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ABSTRACT Recently, anomaly detection for improving the productivity of machinery in industrial envi-
ronments has drawn considerable attention. As large-scale data collection and processing are becoming
easier owing to technological developments, data-based deep-learning technology is being developed to
detect anomalies in mechanical equipment operation. This study proposes an ensemble model that combines
stacked two-dimensional and one-dimensional convolutional neural networks (CNNs), residual long short-
term memory (LSTM), and LSTM based on supervised learning. The model, which is called the SCRLSTM
model, can detect abnormal data generated by mechanical equipment. The proposed model can extract
the spatial features of data using a CNN model and detect anomalous states in the time-series-based
vibration datasets of machinery under various environments through residual LSTM. To verify this model,
data augmentation was applied to the original time-series-based mechanical vibration dataset, which had
unbalanced samples that lowered the performance of the abnormal anomaly detection model. In addition,
an image-based analysis was performed by converting time-series-based raw-signal data toMel-spectrogram
images, thereby achieving better performance in the fault diagnosis system to which data augmentation
was applied. The proposed SCRLSTM model shows better performance than other supervised-learning-
based models on datasets having different lengths under various conditions. This indicates that the proposed
anomaly detection model can be expected to improve the productivity of mechanical equipment in industrial
settings.

INDEX TERMS Supervised learning, anomaly detection, fault diagnosis, time series, data augmentation,
mel-spectrogram.

I. INTRODUCTION
As the technology used with mechanical equipment
advances, the complexity of industrial environments and
uncertainties pertaining to productivity also increase. If aged
mechanical equipment is neglected and the damage it suffers
is not adequately rectified, the equipment will become defec-
tive and will suffer from productivity reduction. Moreover,
the damaged equipment can cause damage to other equip-
ment. Hence, there is a need to develop advanced technology
to improve equipment safety [1].

Industrial machines (e.g., valves, pumps, fans, slide rails)
and rolling bearings are core components of industrial
systems and play a critical role in determining both the
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performance and life of these systems [2]. Faults can develop
in these mechanical components because of various causes,
and the most serious cause is the defects in the bearings
of electromagnetic drive systems [3]. Various condition-
monitoring methods have been used to detect faults in indus-
trial machines and bearings.

Traditional methods include the K-nearest neighbor algo-
rithm, which is based on distance; the local outlier factor
(LOF), which is used to detect local anomalies; and the
connectivity-based outlier factor, which is an improved ver-
sion of the LOF and detects anomalies using the radius.
Traditional methods based on distance and density have the
disadvantage of requiring considerable time for anomaly
detection as the number of data points increases [4]. Deep-
learning approaches that can overcome this limitation have
recently emerged and have shown higher performance than
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traditional methods [5]. Furthermore, the development of the
Internet of things industry has facilitated large-scale data col-
lection. Thus, the importance of anomaly detection based on
supervised learning is increasing. According to recent trends,
machine-learning-based anomaly detection approaches are
composed of three major steps:

1) Data preprocessing – The important features of normal
and abnormal data are extracted from time-series-based
raw signals.

2) Selection of a deep-learning-based model – A model is
selected for use in the fault diagnosis system.

3) Anomaly detection – The deep-learning-based model
uses the extracted features to detect anomalies through
a learning process.

Machine learning has been used to study and develop
time-series-based methods for anomaly detection of indus-
trial machines and bearing faults using data from mechan-
ical equipment. Purohit et al performed anomaly detection
and classification by converting the measured MIMII (valve,
pump, fan, and slide rails) dataset into Mel spectrogram
images through preprocessing [6]. Suefusa et al performed
interpolation-based anomaly detection using Mel spectro-
gram images [7]. Yuan et al converted the bearing vibration
data set into time-frequency images to diagnose bearing fail-
ures using a model ensemble of convolutional neural network
and support vector machine [8]. Yang et al trained the DNN
using the bearing dataset to obtain the initial classification
results where the classified results are evaluated by testing the
subsignals extracted from the raw data, and the sample labels
are modified according to the evaluation results. Datasets
with modified labels are finally classified through DNN [9].
Zhang et al performed anomaly diagnosis using a few-shot
learning-based model on a bearing dataset [10]. Wen et al
diagnosed anomalies with a snapshot ensemble learning
method that constructs an ensemble by combining local min-
ima using a cyclic learning rate scheduler (CLR) with a bear-
ing dataset [11]. Li et al perform bearing diagnosis through
a soft-voting-method-based deep learning model that aggre-
gates prediction results of signals sliced by sliding windows
to increase accuracy and stability using bearing data [12].
Liu et al proposed a domain adaptive approach by develop-
ing a deep-learning-based JDDA model for fault diagnosis
of an electromechanical drive system [13]. These studies
established deep learning for mechanical equipment anomaly
detection using the time and frequency domains. However,
the limitation of these studies is that data from both bearings
and industrial machines were not considered. Additionally,
the intelligent data-based fault diagnosis model was not tested
across a range of loads, durations, and noises; therefore,
the data used was insufficient for a comprehensive testing
of the fault diagnosis model. Thus, the previous studies lack
generalization ability compared to our proposed anomaly
detection framework for various environmental adaptations.
Therefore, to construct the fault diagnosis system with a
robust and generalized performance, it is necessary to con-
duct an experiment considering the actual environment [14].

