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ABSTRACT A fuzzy multiple hidden layer neural sliding mode control with multiple feedback loop
(FMHLNSMCMFL) is proposed for a single-phase active power filter (APF), where a sliding mode
controller is designed to make the current tracking error converge to zero and a new neural network with
multiple feedback loops is introduced to approximate unknown dynamics. At the same time, the fuzzy neural
network can eliminate chattering, improve the control accuracy and reduce the current distortion rate of APF.
Moreover, the proposed double feedback fuzzy double hidden layer recurrent neural network is the weighted
sum of fuzzy network and double hidden layer network and has strong global learning ability. The adaptive
parameters obtained by Lyapunov function can ensure the asymptotic stability of the system. Simulation
and hardware experiments verify the introduced FMHLNSMCMFL scheme is a viable control solution for
the APF.

INDEX TERMS Fuzzy multiple hidden layer neural sliding mode control, multiple feedback loop, sliding
mode control, active power filter.

I. INTRODUCTION
In recent years, power electronics technology has been
widely used in power systems. However, with the continuous
increase of the nonlinear load in power electronic equip-
ments, power quality distortion has become a serious prob-
lem [1]–[4]. Power grid harmonic control has always attracted
the attention of many scholars. APF can dynamically filter
out the harmonics in the system, and completely absorb
the harmonics in the system without resonance. The key
principle of APF to eliminate harmonics is to control the
on-off time of IGBTs [5]–[7]. Sliding mode control is the
mainstream algorithm for harmonic control in APF because
of its rapidity and strong robustness [8]–[11]. Haghighi
and Ziaratban [12] studied a non-integer sliding mode con-
troller to stabilize fractional-order nonlinear systems. Pashaei
and Badamchizadeh [13] presented a new fractional-order
sliding mode controller for disturbance rejection and sta-
bilization of a class of fractional-order systems with
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mismatched disturbances. Ding et al. [14] proposed a non-
singular fast fixed-time sliding surface for a flexible
air-breathing hypersonic vehicle. Mohammad et al. [15] pro-
posed a novel speed-control scheme for switched reluctance
motor drive based on a fast terminal sliding mode control
method. Safa et al. [16] defined a new sliding surface by
combining the conventional sliding surface in terminal slid-
ing mode control and the nonlinear function of the system
state integral. Although sliding mode control can ensure
the stability of the system under unknown disturbances and
model uncertainties, it cannot avoid the chattering. In order to
solve the above problems and eliminate the chattering, neural
network can be used to approach the system nonlinearities to
increase the accuracy of the control algorithm.

Nowadays, intelligent algorithms including fuzzy control,
neural network control have been applied to APF. Feedfor-
ward neural network (such as radial basis function (RBF)
neural network) has become a research hotspot in the field of
intelligent control due to its excellent approximation charac-
teristics. Although the feedforward neural network has poor
dynamic characteristics, it has the characteristics of simple

114294 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7954-2125
https://orcid.org/0000-0003-0885-1283


J. Zhuo et al.: Fuzzy Multiple Hidden Layer Neural Sliding Mode Control of APF

structure and wide application range. Zhang and Liu [17]
proposed an adaptive radical basis function neural network to
deal with dynamic tracking error problems for a three-phase
APF. Safa et al. [18] combined the state feedback controller
and the terminal sliding mode controller into a fuzzy sys-
tem. Vali et al. [19] proposed an adaptive neural sliding
mode control based on RBF neural network approximation
to eliminate chattering phenomenon in the sliding mode con-
troller. Fu and Li [20] designed a recurrent neural network
control method for single-phase grid-connected converters
with LCL filters. Terminal sliding mode controller with
new neural network structure and intelligent global sliding
mode controller with feature selection neural network and
fuzzy neural networks are proposed for active power filters
in [21]–[24].

The universal approximation theorem indicates that the
fuzzy system is a new universal approximator in addition
to polynomial function approximators and neural network
approximators. Fuzzy neural network (FNN) is a popular
technology combining the knowledge expression ability of
fuzzy logic system with the powerful self-learning ability of
neural network [25]. In [26], a novel adaptive fuzzy hysteresis
band controller is proposed for a current control system.
In [27], a fuzzy neural network estimator is used to estimate
the upper bound of the error between the actual value and the
observed value of the disturbance, which greatly improves the
control accuracy. In [28], a 5/5 fuzzy rule implementation
in a fuzzy controller conjunction with an indirect control
technique is proposed to improve power quality. Several
fuzzy and neural network methods to approximate the sliding
mode controller and system nonlinearities are investigated for
active power filters and other dynamic systems in [29]–[33].

Motivated by the research methods above, a
FMHLNSMCMFL scheme is proposed to approximate the
nonlinear term and eliminate the chattering and then improve
the harmonic suppression. Compared with existing methods,
the contributions of the proposed controller are summarized
as:

(1) A FMHLNSMCMFL approximator that combines the
advantages of the recurrent neural network and the fuzzy
neural network, and has a strong global learning ability is
proposed. The two hidden layers enhance the feature extrac-
tion capabilities of the neural network. The dual feedback
combines the current time and the output value of the previous
time neuron to improve the stability of the system.

