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ABSTRACT Distributed Denial of Service (DDoS) attacks mitigation typically relies on source IP-based
filtering rules; these may present scaling issues due to the vast amount of involved sources. By contrast,
we propose a source IP-agnostic DDoS traffic classification and filtering schema that identifies malicious
packet signatures via supervised Machine Learning methods and subsequently generates signature-based
filtering rules. To accelerate packet processing, our schema utilizes XDP middleboxes operating as pro-
grammable Deep Packet Inspectors. Signatures are extracted from network traffic as unique combinations of
the most significant packet features; these are subsequently fed to supervised Machine Learning algorithms
that classify them as malicious or benign. Malicious signatures undergo a reduction process tailored to the
attack vector in order to generate a concise set of filtering rules, thus expediting mitigation performance.
Our schema was implemented as a proof-of-concept and evaluated for DNS volumetric attacks in terms
of signature classification accuracy and packet filtering throughput. Experiments were based on benign
and malicious traffic datasets recorded in production network environments. Our approach was compared
to source-based mechanisms in terms of (i) malicious traffic identification, (ii) filtering rules cardinality,
and (iii) packet processing throughput required in modern high speed networks. The experimental results
demonstrate that our signature-based approach outperforms IP-based alternatives, achieving high detection
accuracy and significant generalization capabilities.

INDEX TERMS Packet signatures, traffic classification, DDoS mitigation, supervised machine learning,
data plane programmability, eXpress Data Path.

I. INTRODUCTION
Distributed Denial of Service (DDoS) attacks originate from
compromised hosts and/or exploited vulnerable systems pro-
ducing traffic from a large number of sources [1]. Such
attacks are continuously increasing in frequency and magni-
tude [2].

Legacy DDoS protection mechanisms maintain statistics
based on source IP or network flows to detect and ultimately
mitigate malicious traffic. Maintaining flow/IP-based metrics
requires data from lengthy time-windows that may hinder
real-time identification of malicious traffic and the subse-
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quent mitigation. Moreover, traditional filtering mechanisms
rely on IP-based rules that increase proportionally to the num-
ber of alleged malicious sources. In massive attacks that may
include millions of source IPs [1], such a filtering approach
raises scalability issues [3], [4].

To counter the shortcomings of IP-based schemes, we pro-
pose a source IP-agnostic DDoS protection mechanism that
classifies and mitigates network attacks based on packet
signatures i.e. unique combinations of packet field values.
Motivated by our early effort [5] on SYN Flood attacks,
we consider DDoS Amplification attacks, commonly used to
overwhelm network infrastructures. The proposed approach
relies on the widely observed fact that such attacks may
be characterized by a modest number of salient packet
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characteristics [1]. Consequently, our schema attempts to
dynamically reveal related packet characteristics (signatures)
and use them as filters to block the attack traffic in a scalable
fashion.

In a nutshell, the proposed mechanism continuously mon-
itors the network traffic and extracts packet signatures based
on the most important features tailored to an attack vector
(e.g. DNS or NTP Amplification attacks). Packet signatures
are classified via supervised Machine Learning (ML) algo-
rithms, appropriately trained with benign and malicious traf-
fic, focusing on distinct packet fields (features). Malicious
signatures are further subjected to a reduction process before
being employed as filtering rules to expedite mitigation per-
formance. The reduced set of signatures is finally deployed
on high-performance programmable scrubbing middleboxes.

The remainder of this paper is structured as follows:
Section II contains background information and discusses
related work; Section III offers an architectural overview;
Section IV provides implementation details of the pro-
posed Signature-based Traffic Classification and Mitigation
schema; Section V provides experimental evaluations for
volumetric DNS attacks regarding processing performance
and classification accuracy based on traffic traces recorded
in production networks. Finally, Section VI discusses future
steps and directions.

II. BACKGROUND AND RELATED WORK
In subsection II-A, we present background information
related to advances in programmable data planes, focusing on
eXpress Data Path (XDP) as a key component in our archi-
tecture. Related efforts on DDoS protection are discussed in
subsection II-B and our main contributions are summarized
in subsection II-C.

A. PROGRAMMABLE DATA PLANES—eXpress DATA PATH
Recent advances in data plane programmability enable cus-
tomized solutions tailored to various network applications.
Approaches such as P4 [6] enable operators to reprogram
the processing pipeline of a network element, employing
novel switch architectures [7]. Implementing complicated
algorithms in such time/memory constrained environments
poses significant challenges; it is possible however to
offload preliminary steps of anomaly detection schemas
to P4 devices [8]–[10]. Similar programmable data plane
approaches may rely on Linux-based servers combined with
high throughput frameworks such asData PlaneDevelopment
Kit (DPDK) and PF_RING that bypass the Linux Kernel.

An alternative approach is the eXpress Data Path (XDP)
[11], a softwarized data plane that harmonically co-exists
with the Linux Kernel. XDP is executed prior to heavy net-
working stack operations and can be seamlessly ported in
various Linux machines. It provides high-performance pro-
grammable packet processing in Commercial off-the-shelf
(COTS) hardware, thus enabling deployment even within
application servers to gather data on or filter malicious traffic.
XDP has beenwidely adopted in production network environ-

ments for various applications e.g. Load-Balancing, Intrusion
Detection and DDoS protection.

XDP programs, written in C, are executed either in soft-
ware within the context of the network driver or offloaded
directly in Network Interface Cards (NICs), e.g. Netronome
SmartNICs [12]. Their execution is initiated upon the arrival
of packets at the network interface. In turn, packet data can
be parsed, extracted and stored in persistent memory referred
to as Berkeley Packet Filter (BPF) Maps [11]. These are
key-value stores defined when the XDP program is loaded.
XDP returns an action for each packet which defines how it
should be handled. The packets can be either (i) dropped -
XDP_DROP, (ii) passed to the network stack - XDP_PASS,
(iii) redirected to another interface - XDP_REDIRECT or (iv)
transmitted back - XDP_TX. In this work, we employed
XDP to design and implement high-performance yet pro-
grammable monitoring and filtering mechanisms. Note that,
the design and implementation of XDP applications needs to
account for specific limitations: (i) bounded loops, (ii) fixed-
size data structures, (iii) 4096 BPF instructions per program,
and (iv) limited support of kernel functions.

