sánchez, A. M. Mora, and
J. J. Merelo, ‘‘Adaptive bots for real-time strategy games via map
characterization,’’ in Proc. IEEE Conf. Comput. Intell. Games (CIG),
Granada, Spain, Sep. 2012, pp. 417–721, doi: 10.1109/CIG.2012.
6374185.

[44] C. J. Gabbe, ‘‘Local regulatory responses during a regional housing short-
age: An analysis of rezonings in silicon valley,’’ Land Use Policy, vol. 80,
pp. 79–87, Jan. 2019, doi: 10.1016/j.landusepol.2018.09.035.

[45] J. Huang, G. Q. Shen, and H. W. Zheng, ‘‘Is insufficient land sup-
ply the root cause of housing shortage? Empirical evidence from
Hong Kong,’’ Habitat Int., vol. 49, pp. 538–546, Oct. 2015, doi:
10.1016/j.habitatint.2015.07.006.

[46] A. A. Fakere, O. Arayela, and C. O. Folorunso, ‘‘Nexus between the
participation of residents in house design and residential satisfaction in
Akure, Nigeria,’’ Frontiers Architectural Res., vol. 6, no. 2, pp. 137–148,
Jun. 2017, doi: 10.1016/j.foar.2017.02.003.

[47] M. Markatou, ‘‘Urban planning and greening practices: A case for
neighborhood development in a typical urban area,’’ J. Environ. Sci.
Eng. B, vol. 9, no. 5, pp. 189–199, Jul. 2020, doi: 10.17265/2162-
5263/2020.05.004.

[48] K. Mouratidis, ‘‘Neighborhood characteristics, neighborhood satis-
faction, and well-being: The links with neighborhood deprivation,’’
Land Use Policy, vol. 99, Dec. 2020, Art. no. 104886, doi: 10.1016/
j.landusepol.2020.104886.

[49] S. S. Y. Wong and K. C. C. Chan, ‘‘EvoArch: An evolutionary algorithm
for architectural layout design,’’ Comput.-Aided Design, vol. 41, no. 9,
pp. 649–667, Sep. 2009, doi: 10.1016/j.cad.2009.04.005.

[50] M. Beyaz, T. Dokeroglu, and A. Cosar, ‘‘Robust hyper-heuristic algo-
rithms for the offline oriented/non-oriented 2D bin packing prob-
lems,’’ Appl. Soft Comput., vol. 36, pp. 236–245, Nov. 2015, doi:
10.1016/j.asoc.2015.06.063.

[51] R. P. Abeysooriya, J. A. Bennell, and A. Martinez-Sykora, ‘‘Jostle
heuristics for the 2D-irregular shapes bin packing problems with free
rotation,’’ Int. J. Prod. Econ., vol. 195, pp. 12–26, Jan. 2018, doi:
10.1016/j.ijpe.2017.09.014.

[52] A. G. Hansson, ‘‘Promoting planning for housing development: What can
Sweden learn from germany?’’ Land Use Policy, vol. 64, pp. 470–478,
May 2017, doi: 10.1016/j.landusepol.2017.03.012.

[53] C. S. Chan, ‘‘Cognitive processes in architectural design problem solv-
ing,’’ Des. Stud., vol. 11, no. 2, pp. 60–80, Apr. 1990, doi: 10.1016/0142-
694X(90)90021-4.

[54] R. Dunford, Q. Su, and E. Tamang, ‘‘The Pareto principle,’’ Plymouth
Student Scientist, vol. 7, no. 1, pp. 140–148, 2014.

[55] B. Negrevergne, A. Termier,M.-C. Rousset, and J.-F.Méhaut, ‘‘Paraminer:
A generic pattern mining algorithm for multi-core architectures,’’ Data
Mining Knowl. Discovery, vol. 28, no. 3, pp. 593–633, May 2014, doi:
10.1007/s10618-013-0313-2.

[56] T. Uno, M. Kiyomi, and H. Arimura, ‘‘LCM ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets,’’ in Proc. IEEE ICDM
Workshop Frequent Itemset Mining Implement., Nov. 2004, pp. 1–11.

ARTURO SILVA-GÁLVEZ received the B.S.
degree in biomedical engineering and the M.S.
degree in computer science from the Instituto Tec-
nológico y de Estudios Superiores de Monterrey,
in 2018 and 2020, respectively. He is currently
a Software Developer at Oracle, Guadalajara,
México. His research interests include analyzing
video games to discover solution strategies and
reinforcement learning at hyper-heuristics for opti-
mization problems.