(2) Because the existence of the activation function of the
hidden layer canmake the neural network have a strong fitting
function and training accuracy, the introduction of double
hidden layers can enable the neural network to achieve more
complex function fitting and provide higher training accu-
racy. Using a double hidden layer neural network to replace a
single hidden layer neural network can reduce the number of
nodes correspondingly and increase the response speed while
maintaining the same accuracy.

(3) The proposed neural network phase also has a dou-
ble feedback structure to further improve the approximation

ability compared with conventional neural networks. The
existence of internal feedback and external feedback can
make the system make self-adjustment in combination with
the state information and output signal at the previous
moment, making the output of the system smoother and
preventing sudden changes.

This paper is organized as follows. In Section 2, the prin-
ciple of a single-phase APF is given. Section 3 introduces a
new neural network, FMHLNSMCMFL, is introduced, and
the stability of the system is proved. In Section 4, the effec-
tiveness of the method is verified by MATLAB simulation.
Section 5 designs the hardware experiment. Section 7 gives
the conclusion.

II. DYNAMIC MODEL OF ACTIVE POWER FILTER AND
PROBLEM FORMULATION
APF is more and more widely used in dealing with har-
monic, such as Non-ferrous metallurgy, Electrified railway,
and Petrochemical industry. The main circuit of a single APF
is composed of four power electronic devices and DC-side
capacitors. The working principle of APF is to collect the
corresponding current and voltage signal through the sensor,
and then send them to the controller. Finally, the output signal
of the controller is modulated into pulse width modulation
(PWM), and the IGBT Driver receives the modulated signal
pulse signal.

Fig.1 is the block diagram of the APF control system, Us
andUdc are a supply voltage and a DC link voltage. is is a grid
current, ic is a compensation current and iL is a load current.
L and R are the equivalent inductance and resistance values
of the AC side.

FIGURE 1. The block diagram of active power filter.

Assuming that the IGBTs used in the control system is
ideal, a switching function is defined as:

U =

{
1, VT1,VT4 on,VT2,VT3 off
−1, VT1,VT4 off,VT2,VT3 on

(1)
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According to Kirchhoff voltage and current laws, the equa-
tion of compensation current in the main circuit is obtained
as:

i̇c = −
R
L
ic+

1
L
Us−

1
L
UMN (2)

where UMN = U·Udc is a AC-side voltage. The derivative
of (2) can be derived as:

ïc =
R2

L2
ic−

R
L2
Us+

1
L
U̇s+(

R
L2
Udc−

1
L
U̇dc)·U (3)

Therefore, the second order model of the system can be
obtained as:

ẍ = f (x)+bu+d(t) (4)

where x is the compensation current ic and control variable
u = U , and d(t) is a continuous differentiable and unknown
external disturbance,

f (x) =
R2

L2
ic−

R
L2
Us+

1
L
Us (5)

b =
R
L2
Udc−

1
L
U̇dc (6)

We can assume d(t) is a continuous bounded function as:
0 < d(t) < D, D > 0.

The objective of the APF control system is to design a
current controller tomake the harmonic compensation current
track a reference current.

The tracking error is defined as:

e = x−xr (7)

where xr is a reference current.
The first derivative of tracking error is:

ė = ẋ−ẋr (8)

Then, a standard sliding surface is defined as:

s = ce+ė (9)

where c is a sliding surface parameter
Thus, the first derivative of the sliding surface is:

ṡ = cė+ë (10)

Ignoring the disturbance d(t) and setting ṡ = 0 to solve the
equivalent control term ueq as:

ueq = −
1
b
[−ẍr+cė+f (x)] (11)

A switching term is added to compensate the disturbance
and make the control system stable:

usw = −
1
b
Kwsgn(s) (12)

where Kw is a sliding gain.
Therefore, a comprehensive controller is proposed as:

u = ueq+usw

= −
1
b
[−ẍr+cė+f (x)+Kwsgn(s)] (13)

Theorem 1: Considering the nonlinear mathematical
model (6), if we choose the controller (13), the asymptotic
stability of APF control system can be guaranteed.

V =
1
2
s2 (14)

By substituting (10) and (13) into the first derivative
of (14), we can obtain:

V̈ = s[cė+f (x)+bu+d(t)−ẍr ]

= s[cė+f (x)+b{−
1
b
[−ẍ+cė+f (x)+Kwsgn(s)]}

+d(t)−ẍr )

= s(d(t)−Kwsgn(s)) = sd(t)−Kw|s|

≤ |s|D−Kw|s| ≤ −|s|(Kw−D) (15)

If Kw > D, V̇ ≤ 0 is guaranteed, which is negative
semidefinite, that is, the system can reach the designed slid-
ing surface and remain on the sliding surface. According to
Barbalat’s Lemma and its deductions, the system is asymp-
totically stable and the tracking error and sliding surface can
converge to zero asymptotically.