B. DDoS TRAFFIC CLASSIFICATION AND FILTERING
There are various efforts reported in the literature that
attempt to classify and filter DDoS attacks. In subsection
B-1, B-2 below, we present related flow-based and signature-
based schemes accordingly. These efforts are summarized
in Table 1.

1) FLOW-BASED MECHANISMS
In [13], a DDoS traffic classification schema based on a
Multilayer Perceptron (MLP) was introduced. Traffic metrics
related to flows and packet rates (UDP, ICMP) are collected
and used as input to an MLP, tasked with classifying network
traffic to benign/malicious.

In [14], an OpenFlow (OF) DDoS detection mecha-
nism was presented. This periodically collects entries from
OF-enabled network devices, extracts flow-related features
and classifies them using Self-Organizing Maps (SOM).
In [15], an SDN DDoS detection and mitigation schema was
proposed. Sharp increases in the rate of Packet-In messages
are considered as an indication of DDoS attacks; subse-
quently a mitigation pipeline is triggered. OpenFlow rules
are collected from network devices and classified via an
appropriate MLP that uses the same feature set as in [14].
Malicious flows are then blocked via appropriate mitigation
entries in OF-enabled devices.

In [16], a large set of flow-related features is extracted
from packets and sent to OF Controllers. These are used
as input to a Stacked Autoencoder (AE), which provides
traffic classification of the flow as benign or attack. Authors
highlight processing limitations in Controller-based packet
collection and feature extraction.

In [17], a two-level schema was introduced. Initially,
entropy values are calculated for the number of destination
IPs and ports, with sudden changes indicating an ongoing
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attack. The victim is identified and traffic destined towards
its IP is redirected to an OF-enabled switch. This device acts
as a second, more refined level of detection, that uses packet
symmetry to identify malicious flows. Malicious flows are
subjected to source IP-based aggregation in order to reduce
the required blocking rules imposed by hardware limitations.
Finally, filtering rules are deployed to the OF switch while
benign traffic is redirected back.

In [18] ATLANTIC, an SDN framework for DDoS attack
detection and mitigation, was proposed. Entropy changes for
specific flow features within consecutive time-windows indi-
cate the existence of an attack. Network flows responsible for
entropy changes are fed in a traffic classification component
based on K-means and Support Vector Machines (SVM).
K-means is used initially to create clusters of common flows
and SVM is further used to identify malicious flows. Subse-
quently, drop rules are installed for malicious flows.

A flow-based traffic classification mechanism was sug-
gested in LUCID[19]. Flow values are collected from
different time windows and represented as arrays; subse-
quently these arrays are fed to a Convolutional Neural
Network (CNN) to identify time-dependent traffic patterns.
Attack mitigation was not addressed in the LUCID paper.

2) SIGNATURE-BASED MECHANISMS
Signature-based traffic classification and filtering is com-
monly featured in Intrusion Detection/Prevention Systems
(IDS/IPS), e.g. Suricata [20]. Network packets are monitored
and their packet field values are compared to predefined sets
of malicious signatures. Notably, the widely employed DDoS
detection tool FastNetMon [21], relies on static rules to iden-
tify Amplification attacks. Although these approaches are
able to instantly identify previously observed attack patterns,
they are not able to detect zero-day threats.

By contrast, in [22] a tool for extracting zero-day attack
signatures was proposed; upon the detection of an attack, their
system analyzes both benign and attack packets. Signatures
suddenly appearing in high frequency in the network traffic
are attack indicators, while evenly distributed signatures usu-
ally characterize benign traffic.

In [23] DeepDefense, a DDoS detection schema based on
Recurrent Neural Networks (RNN) was introduced. Traffic
traces, collected within sliding time windows, are translated
into arrays of packet features. These are fed to an RNN that
segregates malicious from benign packets.

Finally, Cloudflare, currently one of the largest Content
Delivery Networks (CDN) that also offers DDoS protection
services, employs packet signatures to filter malicious traf-
fic [24]. To the best of our knowledge, the exact methods
for traffic classification and signature-based filtering are not
publicly available and thus we cannot compare our approach
with them.

3) KEY CONTRIBUTIONS
Our key contributions can be summarized as follows:

• Most of the reported efforts in the literature employ
metrics aggregated by IP addresses or network flows for
traffic classification [13]–[18]. In contrast, we focus on
the most appropriate packet features to identify mali-
cious signatures based on supervised Machine Learning
algorithms. Due to their enhanced generalization capa-
bilities, these can accurately identify zero-day (unseen)
attacks (outperforming static approaches [20], [21]).

• We exploit common characteristics observed in the
attack traffic to generate appropriate signature-based
filtering rules. These are subjected to a reduction process
that minimizes their number and expedites the mitiga-
tion performance.

• Our approach does not require collection of data over
lengthy time-windows and corresponding time refer-
ences as in [22], [23]. Instead, current packet field values
are used, thus expediting detection and mitigation of
attack traffic with no significant deterioration of clas-
sification accuracy.

• We propose a dynamic, tunable yet high-performance
scrubbing mechanism based on programmable software
data planes (XDP). Unlike proprietary monolithic solu-
tions, our approach offers programmablemonitoring and
filtering functionalities without compromising on packet
processing performance.

• We conducted detailed experiments focusing on volu-
metric DNS attacks; we employed high packet rates and
real network data (benign and malicious) to illustrate the
applicability of our mechanism in production network
environments.

III. DESIGN PRINCIPLES AND ARCHITECTURAL
OVERVIEW
In this section, we outline design principles and present a
baseline overview of the proposed Signature-based Traffic
Classification and Mitigation architecture.