114882 VOLUME 9, 2021

http://dx.doi.org/10.1613/jair.374
http://dx.doi.org/10.1016/0377-2217(94)00166-9
http://dx.doi.org/10.1016/0377-2217(94)00166-9
http://dx.doi.org/10.1109/MC.2006.196
http://dx.doi.org/10.1145/1124772.1124782
http://dx.doi.org/10.23919/MIPRO.2019.8756841
http://dx.doi.org/10.1109/ICCE46568.2020.9043129
http://dx.doi.org/10.1145/3274384
http://dx.doi.org/10.1109/ACCESS.2019.2913649
http://dx.doi.org/10.1016/j.entcom.2011.12.001
http://dx.doi.org/10.1145/3321707.3321814
http://dx.doi.org/10.1145/3321707.3321814
http://dx.doi.org/10.1109/CIG.2013.6633652
http://dx.doi.org/10.1109/CIG.2011.6032018
http://dx.doi.org/10.1007/978-3-540-74141-1_12
http://dx.doi.org/10.1007/978-3-540-74141-1_12
http://dx.doi.org/10.1016/j.entcom.2012.10.001
http://dx.doi.org/10.1109/CEC.2009.4983007
http://dx.doi.org/10.1007/978-3-642-32323-2_12
http://dx.doi.org/10.1007/978-3-642-32323-2_6
http://dx.doi.org/10.1109/CIG.2012.6374185
http://dx.doi.org/10.1109/CIG.2012.6374185
http://dx.doi.org/10.1016/j.landusepol.2018.09.035
http://dx.doi.org/10.1016/j.habitatint.2015.07.006
http://dx.doi.org/10.1016/j.foar.2017.02.003
http://dx.doi.org/10.17265/2162-5263/2020.05.004
http://dx.doi.org/10.17265/2162-5263/2020.05.004
http://dx.doi.org/10.1016/j.landusepol.2020.104886
http://dx.doi.org/10.1016/j.landusepol.2020.104886
http://dx.doi.org/10.1016/j.cad.2009.04.005
http://dx.doi.org/10.1016/j.asoc.2015.06.063
http://dx.doi.org/10.1016/j.ijpe.2017.09.014
http://dx.doi.org/10.1016/j.landusepol.2017.03.012
http://dx.doi.org/10.1016/0142-694X(90)90021-4
http://dx.doi.org/10.1016/0142-694X(90)90021-4
http://dx.doi.org/10.1007/s10618-013-0313-2


A. Silva-Gálvez et al.: Video Game-Crowdsourcing Approach to Discover Player’s Strategy

RAÚL MONROY received the Ph.D. degree
in artificial intelligence from The University of
Edinburgh, in 1998, under the supervision of Prof.
Alan Bundy. He has been in Computing with the
Tecnologico de Monterrey, since 1985. In 2010,
he was promoted to a (full) professor in computer
science. Since 1999, he has also been a member of
the CONACyT’s National Research Systems and
his rank is three. He is currently the Leader of the
GIEE-ML (Machine Learning), a Research Group

at the Tecnologico de Monterrey, and the Head of the Graduate Programme
in Computing, region CDMX. His research interest includes the discovery
and application of novel machine learning models, which he often applies to
cybersecurity problems.

JOSE E. RAMIREZ-MARQUEZ received the
M.Sc. and Ph.D. degrees in industrial engineering
from Rutgers University at New Brunswick, New
Brunswick, NJ, USA, and the M.Sc. degree in
statistics and the Ph.D. degree in actuarial sci-
ence from the Universidad Nacional Autonoma de
Mexico, Mexico City, Mexico. He is currently
the Director of the Enterprise Science and Engi-
neering Division and an Associate Professor with
the School of Systems and Enterprises, Stevens

Institute of Technology, Hoboken, NJ, USA. He has authored or coauthored
more than refereed manuscripts in technical journals, book chapters, and
industry reports. As a Former Fulbright Scholar, his research interests include
the development of mathematical models for the analysis and computation
of system operational effectiveness, reliability, and vulnerability analysis as
the basis for designing system resilience. He also focuses on the intersec-
tion of evolutionary computation for the optimization of complex problems
associated with system performance and design. His most recent research
explores the interplay between data visualization and analytical decision
making. In these areas, he has conducted funded research for both private
industry and government.

CHI ZHANG received the B.S. degree in industrial
engineering and the M.S. degree in management
science and engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2004 and 2007, respec-
tively, and the Ph.D. degree in systems engineering
from Stevens Institute of Technology, Hoboken,
NJ, USA, in 2012. He is currently an Asso-
ciate Professor with the School of Economics
and Management, Beijing University of Technol-
ogy, Beijing, China. His research interests include

complex networked systems reliability analysis and optimization, mainte-
nance optimization, critical infrastructure resilience, and warranty policy
optimization.

VOLUME 9, 2021 114883