III. FUZZY MULTIPLE HIDDEN LAYER NEURAL SLIDING
MODE CONTROL WITH MULTIPLE FEEDBACK LOOP
However the ideal controller (13) depends on an accurate
mathematical model, it cannot be realized if f (x) is unknown.
Therefore, in this part, a FMHLNSMCMFL strategy is pro-
posed to approximate the unknown f (x).

FIGURE 2. The block diagram of DFFDHLRNN.
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A. STRUCTURE OF FMHLNSMCMFL
The universal approximation theorem indicates that the fuzzy
neural network and the feedforward neural network are both
good nonlinear approximators. The proposed DFFDHLRNN
is a weighted summation of the output of the FNN and
the multiple hidden layer neural network, which makes the
approximation error smaller and the approximation accuracy
higher. The structure of DFFDHLRNN is shown in Fig. 2. It
consists of 7 layers: an input layer, a membership layer, a rule
layer, two hidden layers, a consequent layer, and an output
layer. The signal transmission of DFFDHLRNN and the basic
function of each layer are introduced in the following steps:

Layer 1- Input layer: It is also divided into three layers:
the first, the second and the third input layers. The first input
layer is the input part of the whole neural network where the
completed work is to input the signal of the neural network
and accept the output of the neural network in the last iter-
ation process through the feedback weight Weq. The second
input layer is the input layer of fuzzy neural network, which
completes the signal transmission of the upper part. The third
input layer is the input layer of double hidden layer, used to
complete the signal transmission of the upper part. In this
paper, the output of the i-th node of the first input layer can
be described as:

y1i = xi·exY ·Wri (16)

where y1i represents the output value of the i-th node of
the first layer neural network and exY is the output of the
neural network in the last iteration process. The input is
X = [x1, x2, . . . , xk ]T ∈ Rk×1. The feedback weight is
Wr = [Wr1,Wr2, . . .Wrk ]T ∈ Rk×1.
Because the second input layer and the third input layer

only play a role of transmission, and do not carry out
other processing. So the output of the two input layers is
unchanged. The output is Y 1

= [y11, y
1
2, . . . , y

1
k ]
T
∈ Rk×1.

Layer 2-Membership layer: In this layer, each node is
a membership function that usually selects Gaussian func-
tion to realize the fuzzification operation, enhancing the
ability of neural network to deal with nonlinearity. u =
[u11, u

1
2, . . . , u

1
L , u

2
1, u

2
2, . . . , u

2
L , . . . · · · , u

k
1, u

k
2, . . . , u

k
L]
T
∈

RkL×1, where uij represents the j-th Gaussian function of the
i-th input layer node, expressed as:

y2ij = uij = exp[−
(y1i+rij·exu

i
j−m

i
j)
2

(σ ij )
2

]

(i = 1, 2, . . . , k; j = 1, 2, . . . ,L) (17)

where M = [m1
1,m

1
2, . . . ,m

1
L ,m

2
1,m

2
2, . . . ,m

2
L , . . . · · · ,

mk1,m
k
2, . . . ,m

k
L]
T
∈ RkL×1 is the center. The base width is

σ = [σ 1
1 , σ

1
2 , . . . , σ

1
L , σ

2
1 , σ

2
2 , . . . , σ

2
L , . . . · · · , σ

k
1 , σ

k
2

, . . . , σ kL ]
T
∈ RkL×1;

R = [r11 , r
1
2 , . . . , r

1
L , r

2
1 , r

2
2 , . . . , r

2
L , . . . · · · , r

k
1 , r

k
2

, . . . , rkL ]
T
∈ RkL×1

is the feedback weight and exuij is the output of the mem-
bership layer in the last iteration process. The superscript

represents the i-th input layer and the subscript represents the
j-th Gaussian function.

Finally, the output of the membership layer is given as:

Y 2
= [y11, y

1
2, . . . , y

1
L , y

2
1, y

2
2, . . . , y

2
L , . . . · · · , y

k
1, y

k
2

, . . . , ykL]
T
∈ RkL×1.

Layer 3-Rule layer: The nodes in the rule layer play the
role of preprocessing fuzzy rules. The output of the i-th node
in the rule layer can be expressed as:

y3j =

k∏
i=1

y2ij

L∑
j=1

k∑
i=1

y2ij

(i = 1, 2, . . . , k; j = 1, 2, . . . ,L) (18)

The output is expressed as: Y 3
= [y31, y

3
2, . . . , y

3
L]
T
∈ RL×1

Layer 4-The first hidden layer: It is a nonlinear activation
function, which completes the preliminary feature extraction.
The activation function is usually a Gaussian activation func-
tion. The output of the j-th node of the first hidden layer is
expressed as:

y4j = φ1j = exp[−

k∑
i=1

(y1i−c1j)
2

(b1j)2
], (j = 1, 2, . . . , n) (19)

where the center is C1 = [c11, c12, . . . , c1n]T ∈ Rn×1,
the base width is B1 = [b11, b12, . . . , b1n]T ∈ Rn×1, the out-
put is Y 4

= [y41, y
4
2, . . . , y

4
n]
T
∈ Rn×1.