A. DESIGN PRINCIPLES
The main design principles of our mechanism are summa-
rized below:

• Signature-based filtering: We opt to surgically miti-
gate DDoS attacks focusing on distinct packet feature
combinations (signatures) exhibited by offending traf-
fic. Unlike traditional DDoS defense mechanisms that
rely on blocking a massive number of IP sources, our
approach attempts to generate IP-agnostic filtering rules.

• Filtering rules reduction: Filtering rules are stored
within network devices (switches, routers, firewalls) that
typically impose limits to the number of entries they
can support. To reduce their number, source-IP based
procedures [4], [17] employ IP aggregation techniques.
Our signature reduction mechanism identifies instead a
concise set of rules required to block an attack, with
minimal effect on benign traffic.
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TABLE 1. Taxonomy of traffic classification and filtering mechanisms.

• Traffic classification based on supervised Machine
Learning (ML) algorithms: Our approach is trained
using packet characteristics from normal (benign) traces
and past attack incidents. The learning process can be
tailored to specific network environments, thus enhanc-
ing classification accuracy. To that end, the employed
features should be carefully selected and tuned depend-
ing on anticipated attack vectors.

• High performance scalable network functions based
on programmable middleboxes: Typically, traffic moni-
toring and filtering functionalities are implemented by
monolithic appliances. In contrast, we opted to use
COTS hardware (i.e. low-cost NICs) as data plane pro-
grammable appliances powered by the XDP framework.
This enables online packet handling without impos-
ing control plane processing overhead. XDP-enabled
appliances can be instantiated on-demand and scaled
according to traffic and application requirements, thus
providing a suitable mechanism for cloud-based scrub-
bing services.

B. ARCHITECTURAL OVERVIEW
In Fig. 1, we present a high-level overview of the proposed
architecture for DDoS protection, applicable either in transit
provider networks or customer/edge network domains. Our
mechanism consists of four separate components that offer:
(a) Signature Extraction, (b) Signature Classification, (c) Sig-
nature Reduction and (d) Anomaly Mitigation. In what fol-

lows, we outline theDDoS detection andmitigationworkflow
referring to steps i – vi illustrated in Fig. 1.

Benign and malicious traffic originating from various
Internet sources traverses through a network infrastructure
equipped with programmable devices. Network traffic is
continuously monitored (step i) in the data plane by the
Signature Extraction component. This component employs
high-performance programmable mechanisms (e.g. XDP) to
extract appropriate packet fields, i.e. signatures, pertaining
to different attack vectors. Note that these fields should be
selected after careful examination of benign and malicious
traffic for a specific exploited protocol. Our methodology for
selecting the most important packet fields (features) will be
presented in subsection IV-A; note that the proposed method
is not limited to a specific attack vector.

Extracted monitoring data (signatures) are organized per
destination IP address and relayed (step ii) to the Signature
Classification component, a control plane module that cate-
gorizes them as either benign or malicious. This component
relies on classification methods based on supervised ML
algorithms that have been trained with attack and benign
traffic. Malicious signatures identify ongoing attacks target-
ing specific IP addresses (victims). Classified signatures are
subsequently employed for mitigation rule generation (step
iii) via the Signature Reduction component that expedites
mitigation performance. This reduction process is formulated
as a multi-objective (Pareto) optimization problem. Specif-
ically, combinations of the most important packet features
are explored to identify a smaller feature set that minimizes
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FIGURE 1. High-Level overview of the DDoS protection architecture.

the number of malicious signatures for an acceptable level of
benign traffic drops. The selection of a Pareto optimal pair is
based on DDoS Protection service operator preferences.

Finally, the reduced set of signatures is conveyed (step iv)
to the Anomaly Mitigation component, that acts as a traffic
scrubbingmechanism in the data plane. Data packets destined
to the victim IP are redirected to this component (step v)
via appropriate traffic diversion techniques [25]. Malicious
packets are dropped while benign traffic is returned back to
the router (step vi) to be forwarded to the destination IPs.

Extraction, classification and reduction of signatures,
as well as mitigation rule generation, are performed continu-
ously in distinct intervals (time-windows). Selected intervals
should be small (e.g. 10 seconds) to enable rapid propagation
of information and ultimately prompt accurate traffic scrub-
bing.

IV. IMPLEMENTATION DETAILS
Our methodology for packet feature selection and implemen-
tation details of the components in Fig. 1 are presented in the
following subsections.

A. PACKET HEADER FEATURE SELECTION METHODOLOGY
Packet header fields forming signatures are of paramount
importance for our mechanism. They are used to (i) classify
packets to malicious/benign and (ii) create filtering rules for
blocking the offending traffic.

In DDoS Amplification attacks, vulnerable protocols and
services are exploited in a very specific manner for generat-
ing massive amounts of traffic. This traffic exhibits packet
characteristics that typically deviate from benign network
traffic. In order to identify the most important characteristics
pertaining to a specific attack vector, we select the relevant
packet header fields (features) of each abused protocol. For
that purpose, we employ the methodology described below.

We start with an initial set of n features F =

{F1,F2, . . .Fn}, that includes (i) packet header fields of an
abused protocol (e.g. DNS) and (ii) IP packet Total Length
and UDP datagram Length fields (these values may differ in
cases of IP fragmentation of large UDP packets). The former
may reveal packet field values that are employed for generat-
ing large payloads in such attacks. The latter may correspond
to large values, typical for DDoS Amplification [26].
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The packet header field selection algorithm uses both
benign and malicious traffic for an attack vector to train a
RandomForest (RF) classifier [27] based on a training dataset
T of examples with F features. The RF training process
provides (i) the Out-Of-Bag (OOB) score, a metric that shows
the accuracy achieved on examples that were not included in
the training process of each decision tree [28] and (ii) the
importance of each feature [29]. High values of OOB score
illustrate that the employed fields can be used to accurately
classify benign and malicious packets. The feature selection
pseudocode is:

Packet Header Field Selection Algorithm
Input: Training Dataset T ,Packet Features F = {F1,F2, . . .Fn}
Output: Packet Features F ′ = {F1,F2, . . .Fm}
1: (OOBn, Franked)←Random Forest (T ,F)
2: Franked←sort_descending(Franked)
3: for each q ∈ [1, n) do:
4: m = n− q
5: F ′ = TOP m entries from Franked
6: OOBm←Random Forest (T ,F ′)
7: if (OOBn − OOBm) ≥ ε then
8: return F ′

9: end for

The RF feature importance metric enables the selection of
m < n important features according to the above iterative
process, see also [30]. As a result, we obtain a reduced set of
features F ′ = {F1,F2, . . .Fm} that are used for packet mon-
itoring, traffic classification, signature reduction and attack
mitigation purposes. Note that in our experiments out of
n = 20 features, we were able to obtain m ≤ 8 important
features (see Table 2 and 3 in subsection V-B).