In this study, data preprocessing overcomes this limitation
by converting raw signals into a Mel-spectrogram with aug-
mented data that can reflect various conditions. In addition,
we propose fault diagnosis model that operates on deep learn-
ing and can detect time-series based anomalies in machine
vibration data, thereby overcoming much limitation posed by
existing intelligent-data-based defects.

This study proposes an ensemble model that combines
stacked supervised-learning-based two-dimensional (2D) and
one-dimensional (1D) CNNs, residual LSTM, and LSTM.
This model, which is referred to as the SCRLSTMmodel, can
provide anomaly detection and diagnosis of time-series-based
data. The main contributions of this study are as follows:

1) Anomalies were determined using Mel-spectrogram
images, which were used to extract the normal and
abnormal features of a time-series-based mechanical
equipment vibration dataset.

2) Datasets were augmented to solve the data imbalance
problem, and this improved the accuracy of the model.

3) Furthermore, experiments were performed on the
robustness of various models to noise in consideration
of the signal-to-noise ratio (SNR) prevailing in actual
industrial sites.

4) The supervised-learning-based model was verified
using a time-series-based vibration dataset having vari-
ous lengths. In addition, the dataset was divided accord-
ing to the motor load, and various environments were
considered by carrying out transfer learning from one
load to another.

5) Through 2D and 1D convolutional neural networks, it is
possible to extract a feature map representing the spa-
tial relationship ofMel spectrogram images of bearings
and industrial machines (valve, pump, fan, slide rails).
In addition, temporal feature maps for time-series anal-
ysis can be extracted through LSTM.

6) The proposed SCRLSTM model using various load,
noise, and time series-based mechanical equipment
datasets demonstrates superior generalization ability as
it shows better performance in average accuracy and
confusion plot compared to the other five networkmod-
els. This generalization capability effectively handles
the task of diagnosing machine faults.

The remainder of this paper is organized as follows.
Section 2 briefly describes the core deep-learning con-
cept used in the backgrounds and reviews related studies.
Section 3 describes the Mel-spectrogram images obtained by
applying a signal processing technique to the time-series-
based raw-signal data and presents the new deep-learning-
based model framework. Section 4 briefly describes the
experimental design and presents the experimental results.
Finally, Section 5 presents the conclusions and proposes ideas
for additional work.

II. BACKGROUND
The frequency and time domains of vibration sensors have
been used to detect anomalies in acoustic scene classification
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and event-detection technologies [7], [15], [16]. The use of
deep learning to classify acoustic scenes and detect acous-
tic events has seen considerable development, with several
promising studies conducted into these aspects [17], [18].
Anomaly detection systems for mechanical equipment
have largely been studied using convolutional neural net-
works (CNNs) and long short-term memory (LSTM).

A. CONVOLUTIONAL NEURAL NETWORK
Over the past few years, CNN have been widely used in
the image and signal processing fields, and the scope of fur-
ther utilizing CNN in these fields has been ascertained [19].
Recently, a combination of 1D and 2D CNN has been used
for image classification and pattern recognition, and the
combination has shown promising possibilities in processing
structured data. It has been confirmed that the combined use
of 1D and 2D CNN provides higher performance than the use
of only one of the CNN [20].

CNN is a deep-learning architecture created by imitat-
ing the human optic nerve. It can learn the unique fea-
tures of images regardless of the location and direction of
objects, unlike the multilayer perceptron. 1D and 2D CNN
are realized using the same principle. The CNN performs by
combining convolution (realized using an existing image pro-
cessing filter) with a neural network. The convolution opera-
tion maintains the spatial information of images, dramatically
reduces the amount of computation required compared to that
required by a fully connected neural network, and shows good
performance in image classification.

FIGURE 1. 1D convolutional neural network architecture.

FIGURE 2. 2D convolutional neural network architecture.

The convolution stages shown in Figure 1 and Figure 2
represent a learnable convolution filter set, including
pooling tasks. The CNN uses such a convolution filter instead

of a pixel to solve the problem encountered by a multilayer
perceptron. The convolution filter extracts the features (cor-
ners and curves of an image) of the input data by calculating
weights and applying an activation function while moving
at regular intervals from the top left to the bottom right of
the image through a window. If the parts that the operating
filter passes through coincide with the features extracted by
the convolution filter, a high output can be obtained, thus
improving the possibility of achieving good image classifi-
cation. The major features extracted by learning the image
using such an operating filter are input to the pooling layer,
which reduces the image size by lowering the dimensions.
The pixels in a specific region in the image are grouped and
reduced to a representative value. This pooling layer helps
to reduce the amount of computation and prevent overfitting.
As the convolution operation progresses from the left in each
layer, the network learns by extracting more features.