Layer 5-The second hidden layer: The second hidden
layer completes the further extraction of features, which can
improve the accuracy and reduce the computational complex-
ity. The output of the second hidden layer can be expressed
as:

y5j = φ2j = exp[−

k∑
i=1

(y4i−c2j)
2

(b2j)2
] (20)

The center is: C2 = [c21, c22, . . . , c2L]T ∈ RL×1, the base
width is: B2 = [b21, b22, . . . , b2L]T ∈ RL×1, the output is:
Y 5
= [y51, y

5
2, . . . , y

5
L]
T
∈ RL×1

Layer 6-Consequent layer:We use the product of the output
of the fuzzy neural network and the double hidden layer neu-
ral network as the output of the consequent layer. Therefore,
the following expression can be obtained as:

y6j = y5j ·y
3
j , (j = 1, 2, . . . ,L) (21)

The output is expressed as: Y 6
= G = [y61, y

6
2, . . . , y

6
L] ∈

RL×1

Layer 7-Output layer: The output of the previous layer is
weighted, and the sum is the final output value of the whole
neural network. Its output can be expressed as:

Y = W TG = W1y61+W2y62+· · ·+WLy6L (22)
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FIGURE 3. The block diagram of FMHLNSMCMFL.

B. PARAMETER LEARNING OF FMHLNSMCMFL
Fig.3 is the block diagram of FMHLNSMCMFL. Based on
the optimal approximation ability, according to the above
neural network, we can obtain the following results:

f (x) = f ∗(x)(s,W ∗r ,M
∗, σ ∗,C∗1 ,B

∗

1,C
∗

2 ,B
∗

2,W
∗,R∗)+ε

= W T ∗G∗(s,W ∗r ,M
∗, σ ∗,C∗1 ,B

∗

1,C
∗

2 ,B
∗

2,R
∗)+ε

(23)

where ε is the error between the optimal value and the actual
value, and W ∗r ,M

∗, σ ∗,C∗1 ,B
∗

1,C
∗

2 ,B
∗

2,W
∗,R∗ are the best

parameters as:

(W ∗r ,M
∗, σ ∗,C∗1 ,B

∗

1,C
∗

2 ,B
∗

2,W
∗,R∗)

≡ argmin
(Wr ,M ,σ,C1,B1,C2,B2,W ,R)

[sup
∥∥f (x)−f ∗(x)∥∥] (24)

The output of fuzzy neural network is used to replace the
f (x), supposed to be:

f̂ (x) = Ŵ T Ĝ(Ŵr , M̂ , σ̂ , Ĉ1, B̂1, Ĉ2, B̂2, R̂) (25)

whew Ŵr , M̂ , σ̂ , Ĉ1, B̂1, Ĉ2, B̂2, Ŵ , R̂ are estimated values.
Therefore, the difference between the actual value and the

estimated value is calculated as:

f (x)−f̂ (x) = W ∗
T
G∗−Ŵ T Ĝ+ε

= W ∗
T
(Ĝ+G)−Ŵ T Ĝ+ε

= W ∗
T
Ĝ+W ∗

T
G̃−Ŵ T Ĝ+ε

= (Ŵ T
+W̃ T )Ĝ+(Ŵ T

+W̃ T )G̃−Ŵ T Ĝ+ε

= W̃ T Ĝ+Ŵ T G̃+ε0 (26)

where the total integral approximation error is:

ε0 = W̃ T G̃+ε (27)

The parameter error is defined as:

W̃ = W ∗−Ŵ (28)

By expanding Taylor G∗ at W ∗r = Ŵr ,M∗ = M̂ , σ ∗ = σ̂ ,

C∗1 = Ĉ1,B∗1 = B̂1,C∗2 = Ĉ2,B∗2 = B̂2,R∗ = R̂,

we can get the following results:

G∗(W ∗r ,M
∗, σ ∗,C∗1 ,B

∗

1,C
∗

2 ,B
∗

2,R
∗)

= Ĝ(Ŵr , M̂ , σ̂ , Ĉ1, B̂1, Ĉ2, B̂2, R̂)+
∂G
∂C∗1

∣∣∣∣
C∗1=Ĉ1

(C∗1−Ĉ1)

+
∂G
∂B∗1

∣∣∣∣
B∗1=B̂1

(B∗1−B̂1)+
∂G
∂C∗2

∣∣∣∣
C∗2=Ĉ2

(C∗2−Ĉ2)

+
∂G
∂B∗2

∣∣∣∣
B∗2=B̂2

(B∗2−B̂2)+
∂G
∂M∗

∣∣∣∣
M∗=M̂

(M∗−M̂ )

+
∂G
∂σ ∗

∣∣∣∣
σ ∗=σ̂

(σ ∗−σ̂ )+
∂G
∂W ∗r

∣∣∣∣
W ∗r =Ŵr

(W ∗r −Ŵr )

+
∂G
∂R∗

∣∣∣∣
R∗=R̂

(R∗−R̂)+Oh (29)

G̃(W̃r , M̃ , σ̃ , C̃1, B̃1, C̃2, B̃2, R̃)

= GWr ·W̃r+GM ·M̃+Gσ ·σ̃+GR·R̃

+GC1·C̃1+GB1·B̃1+GC2·C̃2+GB2·B̃2+Oh (30)

where GC1 ,GB1 ,GC2 ,GB2 ,GM ,Gσ ,GWr ,GR are the partial
derivative of C∗1 ,B

∗

1,C
∗

2 ,B
∗

2,M
∗, σ ∗,W ∗r ,R

∗, expressed as
(31)–(34), shown at the bottom of the next page, (35)–(37),
shown at the bottom of page 7, and (38), shown at the bottom
of page 8.