The elimination of non-important features (selecting m
most important ones) has the following benefits for our
schema: (i) increased packet throughput of Signature Extrac-
tion and Anomaly Mitigation components of Fig. 1 since
fewer packet fields are required to be parsed and stored; (ii)
enhanced accuracy and shorter training times of supervised
learning algorithms; (iii) lower complexity of the Signature
Reduction component due to the lower dimensionality of its
input (this will be elaborated in subsection IV-D).

B. SIGNATURE EXTRACTION (SE)
SE is a high-performance monitoring mechanism based on
the XDP framework. It collects mirrored network traffic,
extracts appropriate packet fields and conveys monitoring
data to the Signature Classification (SC) component, as illus-
trated in Fig. 2.

The combination of packet feature values can be repre-
sented by the signature vector X = [x1x2 . . . xm]T, where
xi is the value for packet field i. Each unique signature X
corresponds to a row in the Monitoring Data table of Fig. 2.
Every observed packet signature pertains to a counter stored
within an appropriate BPF Map (i.e. hash table).

SE consists of various instances, each associated with a
specific attack vector. They all contain a Data Extractor and
a Data Exporter module:

• The Data Extractor is a kernel space XDP (data plane)
program that extracts and stores packet header values
for the preselected fields F ′, including the destination
IP address. Destination IPs are required for the identi-
fication of the victim and subsequent traffic scrubbing
(redirection and filtering).

• The Data Exporter is a user space program that period-
ically retrieves the contents (i.e. signatures) of the BPF
Map and conveys them to the SC component.

Note that the SE component could be implemented using
any approach that provides access to packet fields such as
sFlow [31]. We opted for XDP since it provides cost-effective
high-throughput monitoring of all packets (no sampling) and
does not exhibit limitations on the available packet fields to
be collected.

C. SIGNATURE CLASSIFICATION (SC)
SC collects monitoring data and classifies them using super-
vised Machine Learning (ML) methods to identify malicious
signatures. It consists of theData Handler and theMLClassi-
fier module. The Data Handler module collects the different
signatures X relayed by the SE component and preprocesses
them (if needed) in a data normalization step. In turn, the set
of X is used as input to the ML Classifier module which
classifies them as benign/malicious. This module is trained
with malicious and benign traffic datasets related to a specific
protocol (e.g. DNS attacks and benign DNS traffic).

Malicious signatures correspond to ongoing attacks tar-
geting specific IP addresses (victims). The mitigation pro-
cess for the victim IP addresses is initiated by conveying
malicious and benign signatures to the Signature Reduction
(SR) component to generate filtering rules (see the following
subsection IV-D).

Note that we experimented with two widely used super-
vised ML algorithms (see subsection V-C); however, our
schema can employ alternate classification algorithms.

D. SIGNATURE REDUCTION (SR)
SR receives both malicious and benign signatures from the
SC component and reduces the number of malicious signa-
tures to expedite the mitigation performance of the Anomaly
Mitigation (AM) component. Asmentioned, malicious signa-
tures will be used to generate filtering rules. These are stored
in memory resources (i.e. BPF Maps in the XDP context)
that enable packet matching in the data plane. Their number
significantly affects the deployment and lookup time in the
BPF Map, which is ultimately related to the AM packet
processing performance (throughput).

The SR component searches for a concise set of signa-
tures that can block offending traffic, with minimal effect on
the benign traffic. This was formulated as a multi-objective
(Pareto) optimization problem, in which we search for feature
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FIGURE 2. DDoS protection service component interactions.

subsets F ′′ = {F1,F2, . . .Fk} of the feature set F ′ =
{F1,F2, . . .Fm}, k < m, to identify operating points that
simultaneously minimize:

1) the number of malicious signatures (filtering rules)
2) the percentage of benign traffic drops

Let M ′ and B′ be the sets of malicious and benign signa-
tures respectively based on features from F ′. For each subset
F ′′, we similarly define M ′′ and B′′ using only the features
in F ′′. Objective (i) is calculated as the number (cardinality)
of unique signatures in M ′′. Objective (ii) is the number of
benign packets that correspond to the signatures in M ′′ ∩ B′′

divided by the number of benign packets that correspond to
signatures in B′′. This provides the percentage of benign traf-
fic that would be dropped (False Positive Rate) if we used as
filtering rules the signatures inM ′′. Note that the intersection
M ′ ∩ B′ is an empty set; however, the intersection M ′′ ∩ B′′

may result to non-empty sets in the reduced feature space
F ′′, corresponding to False Positive cases (see subsection V-C
Signature Classification Accuracy).

The proposed optimization problem points to Pareto opti-
mal solutions (referred to as Pareto-optimal front). However,
due to stringent time constraints for attack mitigation, related
algorithms would typically stop prior to Pareto-optimal front
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identification. We opted for a fast evolutionary approach
based on Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [32]. The algorithm starts with arbitrary subsets
F ′′ ⊂ F ′ and iteratively attempts in each step to further reduce
the objectives. At each iteration (generation), new subsets of
F ′ are generated based on random combinations of F ′′ that
correspond to the best solutions produced so far in previous
iterations. The algorithm stops when a time limit is reached
thus generating suboptimal subsets.