B. RECURRENT NEURAL NETWORKS
A recurrent neural network (RNN) is a deep-learning-based
model that processes the input and output in a sequence
unit. The RNN performs learning by memorizing and using
information about past events. Theoretically, the RNN can
process sequence data well by considering the sequence, but
successful learning becomes difficult for the RNN as the
temporal range of the sequence increases [21].

Figure 3 shows the architecture of an LSTM repetitive
neural network architecture. The LSTM can overcome the
limitations of RNN learning by introducing two memories
and three gates. The LSTM has the ability to learn from a
long input sequence. The gradient loss problem can be solved
using the memory cell of the LSTM, and multiple LSTM
layers can be stacked.

FIGURE 3. Long short-term memory architecture.

The equation of the LSTM state can be expressed as [22]

ft = σ (Wf xt + Uf ht−1 + bf ) (1)

it = σ (Wixt + Uiht−1 + bi) (2)

ot = σ (Woxt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ tanh(ct ) (5)
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FIGURE 4. Proposed SCRLSTM architecture consisting of stacked 2D and 1D CNNs, residual LSTM, and LSTM.

where xt is the input vector, ft is the forget gate at time t , it
is the input gate at time t , ot is the output gate at time t , ct
is the memory cell activation vector at time t , and ht is the
hidden state at time t . Wf ,Wi, and Wo are the input weights
for the forget, input, and output gates, respectively. Uf , Ui,
and UO are the recurrent weights for the forget, input, and
output gates, respectively. bf , bi, bo, and bc are the biases. σ
is the sigmoid activation function, ◦ is the matrix product, and
tanh is the hyperbolic tangent activation function. The three
gates select the amount of information that is included in the
LSTM:

1) Forget gate: It determines the amount of past informa-
tion included in the LSTM. After ht−1 and xt are input,
the value that passes through the sigmoid σ function
is the output value of the forget gate. The output range
of the sigmoid σ function is between 0 and 1. A value
of 0 means that the information of the previous state is
forgotten, whereas a value of 1 means that the informa-
tion of the previous states is memorized.

2) Input gate: It determines the amount of new informa-
tion that is stored. The sigmoid is taken after receiving
ht−1 and xt as inputs, and the hyperbolic tangent is
taken with the same inputs. Then, the product operation
value becomes the output value of the input gate.

3) Output gate: It determines which value will finally be
output. The ht value in the present moment is operated
with ct and can be used as the input of ht+1 of the next
time point as soon as ht is output.

III. SCRLSTM MODEL FOR FAULT DIAGNOSIS
This study proposes a new model that combines 2D and 1D
CNNs and residual LSTM and LSTM to detect anomalies in
a time-series-based mechanical equipment vibration dataset.
Figure 4 shows the proposed SCRLSTM model. In the input
layer of the proposed model, the spatial information of Mel-
spectrogram image is maintained using the multifilter of the

2DCNN layer, and the features of the adjacent low-frequency
image are extracted and learned. Then, the extracted features
pass through the pooling layer, where they are gathered and
strengthened and are then used as input for the 1DCNN layer.
The 1D CNN amplifies the efficiency of operations by low-
ering the dimensions of the previously extracted important
information pertaining to the mechanical equipment. The fea-
ture values extracted through the CNN layers are used as the
input values of the residual LSTM layer. Figure 5 shows the
residual LSTM layer of the proposed model. As mentioned
above, the LSTM provides higher accuracy than the RNN
because the former has better learning ability. However, even
if the number of layers of the LSTM is increased, only a
specific number of layers operate, and the network becomes
too slow and finds it difficult to learn. Thus, a deep LSTM
network can cause gradient loss problems as in the case of
an RNN. To solve this problem, a residual LSTM layer that
models the difference between the outputs of the intermediate
layer and next layer is used in the ensemble [23].The advan-
tages of Residual LSTM is that it can increase the accuracy
and improve the computational speed during learning by
using the residual connection [24], [25]. Moreover, it helps
to solve the problem of gradient loss during backpropagation
calculations and can greatly improve the gradient flow [23].
Furthermore, it can learn the feature maps from the spatial
feature relationship of the time-series-based Mel image data
obtained through the CNN. In the last layer, temporal feature
maps between channels are extracted through the LSTM
layer and fully connected layer from the output values of
the residual LSTM layer, which has the time-series features
of the industrial machines and bearing elements [26]. These
features are then supplied to the output classification layer,
which converts them into a probability distribution between
0 and 1 corresponding to the class using the softmax activa-
tion function [27], [28] [29], [30]. Thus, anomalies can be
detected by classifying normal and abnormal data into two or
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more classes. The softmax function is expressed as follows:

Softmax (xi) =
exp(xi)∑k
j=1 (xj)

for i = 1, 2 . . . k (6)

where x it is the input, t is the time step, hit is the hidden state,
and cit is the cell state. W i is the weight, and W i+1 is the
weight of the t−1. Residual connections between LSTM i and
LSTM i+1 Accordingly, the following equation is obtained:

cit , h
i
t = LSTM i

(
cit−1, h

i
t−1, x

i−1
t ;W

i
)

x it = hit + x
i−1
t

cit , h
i
t = LSTM i+1

(
ci+1t−1, h

i+1
t−1, x

i
t ;W

i+1
)

(7)

FIGURE 5. Residual LSTM architecture.