Therefore, the estimation error can be written as:

f (x)−f̂ (x)

= W̃ T Ĝ+Ŵ T G̃+ε0
= W̃ T Ĝ+Ŵ TGWr W̃r+Ŵ TGM M̃+Ŵ TGσ σ̃+Ŵ TGRR̃

+Ŵ TGC1C̃1+Ŵ TGB1 B̃1+Ŵ
TGC2C̃2

+Ŵ TGB2 B̃2+10 (39)

where

10 = Ŵ TOh+ε0
= Ŵ TOh+W̃ T G̃+ε (40)

10 is the total integral higher order approximation error, and
we assume that the following inequality holds:

|10| ≤ 1̄d (41)

where 1̄d is a positive constant.

C. STABILITY ANALYSIS
The control law of the proposed FMHLNSMCMFL can be
expressed as:

u = ûeq+usw

= −
1
b
[−ẍr+cė+f̂ (x)+Kwsgn(s)] (42)

Theorem 2: Considering the nonlinear mathematical
model (6), if we choose the controller (42), the asymptotic
stability of APF control system can be guaranteed.
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Proof: For the proposed FMHLNSMCMFL, we define
a new Lyapunov function candidate as:

V =
1
2
s2+

1
2η1

W̃ T W̃+
1
2η2

B̃T1 B̃1+
1
2η3

B̃T2 B̃2

+
1
2η4

C̃T
1 C̃1+

1
2η5

C̃T
2 C̃2

+
1
2η6

M̃T M̃+
1
2η7

σ̃ T σ̃+
1
2η8

W̃ T
r W̃r+

1
2η9

R̃T R̃ (43)

Substituting (10) and (13) into the first derivative of the
Lyapunov function (43), and then making

H =
1
η1

˙̃W T W̃+
1
η2

˙̃BT1 B̃1+
1
η3

˙̃BT2 B̃2+
1
η4

˙̃CT
1 C̃1+

1
η5

˙̃CT
2 C̃2

+
1
η6

˙̃MT M̃+
1
η7

˙̃σ T σ̃+
1
η8

˙̃W T
r W̃r+

1
η9

˙̃RT R̃ (44)

We can obtain:

V̇ = sṡ+H

= s(cė+ë)+H

= s(cė+f (x)+bu+d−ẍr )+H

= s[cė+f (x)−ueq−Kwsgn(s)+d−ẍr ]+H (45)

Substituting equation (42) into (45), we can get:

V̇ = s[cė+f (x)−ueq−Kwsgn(s)+d−ẍr+bu−bu]+H

= s{cė+f (x)−ueq−Kwsgn(s)+d−ẍr

+b[−
1
b
(−ẍr+cė+f (x)−b[−

1
b
(−ẍr+cė+f̂ (x)

−Kwsgn(s)]}+H

= s(f̂ (x)−f (x)−Kwsgn(s)+d)+H

GC1 =
∂G∗

∂C∗
T

1

∣∣∣∣∣
C∗1=Ĉ1

=



∂y61
∂CT

1
∂y62
∂CT

1
...

∂y6L
∂CT

1


=



∂y61
∂c11

∂y61
∂c12

. . .
∂y61
∂c1n

∂y62
∂c11

∂y62
∂c12

· · ·
∂y62
∂c1n

...
...

. . .
...

∂y6L
∂c11

∂y6L
∂c12

. . .
∂y6L
∂c1n


L×n

(31)

GB1 =
∂G∗

∂B∗
T

1

∣∣∣∣∣
B∗1=B̂1

=



∂y61
∂BT1
∂y62
∂BT1
...

∂y6L
∂BT1


=



∂y61
∂b11

∂y61
∂b12

. . .
∂y61
∂b1n

∂y62
∂b11

∂y62
∂b12

· · ·
∂y62
∂b1n

...
...

. . .
...

∂y6L
∂b11

∂y6L
∂b12

. . .
∂y6L
∂b1n


L×n

(32)

GC2 =
∂G∗

∂C∗
T

2

∣∣∣∣∣
C∗2=Ĉ2

=



∂y61
∂CT

2
∂y62
∂CT

2
...

∂y6L
∂CT

2


=



∂y61
∂c21

∂y61
∂c22

. . .
∂y61
∂c2L

∂y62
∂c21

∂y62
∂c22

· · ·
∂y62
∂c2L

...
...

. . .
...

∂y6L
∂c21

∂y6L
∂c22

. . .
∂y6L
∂c2L


L×L

(33)

GB2 =
∂G∗

∂B∗
T

2

∣∣∣∣∣
B∗2=B̂2

=



∂y61
∂BT2
∂y62
∂BT2
...