As stated above, the proposed approach will generate sev-
eral solutions near the Pareto-optimal front. Naturally, only
one of the can be ultimately selected for mitigating the attack.
This selection should be tuned per customer network pro-
file to depict network operator preferences e.g. acceptable
percentage of dropped benign traffic (False Positive Rate).
Finally, from the selected solution, signatures of M ′′ are
conveyed to the AM component to generate filtering rules.

E. ANOMALY MITIGATION (AM)
AM is a high-performance programmable firewall based on
the XDP framework. It consists of two modules: the Rule
Handler and the Packet Filter. The former receives a list of
malicious signatures associated with a victim IP, installs them
as filtering rules in a BPFMap and triggers traffic redirection
for the targeted victim IP. The latter is an XDP kernel space
program similar to the Data Extractor module of the SE
component. The Packet Filter receives traffic destined to the
victim IP and extracts the packet fields based on the reduced
set of signatures F ′′. The extracted packet fields values are
subsequently compared to the filtering rules within the BPF
Map. If the combination of packet fields (i.e. signature) of the
received packet is contained in the BPF Map, the packet is
dropped (XDP_DROP). Otherwise, the packet is considered
benign and transmitted back (XDP_TX) to the edge router to
be normally forwarded to the victim IP. For implementation
options related to traffic redirection and reinjection see [25].

Note that SE can be implemented with alternate moni-
toring solutions (e.g. sFlow) that can extract packet char-
acteristics. However, the AM component is tightly coupled
with programmable data planes solutions, such as XDP, able
to perform inline packet filtering based on selected packet
fields.

V. EXPERIMENTAL EVALUATION
We selected as a case study volumetric DNS attacks, one of
the most common DDoS Amplification attack vectors [33].
We evaluate our schema in an experimental testbed, employ-
ing real datasets and synthetic network traces as detailed in
subsection V-A below. In short, our experiments attempt to:
(i) identify and select the most important features for DNS
traffic classification, (ii) assess the signature classification
accuracy of our supervised learning mechanism and (iii)
compare the proposed signature-based approach to source
IP/flow-based alternatives. These are presented accordingly
in subsections V-B, V-C and V-D.

FIGURE 3. Proof-of-concept testbed setup.

A. DATASETS/TESTBED
Our proof-of-concept testbed is illustrated in Fig. 3. The
experimental setup was used to evaluate packet monitoring,
signature classification, signature reduction, and packet fil-
tering capabilities. The SE and AM components were imple-
mented within the XDP framework in the data plane. They
were deployed on a physical machine (XDP-enabled node)
equipped with a Netronome Agilio CX 2 × 10G Smart-
NIC [12]. For packet generation purposes, we used a Virtual
Machine (VM), equipped with an Intel X520 NIC 2 × 10G,
able to generate packets at high rates using the PF_RING ZC
framework. The SC component was implemented using the
scikit-learn and PyTorch Python libraries while the SR com-
ponent was based on the Platypus framework [34]. They were
both deployed as control plane modules on a VM equipped
with 12 vCPUs and 12GB RAM.

Real network traces were used to assess the signature
classification accuracy of our schema, whereas synthesized
traffic was used for stress testing packet filtering capabilities.
As benign traffic, we used DNS responses from: (i) a 10G
transit link between WIDE and DIX-IE (an experimental
Internet Exchange), henceforth WIDE-G [35], (ii) a 1G tran-
sit link between WIDE and an upstream provider, henceforth
WIDE-F [35], and (iii) Thapar University Campus Network,
henceforth TU Campus [36]. As malicious traffic, we used
the Booters datasets. These datasets, henceforth individually
referred to as B1, B2, . . .B7 or collectively asBooters, contain
seven different DNS-based Amplification attacks generated
by DDoS-for-Hire services. The attacks [26] were captured
during a controlled experiment conducted between the Uni-
versity of Twente and SURFnet, the Dutch Research and
Education Network.

All Booters attacks apart from B4 and B5 used type
ANY DNS responses, a commonly used method for DNS
Amplification attacks that returns every available Resource
Record (RR) for a given fully qualified domain name. In B4
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and B5 attacks, the attackers attempted to use type A requests.
Specifically, B4 contains multiple responses for the domain
packetdevil.com, a domain name that resolves into a very
large number of IP addresses in the DNS response payload.
By contrast, B5 corresponds to a type A attack, that could not
generate responses with heavy payload.

B. PACKET HEADER FIELD SELECTION FOR DNS
AMPLIFICATION ATTACKS
In this subsection, we evaluate the packet header field selec-
tion algorithm for three different combinations of benign and
malicious DNS traffic. Initially, we selected the 20 packet
fields (features) as presented in Table 2.

Employing the features of Table 2, we trained three differ-
ent Random Forest (RF) classifiers consisting of 100 decision
trees with default parameters of the scikit-learn library for
tree structure and stopping [29]; each one includes all Booters
traffic and a particular benign dataset (WIDE-G, WIDE-F,
TU Campus). The selected features except for dns.qry.name
correspond to numerical values and were fed directly to the
RF classifiers; dns.qry.name was transformed to a numerical
value via hash encoding. In Fig. 4, we depict the importance
of each feature for the different combinations of datasets,
as computed by the scikit-learn library. The reported values
correspond to the average feature importance for multiple
training iterations.

In order to identify the most important features,
we employed for each dataset combination the iterative pro-
cess described in subsection IV-A. The threshold ε (line 7 in
Packet Header Field Selection Algorithm pseudocode) was
set equal to zero. In Table 3, we present the most important
features that the algorithm produced for each dataset.