The reason for each hyperparameter configuration is as
follows. Selected (2,2) as. The kernel size in the 2D con-
volutional and the Maxpooling layers produced improved
performance so the (2,2) kernel size was selected instead
of the commonly used (3,3) kernel [31]. The kernel size
in the 1D convolutional layer is larger than that of the 2D
convolutional layer to capture the basic components with
the general characteristics of the previously extracted image.
We also used heuristic approach to specify the number of
convolutional layer nodes with good performance. In this
method, the number of nodes in the 2D convolutional layer
was 10, 8 nodes were used in the 1D convolutional layer for
the bearing dataset, and 54 nodes were used in the industrial
machine dataset. The LSTM layer is configured differently
for each data. The layer 4 and layer 5 have the same number
of nodes because they are residual connections, and the layers
6 and 7 are also configured with the same number of nodes
for the same reason. The LSTM layer increases the number
of nodes when connected from layer 5 to layer 6 to learn
features in more time domains according to the scalability of
node capacity. Moreover, the LSTM layer, which is layer 8,
obtained the best results when an experiment was conducted
with the same number of nodes as the output nodes.

TABLE 1. Architecture parameters of model.

IV. EXPERIMENTAL ANALYSIS
A. DESCRIPTION OF CASE WESTERN RESERVE
UNIVERSITY BEARING DATASET
To verify the accuracy of the SCRLSTM model, which is the
proposed deep-learning-based model, for the fault diagnosis
system of an industrial plant, the time-series-based bearing
dataset provided by the Case Western Reserve University
(CWRU), which is the benchmark dataset for bearing data,
was used [32]. The data used in this study were collected
from the drive accelerometer of the device (Figure 6) and
the accelerometer at the end of the fan. To reflect the various
cases encountered in industrial sites, the data were processed
and collected from various points for various motor loads
(0, 1, 2, 3 hp) and motor speeds (1720–1797 rpm) [33]. How-
ever, because the data in the 0 hp load had missing values,
experiments were performed only for 1, 2, and 3 hp; i.e., the
0 hp load was excluded in this study. Table 2 lists information
pertaining to the fault labels of the dataset. Sampling frequen-
cies of 12 and 48 kHz were used for data collection. Many
studies have performed experiments considering sampling
vibration data for both 12 and 48 kHz or for only one of
these frequencies [10], [34]. In this experiment, 48 kHz sam-
pling vibration signals were used. In the case of the dataset,
the normal data contain only 48 kHz sampling data. Because
many bearing faults appear at high frequencies, effective
defect diagnosis research should use high-frequency sam-
pling data [35]. The number of open CWRU bearing datasets
is insufficient for training the deep-learning-based model.
Therefore, in this experiment, the amount of data available for
training the model was augmented. This method can improve
the accuracy of the model and reduce overfitting [36].
To increase the amount of data, the overlapping samples in
the time-series-based data were extracted using the sliding
windowmethod [37]–[39]. As shown in Figure 7, the learning
dataset is composed of a window length of 4096 data points
and a step size of 64 [40]. To secure two or more rotation
data points of the rotating motor shaft, the bearing defect area
was extracted by selecting a window of 4096 data points.
A window length of 4096 data points ensures the capture
of the effects of at least two bearing faults. The number of
data points in the full rotation of the load axis is expressed
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as follows:

N = FS ×
60
ω

(8)

where N is the number of data points, FS is the sampling fre-
quency, and ω is the rotating shaft speed. As listed in Table 3,
rotating shaft speeds of 1772, 1750, and 1730 rpm were
used for the operation conditions. This approach is similar
to the approach described in the literature that used 48 kHz
sampling data [40]. The test data were generated using the
same window length, but the dataset was configured such
that the data samples would not overlap. The number of data
points according to the labels of the training and test datasets
listed in Table 4 was configured identically for each load
condition.

FIGURE 6. CWRU center test apparatus.

TABLE 2. Faults labels of CWRU bearing dataset.

FIGURE 7. Sliding window method for data augmentation.

B. DESCRIPTION OF MALFUNCTIONING INDUSTRIAL
MACHINE INVESTIGATION AND INSPECTION DATASET
The malfunctioning industrial machine investigation and
inspection (MIMII) dataset contains time-series-based vibra-
tion sound data [6]. The dataset is composed of data for

TABLE 3. Dataset information.