∂y6L
∂BT2


=



∂y61
∂b21

∂y61
∂b22

. . .
∂y61
∂b2L

∂y62
∂b21

∂y62
∂b22

· · ·
∂y62
∂b2L

...
...

. . .
...

∂y6L
∂b21

∂y6L
∂b22

. . .
∂y6L
∂b2L


L×L

(34)
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= s[W̃ T Ĝ+Ŵ TGC1C̃1+Ŵ TGB1 B̃1+Ŵ
TGC2C̃2

+Ŵ TGB2 B̃2+Ŵ
TGM M̃

+Ŵ TGσ σ̃+Ŵ TGWr W̃r+Ŵ TGRR̃+10

−Kwsgn(s)+d]+H (46)

Substituting equation (44) into (46), we can obtain:

V̇= s[W̃ T Ĝ+Ŵ TGC1C̃1+Ŵ TGB1B̃1+Ŵ
TGC2C̃2+Ŵ TGB2 B̃2

+Ŵ TGM M̃+Ŵ TGσ σ̃+Ŵ TGWr W̃r+Ŵ TGRR̃+10

−Kwsgn(s)+d]+
1
η1

˙̃W T W̃+
1
η2

˙̃BT1 B̃1+
1
η3

˙̃BT2 B̃2

GM =
∂G∗

∂M∗T

∣∣∣∣
M∗=M̂

=



∂y61
∂M∗T

∂y62
∂M∗T

...

∂y6L
∂M∗T


L×1

=



∂y61
∂m1

1

∂y61
∂m1

2

. . .
∂y61
∂m1

L

∂y61
∂m2

1

∂y61
∂m2

2

. . .
∂y61
∂m2

L

· · ·
∂y61
∂mk1

∂y61
∂mk2

. . .
∂y61
∂mkL

∂y62
∂m1

1

∂y62
∂m1

2

· · ·
∂y62
∂m1

L

∂y62
∂m2

1

∂y62
∂m2

2

· · ·
∂y62
∂m2

L

· · ·
∂y62
∂mk1

∂y62
∂mk2

· · ·
∂y62
∂mkL

...
...

. . .
...

...
...

. . .
... · · ·

...
...

. . .
...

∂y6L
∂m1

1

∂y6L
∂m1

2

. . .
∂y6L
∂m1

L

∂y6L
∂m2

1

∂y6L
∂m2

2

. . .
∂y6L
∂m2

L

· · ·
∂y6L
∂mk1

∂y6L
∂mk2

. . .
∂y6L
∂mkL


L×kL

(35)

Gσ =
∂G∗

∂σ ∗
T

∣∣∣∣
σ ∗=σ̂

=



∂y61
∂σ ∗

T

∂y62
∂σ ∗

T

...

∂y6L
∂σ ∗

T


L×1

=



∂y61
∂σ 1

1

∂y61
∂σ 1

2

. . .
∂y61
∂σ 1

L

∂y61
∂σ 2

1

∂y61
∂σ 2

2

. . .
∂y61
∂σ 2

L

· · ·
∂y61
∂σ k1

∂y61
∂σ k2

. . .
∂y61
∂σ kL

∂y62
∂σ 1

1

∂y62
∂σ 1

2

· · ·
∂y62
∂σ 1

L

∂y62
∂σ 2

1

∂y62
∂σ 2

2

· · ·
∂y62
∂σ 2

L

· · ·
∂y62
∂σ k1

∂y62
∂σ k2

· · ·
∂y62
∂σ kL

...
...

. . .
...

...
...

. . .
... · · ·

...
...

. . .
...

∂y6L
∂σ 1

1

∂y6L
∂σ 1

2

. . .
∂y6L
∂σ 1

L

∂y6L
∂σ 2

1

∂y6L
∂σ 2

2

. . .
∂y6L
∂σ 2

L

· · ·
∂y6L
∂σ k1

∂y6L
∂σ k2

. . .
∂y6L
∂σ kL


L×kL

(36)

GWr =
∂G∗

∂W ∗Tr

∣∣∣∣∣
W ∗r =Ŵr

=



∂y61
∂W T

r
∂y62
∂W T

r
...

∂y6L
∂W T

r


=



∂y61
∂W T

r1

∂y61
∂W T

r2

. . .
∂y61
∂W T

rk
∂y62
∂W T

r1

∂y62
∂W T

r2

· · ·
∂y62
∂W T

rk
...

...
. . .

...