One of the dominant features in all cases is the type of
the query (dns.qry.type) since most attacks in the Booters
dataset rely on DNS type ANY messages to generate large
volumes of malicious traffic. The length of the IP packet
and the UDP datagram are also important features; benign
DNS traffic mainly consists of small packets while DNS
Amplification attacks consist of large responses. Similarly,
dns.count.answers and dns.count.add_rr can also be used
to identify malicious traffic, as these counters significantly
increase in attack cases. Furthermore, some of the attacks
used the same dns.qry.name (root-servers.net for B1, B2, B3,
and anonsc.com for B6, B7) to generate large DNS packets,
thus the hashed dns.qry.namemay also enhance the accuracy
of the resulting classification. Interestingly, dns.flags. recde-
sired, dns.flags.recavail and dns.flags. authoritative are of
high importance for the Booters+WIDE-F dataset combina-
tion. This follows from the fact that most DNS responses in
WIDE-F dataset (benign) were generated by iterative queries
on authoritative DNS servers, while in Booters (malicious) by
recursive queries in non-authoritative servers.

As expected, dns.flags.response, dns.flags.z,
dns.count.queries, dns.qry.class, dns.flags.opcode are of low
importance for DNS traffic classification. These had almost
the same value for every packet, malicious or benign. In addi-

TABLE 2. Packet header fields (features) for DNS traffic classification.

tion, based on our experimental observations the features
dns.flags.authenticated, dns.flags.truncated, dns.flags.rcode,
dns.id, dns.count.auth_rr and dns.flags.checkdisable do not
improve the Out-Of-Bag (OOB) score of the RF classifiers
and have been removed.

In summary, the proposed packet field (feature) selec-
tion algorithm identifies a small set of features out of the
20 initially chosen. These are used to accurately classify both
benign and malicious DNS traffic patterns. The classification
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FIGURE 4. Feature importance provided by random forest classifiers for DNS traffic.

TABLE 3. Most important packet fields for DNS traffic classification.

results are based on diverse and realistic traffic scenarios
sourced from heterogeneous network environments.

C. SIGNATURE CLASSIFICATION ACCURACY
In this subsection, we evaluate the signature classification
accuracy of the proposed mechanism, using two different
supervised learning methods. We implemented two classi-
fiers: (i) Random Forests (RF) with 100 decision trees and (ii)
an N x (2N + 1) x 1 Multilayer Perceptron (MLP), with

sigmoid activation functions, as suggested in [13]; N is the
number of features (see Table 3 above). TheMLPwas trained
with examples of batch size equal to 4096 and MLP weights
were updated based on Adam method [37] with learning rate
α = 0.01. We used a single epoch with a validation dataset
comprising 30% of the training dataset. The training proce-
dure was conducted separately for each unique combination
of the following:

• Each classifier (RF, MLP)
• Each benign dataset (WIDE-G, WIDE-F, TU Campus)
• Each set Ai = {Booters - Bi}, where i = 1 . . . 7, e.g.
A4 = {B1, B2, B3, B5, B6, B7}

There are 42 different dataset combinations. Each trained
model is evaluated against a mix of traffic (test dataset) based
on the excluded attack dataset Bi and benign traffic from
the same origin (e.g. WIDE-G). Specifically, for WIDE-G
and WIDE-F, we employed two 15-minute traces for training
and eight 15-minute traces as test dataset. Similarly, for TU
Campus we used two 1-hour traces for training and eight
1-hour traces as test dataset respectively.

For MLP we employed undersampling techniques on the
attack datasets as they contain more signatures than benign
datasets. Training data for MLP were also normalized in
the range of [0,1] to enhance classification capabilities.
In Fig. 5, we illustrate the True Negative Rate (TNR) of all
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FIGURE 5. True Negative and True Positive Rates for various training scenarios using Booters combined with the benign datasets WIDE-F,
WIDE-G, and TU Campus.

combinations, which is the percentage of benign traffic that
was classified as benign and the True Positive Rate (TPR),
which is the percentage of attack traffic classified as mali-
cious.

As illustrated in Fig. 5, RF is a reliable method to identify
both benign (WIDE-G, WIDE-F, TU Campus) and attack
traffic (Booters) patterns, provided it is trained with diverse
attack data. However, RF is not able to recognize attacks that
significantly deviate from the training attack pattern. This is
clearly illustrated when the model is trained with A4, which
does not include B4 of the test dataset. Recall that B4 contains
large DNS responses with multiple type A RR for a domain
name, while the training dataset (A4) contains attack traces
with type ANY DNS responses.

Similar to RF, MLP can identify benign and attack traffic
with high accuracy for all combinations of training data.
However, MLP identified B4 as an attack, illustrating signifi-
cant generalization capabilities on detecting ‘‘unseen’’ (zero-
day) attacks.

Note that B5 was not identified by any classifier as an
attack trace. As already mentioned it corresponds to a failed
attack that did not produce heavy payload, thus exhibiting
similarities to benign traffic. Interestingly, all classification

mechanisms in our experiments discovered attack data within
the benign datasets (WIDE-F, WIDE-G). A closer inspection
of the original network traces revealed modest attack traffic,
i.e. consecutive type ANY responses from specific IP sources
to the same destination IP. These data weremanually removed
and are not included in Fig. 5.

An interesting topic pertaining to ML algorithms are the
training and test runtimes. With regards to the former, i.e.
training runtime, has limited impact to our mechanism since
the training process is conducted offline and the values are
in any case in the order of seconds for both models. Qualita-
tively, training runtimes for MLP were on average 11 times
faster than RF. The most important metric for us is the test
runtime since it corresponds to real-time signature classifica-
tion. These values were in the order ofmillisecondswithMLP
runtimes being on average 17 times faster than RFs. Such
values are negligible compared to the overall time-window
during which our mechanism identifies and mitigates DDoS
attacks. This time-window (several seconds) includes packet
monitoring, signature classification and filtering rule deploy-
ment. To our knowledge, such time-windows are consistent
with production solutions offered by major security service
providers [38].
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FIGURE 6. Comparison between source-based and signature-based protection mechanisms for Booters datasets.

In summary, the proposed approach provides accurate clas-
sification of DNS Amplification attacks and benign traffic.
This was validated for 42 different training/testing scenarios
utilizing real data from heterogeneous network environments.
Notably, MLPs achieved detection of ‘‘unseen’’ attack traf-
fic patterns (not used in the training process), illustrating
better generalization capabilities compared to RF classifica-
tion algorithms. However, RF is still a reliable classification
method, provided that it is trained with diverse attack data.