TABLE 4. Total dataset samples.

four types of machines: valves, pumps, fans, and slide rails.
Furthermore, the dataset is composed of 70% training and
30% test datasets. The abnormal data of the valve dataset
were collected repeatedly according to the operation state of
the solenoid valve (open and closed). In addition, the pump
dataset was generated by continuously draining water from
a pool and continuously filling water into the pool. Fur-
thermore, the fan dataset represents the gas flow or airflow
in the plant. The slide rails represent a linear slide system
consisting of a mobile platform and fixed stage base. The
entire data were collected using microphones arranged at
10 cm intervals. Each dataset was recorded as audio signals
containing+6, 0, and−6 dB noise. The signals include 16-bit
audio data sampled at 16 kHz. The abnormal faults in each
dataset were as follows:

1) Valve: The abnormal data generated when the valve is
opened or closed contain a cracking sound.

2) Pump: The abnormal pump data contain sounds related
to leakage, contamination, and clogging.

3) Fan: An abnormal dataset of fans contains data gener-
ated by unbalanced voltage changes.

4) Slide rails: The abnormal slide rail data contain sounds
related to rail damage, a loose belt, and a lack of
grease.

As mentioned above, the MIMII datasets have different SNR
values. The different SNRs of each dataset indicate the dif-
ference between the data categories. The SNR equation is as
follows:

SNRdB = 10log10(
Psignal
Pnoise

) (9)

where PSignal denotes the average signal power and Pnoise
denotes the average noise power. For each SNR of
the datasets, the average power PSignal was calculated
while considering Pnoise for every segment of the valve
data.
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C. MEL-SPECTROGRAM METHODS
To ensure that the CNN developed for image processing can
be applied to audio, preprocessing is required by which the
audio, which is in the form of 1D data, can be converted to
an appropriate input. In the preprocessing stage, the audio
feature data in the time–frequency domain based on sound
(e.g., represented by a Mel-spectrogram) are extracted. Then,
the CNN is trained to consider these data as one image. This
method can be effectively applied to audio [41], [42], and
the Mel-spectrogram image in the time–frequency domain
can be used to detect anomalies [43]–[45]. The Mel- spectro-
gram can be generated through a three-step signal processing
method:

1) Audio signals are expressed in a digital format using the
samples of the mechanical vibration dataset together
with the time series.

2) The audio signals are mapped from the time domain
to the frequency domain using fast Fourier transform,
and the mapping is performed in the overlapping win-
dow segment of the audio signals.

3) Finally, the spectrogram is configured by converting
the y-axis (frequency) to the log scale and the color
dimension (amplitude) to decibels, and the Mel spec-
trogram is formed by mapping the y-axis (frequency)
to the Mel scale.

The sampling rate of signal processing, Mel band, frame
length, and frame stride were used as the parameters for
the conversion to the Mel-spectrogram image. The sampling
rate refers to the number of samplings per unit time, and
the Mel band reduces the frequency axis to a specific size.
The window size indicates the frequency resolution of signal
processing. The hop length for the Fourier transform of the
specified time domain was set and compressed according to
the Mel curve. The parameter values used in this experiment
were 0.025 s for the frame length; 0.010 s for the frame
stride; 40 and 48 Hz for the Mel band and sampling rate of
the bearing data, respectively; and 80 and 16 kHz for the
Mel band and sampling rate of the industrial machine data,
respectively.

The transformed Mel-spectrogram image can better repre-
sent the special function of the sound (signal) state related
to the difference between the normal and abnormal states
than the original dataset. Figure 8 shows the raw signals
and transformed Mel-spectrogram images of the bearing
dataset, and Figure 9 shows the raw signals and transformed
Mel-spectrogram images of the industrial machine dataset.
The variations in the amplitude of each set of time-series-
based data are reflected in the Mel-spectrogram image. The
x-axis of the transformed bearing image is expressed in
terms of a time period of 0.085 sec with a window length
of 4096 data points; these values are the same as those for
the raw signals. The x-axis of the industrial machine image
has a time period of 10 sec. The y-axis of the bearing and
industrial machine images represents the Mel-scale-mapped
value of the frequency. When the actual experiment was

FIGURE 8. Raw signals and Mel-spectrogram (144 × 72 pixel) images of
bearing dataset.

performed, the x-axis and y-axis of the Mel-spectrogram
image were removed and used as the input value of the actual
model.
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FIGURE 9. Raw signals and mel-spectrogram (360 × 144 pixel) images of
industrial machine dataset.