∂y6L
∂W T

r1

∂y6L
∂W T

r2

. . .
∂y6L
∂W T

rk


L×k

(37)
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+
1
η4

˙̃CT
1 C̃1

+
1
η5

˙̃CT
2 C̃2+

1
η6

˙̃MT M̃+
1
η7

˙̃σ T σ̃+
1
η8

˙̃W T
r W̃r+

1
η9

˙̃RT R̃

= (sW̃ T Ĝ+
1
η1

˙̃W T W̃ )+(sŴ TGB1 B̃1+
1
η2

˙̃BT1 B̃1)

+(sŴ TGB2 B̃2+
1
η3

˙̃BT2 B̃2)

+(sŴ TGC1C̃1+
1
η4

˙̃CT
1 C̃1)

+(sŴ TGC2C̃2+
1
η5

˙̃CT
2 C̃2)+(sŴ TGM M̃+

1
η6

˙̃MT M̃ )

+(sŴ TGσ σ̃+
1
η7

˙̃σ T σ̃ )+(sŴ TGWr W̃r+
1
η8

˙̃W T
r W̃r )

+(sŴ TGRR̃+
1
η9

˙̃RT R̃)

+10−Kwsgn(s)+d (47)

So the following adaptive laws are selected:
Let sW̃ T Ĝ+ 1

η1
W̃ T ˙̃W = 0, we can obtain:

˙̃W = −η1sĜ (48)

Let sŴ TGB1 B̃1+
1
η2

˙̃BT1 B̃1 = 0, we can obtain:

˙̃BT1 = −η2sŴ
TGB1 (49)

Let sŴ TGB2 B̃2+
1
η3

˙̃BT2 B̃2 = 0, we can obtain:

˙̃BT2 = −η3sŴ
TGB2 (50)

Let sŴ TGC1C̃1+
1
η4

˙̃CT
1 C̃1 = 0, we can obtain:

˙̃CT
1 = −η4sŴ

TGC1 (51)

Let sŴ TGC2C̃2+
1
η5

˙̃CT
2
C̃2 = 0, we can obtain:

˙̃CT
2 = −η5sŴ

TGC2 (52)

Let sŴ TGM M̃+ 1
η6

˙̃MT M̃ = 0, we can obtain:

˙̃MT
= −η6sŴ TGM (53)

Let sŴ TGσ σ̃+ 1
η7
˙̃σ T σ̃ = 0, we can obtain:

˙̃σ T = −η7sŴ TGσ (54)

Let sŴ TGWr W̃r+
1
η8

˙̃W T
r W̃r = 0, we can obtain:

˙̃W T
r = −η8sŴ

TGWr (55)

Let sŴ TGRR̃+ 1
η9

˙̃RT R̃ = 0, we can obtain:

˙̃RT = −η9sŴ TGR (56)

If the adaptive laws (48-56) are satisfied, we can obtain:

V̇ = −Kw |s|+s(10+d(t))

≤ −Kw |s|+‖s‖ (1̄d+D)

= − |s|
(
Kw−1̄d−D

)
(57)

If Kw > 1̄d+D, V̇ ≤ 0. Integrating V̇ with respect to time,
we can get

t∫
0

|s| dt ≤
1

Kw−1̄d−D
(V (t)−V (0)). (58)

Since V (0) is bounded and V (t) is nonincreasing, it is con-

cluded that lim
t→∞

t∫
0
|s| dt is bounded. According to Barbalat

lemma, one can deduce that lim
t→∞

s(t) = 0 and lim
t→∞

e(t) =
0, which means the tracking error and sliding surface will
converge to zero asymptotically.

GR =
∂G∗

∂R∗T

∣∣∣∣
R∗=R̂

=



∂y61
∂R∗T

∂y62
∂R∗T

...

∂y6L
∂R∗T


L×1

=



∂y61
∂r11

∂y61
∂r12

. . .
∂y61
∂r1L

∂y61
∂r21

∂y61
∂r22

. . .
∂y61
∂r2L

· · ·
∂y61
∂rk1

∂y61
∂rk2

. . .
∂y61
∂rkL

∂y62
∂r11

∂y62
∂r12

· · ·
∂y62
∂r1L

∂y62
∂r21

∂y62
∂r22

· · ·
∂y62
∂r2L

· · ·
∂y62
∂rk1

∂y62
∂rk2

· · ·
∂y62
∂rkL

...
...

. . .
...

...
...

. . .
... · · ·

...
...

. . .
...

∂y6L
∂r11

∂y6L
∂r12

. . .
∂y6L
∂r1L

∂y6L
∂r21

∂y6L
∂r22

. . .
∂y6L
∂r2L

· · ·
∂y6L
∂rk1

∂y6L
∂rk2

. . .
∂y6L
∂rkL


L×kL

(38)
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IV. SIMULATION STUDY
The reliability of the proposed controller was verified by
MATLAB/Simulink package with SimPower Toolbox. In the
simulation process, the selection of relevant parameters is
shown in Table 1.

In MATLAB simulation, the parameters of sliding mode
controller are selected as c = 15000,Kw = 2e4. The param-
eters in the FMHLNSMCMFL are k = 1,L = 2, n = 3
and learning rates are η1 = 2e4, η2 = 0.08, η3 = 0.1,
η4 = 0.2, η5 = 0.12, η6 = 0.25, η7 = 0.1, η8 = 0.2,
η9 = 0.8. In order to verify the effectiveness of the proposed
algorithm, an APF harmonic control algorithm using a sliding
mode controller with a neural network controller is proposed
for comparative study.

TABLE 1. APF model parameters.