D. IP-BASED VS SIGNATURE-BASED PROTECTION
MECHANISMS
In the following subsections, we compare our signature-
based schema to legacy IP-based mechanisms e.g. [13]–[18].
We evaluate both approaches considering their (i) ability

to identify and filter malicious traffic, (ii) filtering rules
cardinality and (iii) packet filtering performance. These are
described in subsections D-1, D-2 and D-3 respectively.

1) MALICIOUS TRAFFIC IDENTIFICATION AND FILTERING
Typically, DDoS protection mechanisms collect monitoring
data within time-windows (TW) and utilize them to classify
network traffic. Based on this classification, filtering rules are
generated and used to block the attack traffic. In this subsec-
tion, we compare our signature-based protection mechanism
to the optimal IP-based approach, that identifies all malicious
IP sources.

In our comparisons, we analyzed network traffic from the
first time-window of each attack dataset Bi and extracted the
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malicious DNS signatures (based on WIDE-F features1) and
source IP addresses. Subsequently, we calculated from the
whole attack dataset Bi the traffic (in bytes) that corresponds
to the extracted DNS signatures and IP sources divided by
the total attack traffic. This illustrates the percentage of the
attack traffic that is dropped by each approach based on
monitoring data from the first time-window of the attack.
In Fig. 6, we present for every Bi the dropped attack traffic
(%) considering various time-windows and packet sampling
rates. Short TWs (e.g. 1s) allow for rapid detection and
mitigation. Sampling rate 1:1 corresponds to our XDP-based
monitoring approach (SE), while lower values correspond to
sparse packet sampling, typically employed in monitoring
mechanisms e.g. sFlow [39].

Our signature-based approach outperforms the source
IP-based alternative for all attack scenarios and combinations
of time-windows (TW) and sampling rates. This is attributed
to the fact that the attack traffic is characterized by a few
amount of DNS signatures, typically distributed to multi-
ple IP addresses. Decreasing the sampling rate significantly
reduces the effectiveness of the source-based mechanism
especially for highly distributed attacks (e.g. B1, B4, B6,
B7). In contrast, our approach is not affected and is able to
successfully block most of the attack traffic (e.g. TW 1s - B3:
90%) even for the lowest sampling rate 1:2000. As expected,
increasing the time-window duration enables both mecha-
nisms to observe more data and thus filter more attack traf-
fic. Notably, our signature-based approach is able to filter
a greater portion of the attack traffic (for packet sampling
cases lower than 1:1) than the IP-based counterpart, while
using data from shorter time-windows (grey bars – IP 10s vs
yellow–signatures 1s bars).

In summary, packet signatures are associated with larger
amounts of attack packets compared to source IP addresses.
This supports the observation that signature-based schemes
may provide faster detection and more efficient filtering
of DDoS Amplification attacks than conventional source
IP-based mechanisms.

2) FILTERING RULES CARDINALITY
In this subsection, the number of filtering rules required
by IP-based schemes is compared to our signature-based
approach. Specifically, we extracted the total number of
unique sources for each Booter dataset (Bi) and the DNS
signatures (WIDE-F features2) that characterize all the mali-
cious traffic. Subsequently, we employed our Signature
Reduction (SR) component to calculate the reduced num-
ber of signatures that can match and block the malicious
traffic (DNS signatures - reduced). SR, for all Booters and
benign datasets combinations, concluded that dns.qry.name

1The total blocked attack traffic using WIDE-G and TU Campus feature
sets is on average for all scenarios ∼ 0.06% greater than WIDE-F.

2The total number of DNS signatures for all Booters using WIDE-G and
TU Campus feature sets is on average∼0.6% less thanWIDE-F and thus not
included in Fig. 7.

FIGURE 7. Comparison between source-based and signature-based
filtering rules for Booters datasets.

and dns.qry.type could be used to block all the offending
traffic without blocking benign traffic portions.

In Fig. 7, we compare (in logarithmic scale) the number
of the source IP filtering rules to the signatures that would
be required to fully block the seven DNS attacks of the
Booters datasets without signature reduction (DNS signatures
in Fig. 7) and with signature reduction (DNS signatures –
reduced in Fig. 7).

As illustrated in Fig. 7, the number of the required rules
is decreased considerably (on average∼91% for DNS signa-
tures and∼99% for DNS signatures – reduced). The benefits
are: (i) we do not rely on source-based filters that are tough
to maintain due to the extremely large cardinality of unique
IPs; (ii) we are not affected by dynamic IP changes during an
attack, e.g. introduced in case of rotating attackers and (iii)
we significantly reduce the memory consumed in the filtering
process.

In total, our signature-based approaches require signifi-
cantly less filtering rules to mitigate the total attack traffic
than IP-based alternatives. As mentioned, this benefits our
schema since large memory utilization results to increased
lookup times in software data planes (BPF Maps - XDP).
Hardware-based implementation may also face similar issues
due to memory constraints (scarce TCAM resources).

3) MITIGATION PERFORMANCE
In this subsection, the packet filtering performance (through-
put) of our approach is compared to source IP filtering
alternatives. We implemented three different XDP-based
mechanisms: (i) DROP_IP, an IP-based firewall that filters
packets based on their source IP address, (ii) AM, that fil-
ters packets according to DNS signatures of eight features
(WIDE-F features) and (iii) AM_REDUCED, that filters
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FIGURE 8. Packet throughput for IP-based and signature-based filtering
mechanisms.

packets according to DNS signatures (reduced) of two fea-
tures (dns.qry.name, dns.qry.type).

For stress testing, we employed synthesized network traces
DNS_TRACE(n). These contain n unique IP sources, n/30
unique combinations of DNS signatures of eight features and
n/850 unique DNS signatures (reduced) of two features. The
proportions were based on the experiments of the previous
subsection.3

We replayed various synthesized DNS traffic traces at
high-speed rates (10 Million packets per second - Mpps) and
measured (using the NIC drivers counters [40]) the packets
filtered by each XDP mechanism. In Fig. 8, we present the
percentage of blocked packets to the transmitted packets for
various traffic traces.