D. DATA AUGMENTATION AND STRUCTURAL SIMILARITY
INDEX MEASURE METHODS
The dataset acquired from the real world has differences in
the number of data points for each class, and in a critical
case, all the data belong to one class only. Machine learning
algorithms assume that each class has an equal ratio of data.
In the case of a dataset with unbalanced classes, machine
learning algorithms cannot perform accurate learning and are
biased toward a class that makes up a large proportion [46].
Consequently, class imbalance occurs, wherein classes can-
not be accurately classified although the overall accuracy is
high. Therefore, data augmentation aimed at increasing deep-
learning performance is being actively researched, and the
accuracy of deep-learning-based models has increased with
the data augmentation ratio [47].

The MIMII dataset used in this experiment has an imbal-
anced dataset. The dataset (valve, pump, fan, and slide rail
data) contains considerably less abnormal data than normal
data. When the model was tested with a biased number
of normal and abnormal data points in the given dataset,
the accuracy was high, but detection was not performed prop-
erly because most abnormal data were classified as normal
data. Therefore, we performed audio dataset augmentation
in the time domain. Data augmentation was performed by
moving the time, increasing the time, reducing the volume,
and adding noise to all abnormal audio datasets.

The structural similarity index measure (SSIM) scale was
used to compare the differences between the original and
augmented Mel-spectrogram image data [48]. The SSIM
equation is as follows:

l (x, y) =
2µxµy + C1

µ2
x + µ

2
y + C1

(10)

where µx is the average of the x image, µy is the average
of the y image, and C1 is the normalization constant of
luminance. The following equation represents the average
brightness based on the above parameters:

c (x, y) =
2σxσy + C2

σ 2
x + σ

2
y + C2

(11)

where σx is the standard deviation of the x image, σy is the
standard deviation of the y image, andC2 is the constant of the
contrast term. The following equation represents the contrast
of the image:

s (x, y) =
σxy + C3

σxσy + C3
(12)

where σxy represents the correlation coefficient between
x and y. The structures of the original and augmented images
were compared by calculating the correlation coefficients of
x and y.

SSIM (x, y)= l (x, y) c (x, y) s(x, y) (13)

After comparing the original and augmented image data
using the SSIM scale, only the image data with an SSIM
value of 85% or higher were used as the input values of the
deep-learning-based model. Table 5 lists the values before
and after the data augmentation for the industrial machines
with different SNRs.

E. COMPARISON BETWEEN RAW SIGNALS AND MEL
SPECTROGRAMS
In this experiment, the performance differences between
the signal data of the time-series-based vibration dataset
were compared using the supervised-learning-based SCRL-
STM model and the Mel-spectrogram image data in the
time–frequency domain obtained by transforming the data.
As mentioned above, the dataset obtained by applying data
augmentation to the original dataset was used for the raw-
signal dataset andMel-spectrogram image dataset. Themodel
using the 1D raw-signal data as input was constructed using
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TABLE 5. Industrial machine dataset samples.

the 1D CNN layer instead of the 2D CNN layer. The param-
eters of the SCRLSTM (1D CNN+1D CNN+ Residual
LSTM+LSTM) model for using raw signal data as input
values are configured differently according to bearing data
and industrial datasets. The first 1D convolutional layer for
the bearing dataset used 4 kernel sizes and 356 kernels,
and the second 1D CNN layer used 10 kernel sizes and
54 kernels. Moreover, the first 1D convolutional layer for the
industrial dataset used a kernel size of 362 and the number
of kernels of 1032. The second 1D convolutional layer used
a kernel size of 10 and 386 kernels. As listed in Table 6,
anomaly detection using the data was carried out using the
precision, recall, and F1 score, which are the metrics for
classification performance. Precision is the ratio of the actual
abnormal data to the data classified as abnormal by the
model. Recall is the ratio of the actual abnormal data to the
data predicted by the model to be abnormal. Furthermore,
the F1 score is the harmonic average of precision and recall.
The Mel-spectrogram image data of the bearing exhibited
excellent performance with higher values of precision, recall,
and F1 score than the raw signals of the bearing. Both datasets
showed similar results for each load. The difference in the
performance between the raw signals and Mel-spectrogram
images in the industrial machine dataset was larger than that
in the bearing dataset. Furthermore, as the noise signal power
ratio of the raw signals and image dataset of the industrial
machines considering the SNR decibel values increased, the
precision, recall, and F1 score values of the pump and fan
data decreasedMoreover, the same result was obtained for the
slide rails data, indicating a lower performance. In contrast,
as the data signal power ratio of the SNR decibel values
increased, a better performance result was obtained for the
industrial machine dataset. Overall, the performance of the
deep-learning-basedmodel using theMel-spectrogram image
was higher with higher precision, recall, and F1 score values

than the model using the raw-signal data. It can be concluded
thatMel-spectrogram data are less affected by the recognition
rates of CNN and LSTM according to noise compared to raw
data. In particular, the raw data showed a tendency to show
a large change in classification accuracy according to the
SNR ratio. Therefore, in other experiments, the accuracy
of the fault diagnosis system between the proposed model
and other models was compared using the Mel-spectrogram
image obtained through the signal processing of the bearing
and industrial machine datasets.

Figure 10 shows the receiver operating characteris-
tic (ROC) curve of the SCRLSTM model using the
Mel-spectrogram image as the input. The x-axis of the ROC
curve indicates the false positive rate, which is the rate at
which the model predicts actual normal data as abnormal
data, whereas the y-axis indicates the true positive rate, which
is the rate at which the model predicts actual abnormal data as
normal data. A larger area of the ROC curve indicates higher
anomaly detection and classification performance.

F. PERFORMANCE UNDER DIFFERENT LOADS
In this experimental set, the domain adaptation performance
of the SCRLSTM model was tested. The experiment was
performed to examine the amount of data that was generalized
under various load conditions. A dataset with three loads
was used in this study (Table 3). Two scenarios were consid-
ered. In the first scenario, the model was trained using data
collected under one set of load conditions, and the data for
different load conditions were tested. In the second scenario,
the model was trained using data with two different loads, and
the test was performed using a different single load.

1) SCENARIO 1: SINGLE LOAD TO SINGLE LOAD
Table 7 presents information on the accuracy of the model for
the dataset used in this scenario. In this scenario, when the
dataset was configured, the training and test datasets for each
load were combined and trained. Likewise, the verification
load dataset for testing the model validation was obtained
by combining the training and test datasets. Figure 11 com-
pares the accuracy between the proposed SCRLSTM model
and other models including CNN-LSTM based on 2D
convolutional layer and LSTM layer, [49], ResNet-SVM
model [8], RESNET-SVM model, an ensemble model of
SVM model and 2D CNN-based RESNET-18, Snapshot
CNN [11] based on LENET-5 using cyclical learning rate
scheduler, WDCNN [40] based on 1DCNN and LSTM par-
allel architecture, SRDCNN [50] model based on residual
1D dilated convolution using the input gate architecture
of LSTM. As listed in Table 7 and shown in Figure 11,
there were only small differences in the adaptation for each
load. The models that contained the LSTM layer, which
can reflect the time-series characteristics, showed excellent
performance. The model that used only the CNN generally
showed lower performance than the model that contained the
LSTM layer, which suggests that the model faces difficulty
in adapting to other load areas. The model showed the best
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TABLE 6. Results of raw signals and mel-spectrogram images.

performance in training the 1 hp load, whereas its perfor-
mance generally dropped when training the 3 hp load.

Moreover, it shows the best performance at 1hp to 2hp
and the lowest accuracy at 2hp to 3hp. It can be assumed FIGURE 10. ROC curve of mel-spectrogram image datasets.
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FIGURE 10. (continued.) ROC curve of mel-spectrogram image datasets.

FIGURE 11. Results for scenario 1 (single load to single load).

TABLE 7. Accuracy (%) of models in scenario 1 (single load to single
load).

that the adaptation experiment of the domain according to
each load is not related to the distance for each load. The
proposed model generally achieved excellent accuracy in
transfer learning for each load compared to the other mod-
els. In addition, the proposed SCRLSTM model generally
showed excellent results regardless of the load conditions and
performance. Figure 12 shows the confusion plots obtained

when the proposed model was tested for load characteristics
different from the trained load characteristics.

2) SCENARIO 2: MULTIPLE LOADS TO SINGLE LOAD
We considered the case in which the specified data of a
different single load is used after training the bearing data
for scenario 2 under various load conditions according to an
approach used in a previous study[34]. In this case, a powerful
fault diagnosis system can be obtained because the model can
be trained using data collected under various load conditions.
The data in scenario 2 were configured by combining the
training and test datasets. Figure 12 shows the confusion plots
obtained when the proposed model was tested for a load
whose characteristics were different from those of the trained
load. Table 8 and Figure 13 shows the results of scenario 2.
The data corresponding to 1 and 2 hp after training the model
with different loads showed good classification performance.
However, the performance for detecting anomalies in the 3 hp
data after training the model using the 1hp and 2 hp data
was considerably lower. A shift in this domain to 3 hp could
presumably impede classification if there are potential addi-
tional undiagnosed fault conditions. The results for scenarios
1 and 2 showed that the characteristics of the 3 hp data were
different from those of the 1hp and 2 hp data. Furthermore,
all the algorithms that were trained using data with various
load conditions achieved an accuracy of 80% or higher. The
models having the LSTM layer showed a considerably high
accuracy, but the ResNet-SVM model showed the lowest
accuracy. Overall, the results of the SCRLSTM model were
the best for all the loads.

TABLE 8. Accuracy (%) of models in scenario 2 (multiple loads to single
load).

G. PERFORMANCE UNDER DIFFERENT SNR SIGNALS
Next, the robustness of the proposed model to a noisy envi-
ronment was investigated. In actual industrial sites, there can
be various causes of noise (e.g., accidents in the power grid,
abnormal functioning of the inverters and motors of power
sources, operation of internal facilities such as inverters and
motors, and electric processing). Therefore, an effective fault
diagnosis system must be robust to noise generated in indus-
trial sites.