DROP_IP performs better than AM and slightly better than
AM_REDUCED for the DNS_TRACE(1,000) and (10,000);
however, it faces scaling issues as the number of IP sources
further increases. Specifically, DROP_IP packet processing
performance (throughput) decreases from 72% to 37% as
the number of IPs increases from 1,000 to 1,000,000. This
validates that the number of entries in a BPF Map are sig-
nificantly affecting its lookup time [3]. In contrast, both
our AM and AM_REDUCED are scaling better in terms
of packet throughput as the number of sources increases,
since few DNS signatures are used to drop the attack traffic.
Notably, AM_REDUCED achieves on average∼10% higher
packet processing rate than the AM, presenting the added
performance gain provided by reducing the number of DNS
signatures. This is mainly attributed to the fewer number of
entries contained in the BPF Map and fewer packet fields
required to be parsed and processed compared to AM.

3Recent DNS Amplification attacks that targeted our University Campus,
exhibited a greater proportion of IP attack sources to DNS signatures than
the ones mentioned above. Thus we anticipate that our signature-based
mitigation mechanism will perform even better with network traffic profiles
evolution.

Overall, our signature-based approach outperforms the
source IP-based alternative due to the fact that the attack
traffic can be described by a modest number of signatures.
This is even more beneficial in massive attack scenarios
where our approach achieves almost two times greater packet
filtering performance than IP-based alternatives, utilizing the
same set of resources.

VI. CONCLUSION
In this paper we presented an integrated schema for DDoS
protection that employs packets signatures for traffic classifi-
cation and filtering. It leverages on XDP to create performant
monitoring and filtering middleboxes, tailored to different
attack vectors. These operate either (i) as programmableDeep
Packet Inspectors (DPI) to extract monitoring data or (ii) as
flexible firewalls that block malicious traffic. Our approach
does not rely on IP-sources but employs appropriate traffic
signatures. This was based on the widely observed fact that
volumetric DDoS attacks, especially UDP-based, may be
characterized by a modest number of salient characteristics,
thus enabling efficient Machine Learning algorithms (RF,
MLP). Note that we did not consider temporal correlations
since these may require network data from lengthy time-
windows, thus hindering near real-time anomaly detection
and mitigation.

In our proof-of-concept, we experimented with benign
DNS traffic and malicious DNS Amplification attacks
recorded in production network environments. The experi-
mental results were promising and drew interesting conclu-
sions: (i) we were able to automatically identify the most
important features for DNS traffic classification for various
network traffic profiles; (ii) XDP-based middleboxes were
able to expediently monitor and filter network traffic; (iii)
RF and MLP illustrated high classification accuracy, with
the latter achieving significant generalization capabilities on
detecting unknown attacks; (iv) our signature-based approach
outperformed traditional IP-based schemes in terms of mali-
cious traffic identification, filtering rules cardinality, and
packet processing throughput required in modern high speed
networks.

Our experimental evaluation focused on volumetric DNS
attacks; however, the proposed approach is based on a generic
packet feature selection methodology, and can be seamlessly
extended to DDoS Amplification attacks. This follows from
the fact that such attacks abuse vulnerable protocols and ser-
vices in a very specific manner to generate massive amounts
of traffic targeting the selected victim. Indicatively, they may
exploit messages generated by SNMP GetBulk, NTP monlist
and SSDP SEARCH requests [1]. Selecting the most impor-
tant packet features (i.e. signatures) that are related to the
aforementioned attack vectors will enable implementation of
protection mechanisms similar to the one proposed in this
paper.

As future work, we will consider classification mech-
anisms that can jointly recognize various attack vectors
via multi-task learning techniques as in [41]. Additionally,

113074 VOLUME 9, 2021



M. Dimolianis et al.: Signature-Based Traffic Classification and Mitigation for DDoS Attacks

we will investigate application-layer attacks with empha-
sis on encrypted network traffic [42], [43], which may
require state information maintenance. This can be poten-
tially offloaded within XDP, protecting valuable resources
in firewalls, routers and hosts. XDP-based middleboxes are
modular andmay be easily adaptedwithin theNFVparadigm,
thus suitable for federated collaborations. Such work will
center on collaborative detection and cost-effective mitiga-
tion of malicious traffic across network federations, e.g.
extending our previous effort [44].

ABBREVIATIONS
Acronym Definition
AE Autoencoder.
AM Anomaly Mitigation.
BPF Berkeley Packet Filter.
CDN Content Delivery Network.
CNN Convolutional Neural Network.
COTS Commercial-Off-The-Shelf.
CPU Central Processing Unit.
DDoS Distributed Denial of Service.
DNS Domain Name System.
DPDK Data Plane Development Kit.
ICMP Internet Control Message Protocol.
IDS Intrusion Detection System.
IP Internet Protocol.
IPS Intrusion Prevention System.
ML Machine Learning.
MLP Multilayer Perceptron.
NFV Network Function Virtualization.
NIC Network Interface Card.
NSGA-II Non-dominated Sorting Genetic Algorithm-

II.
NTP Network Time Protocol.
OF OpenFlow.
OOB Out-of-Bag.
RAM Random Access Memory.
RF Random Forest.
RNN Recurrent Neural Network.
RR Resource Record.
SC Signature Classification.
SDN Software-Defined Networks.
SE Signature Extraction.
SNMP Simple Network Management Protocol.
SOM Self-Organizing Map.
SR Signature Reduction.
SSDP Simple Service Discovery Protocol.
SVM Support Vector Machine.
TNR True Negative Rate.
TPR True Positive Rate.
TU Thapar University.
TW Time-Window.
UDP User Datagram Protocol.
VM Virtual Machine.
WIDE Widely Integrated Distributed Environment.
XDP eXpress Data Path.
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