Therefore, in this experiment, based on the results obtained
from transfer learning, a number of samples were configured
for a dataset that was 100% augmented from the total number
of samples by adding various levels of white Gaussian noise
in consideration of different SNR signals (−8,−6,−4,−2, 0,
2, 4, 6, and 8 dB) in the 1 hp load learning dataset and the test
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FIGURE 12. Confusion plots obtained using results for scenario 2
(multiple loads to single load).

dataset representing the load. The experiment was performed
by converting the raw-signal data obtained by considering the
SNR to a Mel-spectrogram image.

The performance of all the models that diagnose signals
with different SNRs is shown in Figure 14 and Table 9. All

FIGURE 13. Results for scenario 2 (multiple loads to single load).

FIGURE 14. Results of different models for noisy dataset.

TABLE 9. Accuracy (%) of models for noisy dataset.

of these models were trained on 225,000 learning samples
which had noise-free and noisy datasets; the accuracies of
each model corresponding to the nine SNRs were compared
against those of the other models. The classification accu-
racy of models for a high noise power ratio of −8 dB to
−2 dB decreased considerably compared to the SNR value,
which generally reduced. Furthermore, the accuracy of most
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TABLE 10. Performance (%) of models for industrial machine dataset.

models decreased when the SNR value decreased to −2dB
to −8 dB, where the power ratio of the signal was higher
than the noise power ratio. The model accuracy improved

TABLE 10. (Continued.) Performance (%) of models for industrial
machine dataset.

when the SNR value increased with the power ratio of the
signals.

In summary, CWRU bearing data presents indications of
internal and external raceway faults, and noise is applied
to this dataset to obscure the actual fault condition, which
can interfere with the anomaly detection classification per-
formance. However, the SCRLSTM model performed well
in an environment with many types of noise and had the best
performance compared to other models when the noise power
ratio was high. Even in an environment with noise, the model
having the LSTM layer showed good efficiency for noise
removal. The accuracy of different models for each SNR ratio
is shown in Figure 14.

H. ANOMALY DETECTION FOR INDUSTRIAL MACHINE
The anomaly detection model was investigated for a time-
series-based vibration industrial machine dataset. The imple-
mentation of the deep-learning-based model using the given
dataset as the input considerably decreased the accuracy
because of data imbalance, and most abnormal data were
detected as normal data during the verification. Thus, as listed
in Table 5, the data imbalance problem was solved through
data augmentation. The overall accuracy improved when the
number of normal and abnormal data points was similar.
Table 10 compares the five models to demonstrate the per-
formance of the SCRLSTM model. The proposed model
showed good performance under various types of noise when
the SNR was −6, 0, and +6 dB for the valve, pump, fan,
and slide rails data. The classification performance of the
proposed model is shown in Figure 15. As in the case of the
noise experiment for the bearing, a higher performance was
obtained when the signal power was higher. At −6 dB with
the highest noise power, most models showed low accuracy.
Furthermore, the algorithm using the LSTM model gener-
ally achieved high performance, but the ResNet-SVM model
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FIGURE 15. Results of SCRLSTM model for industrial machine dataset.

showed the lowest accuracy. In the industrial machine dataset,
there was a difference in classification performance accord-
ing to the noise effect. The smallest performance difference

was found in the Valve dataset, and a large difference existed
in the Fan dataset. Compared to the Valve dataset, the Fan
dataset is estimated to be the most vulnerable to noise.

V. CONCLUSION
The main contribution of this study is that it overcomes the
data imbalance problem in the time-series-based data for
bearings and industrial machines through data augmentation.
Also, faults can be detected early by considering various
types of noise in actual industrial environments. Furthermore,
it lends itself to the development of a data-based, intelligent
fault diagnosis system to improve the productivity of the
aforementioned equipment by using Mel-spectrogram that
contain various features obtained from raw signals. The pro-
posed SCRLSTMensemblemodel, which combines the CNN
and LSTM, not only provides state-of-the-art classification
performance but also solves many problems encountered
in existing intelligent data-based fault diagnosis techniques,
such as variations in time-series-based data and load and
robustness to noise. The SCRLSTM ensemble model pro-
posed in this study was validated using datasets for bear-
ings and industrial machines (valves, pumps, fans, and slide
rails). The model outperforms existing supervised-learning-
based fault diagnosis methods in various actual environ-
ments. The proposed model can extract the spatial features of
mel-spectrogram images that show the characteristics of con-
spicuous noise through 2D and 1D CNNs. Moreover, it can
efficiently detect normal and abnormal data by extracting
the features of time-series-based vibration datasets through
residual LSTM and LSTM layers.

To verify the performance of our proposed SCRLSTM
model, we plan to conduct future experiments by adding
noises under various conditions to the datasets of other types
of mechanical equipment such as motors and gearboxes.
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