Fig.4 shows that when t = 0s, the total current distortion
rate is 35.07% without APF compensation. The current dis-
tortion effect of the circuit is serious, which could cause great
damage to the power grid. Fig.5 shows the source current
curve before and after harmonic compensation. After 0.05
seconds, the circuit breaker changes from open to closed,
meaning that the main circuit begins to carry out harmonic
compensation, and the source current changes from distorted
waveform to sinusoidal waveform. When t = 0.3s, a nonlin-
ear load is paralleled to the power grid, so the total resistance
decreases, that is, the amplitude of source current becomes
larger. On the contrary, when t = 0.6s, the amplitude of
source current will decrease.

Fig.6 shows the current tracking diagram under the pro-
posed control algorithm. We can see that the current tracking
effect is good, and the reference current can be tracked in a
short time. The error of reference current and compensation
current under two controllers can be seen in Fig.7a and Fig.8a.
Fig.7b and Fig.8b are the enlarged diagrams of the Fig.7a and
Fig.8a respectively. After harmonic compensation is started,
the error tends to 0 in a short time.

In order to control the voltage of the DC side capacitor,
a traditional PI controller is adopted, where Kp = 0.15 and
Ki = 0. As can be seen in Fig.9, the DC-side voltage can
quickly reach a stable reference value of 50V.

FIGURE 4. Compensated source current spectrum analysis before
compensation.

FIGURE 5. Source current curve before and after compensation under
FMHLNSMCMFL.

FIGURE 6. Harmonic current tracking curve under two controllers.

We measured the THD at t = 0.2s, t = 0.4s, t =
0.7s using two controllers as shown in Table 2. The THD
under the FMHLNSMCMFL method is smaller than the
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FIGURE 7. Tracking error curve under FMHLNSMCMFL.

FIGURE 8. Tracking error curve under SMC with NN.

SMC with NN method in all cases, which demonstrates the
system performance is greatly improved with the proposed
controller..

FIGURE 9. DC-side voltage Udc tracking curve under FMHLNSMCMFL.

Fig.10 is the adaptive parameter curves of each parameter
including the base width, weight and center of each layer.
These adaptive parameters reflect the online learning ability
of our proposed neural network controller, and its adaptive
laws are shown in (48)-(56). The proposed neural network
controller can update online with the information of the
previous state and stabilize to its optimal value with good
robustness and self-adjusting ability.

TABLE 2. Comparison of THD value under two controllers.

V. REAL-TIME EXPERIMENT STUDY
A prototype was built to verify the validity of the practical
application using the proposed controller. Compared with
the traditional digital signal processor (DSP), dSPACE runs
faster, has a wider input range, and can detect the values of
various parameters and variables in real time and draw curves.
So we use DS1004 as a prototype control board instead of
DSP. According to the structure of the APF in Fig. 1, we can
build a single-phase APF prototype as shown in Fig. 11. The
prototype mainly includes APF main circuit, power supply,
nonlinear load, drive circuit, acquisition circuit, and control
board. The transformer is used to convert the mains supply
into a 24Vrms AC power as the power supply for the pro-
totype. The main circuit of the single-phase APF consists
of four IGBTs, DC-side capacitor, and AC-side inductor.
Continuous voltage and current signals are sampled through
the sensor. The AD input port of the dSPACE control board
receives the collected signal.

In the experiment, the SMC with NN mentioned in the
simulation is used as a comparison. The parameters of the
prototype are the same as the simulation parameters, which
are based on Table 1. The controller parameters also use the
same data as in the simulation.

Figs. 12–20 are the experimental results of a single-phase
APF prototype. All data are measured using an Agilent Infini-
iVision 3000X series oscilloscope.
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FIGURE 10. Adaptive parameter curve under the proposed FMHLNSMCMFL.

First, we showed the oscilloscope waveform diagram of
SMC with NN which shown in Fig. 12. In the oscilloscope,
curve 1 (yellow curve) represents the supply voltage, curve 2
(green curve) represents the load current, curve 3 (blue curve)
represents the harmonic compensation current, and curve 4
(deep pink curve) represents the grid current. Fig. 12 is the
steady-state oscilloscope waveform diagrams using the SMC
with NN. The steady-state THD of the system is 4.70%,
which is relatively large.

Fig.13 and 14 are the steady-state oscilloscope waveform
and THD diagrams using FMHLNSMCMFL. It can be seen
in Fig. 13 that when FMHLNSMCMFL used, the grid cur-
rent quickly returns to a sine wave. Fig. 14 shows that the
THD value is 3.89%, which is lower than the value of SMC
with NN.

Next, in order to verify the dynamic performance of the
system, we paralleled an identical load under the two algo-
rithms and observed its dynamic performance. Fig. 15 is the
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FIGURE 11. Experimental prototype structure.

FIGURE 12. Steady-state oscilloscope waveform under SMC with NN.

FIGURE 13. Steady-state oscilloscope waveform under FMHLNSMCMFL.

experimental result of the SMC with NN when the nonlinear
load is increased. The system also stabilized at a fast speed
and the steady-state THD is 4.23%.

Figs.16 and 17 are the experimental results of FMHLNSM-
CMFL when the nonlinear load is increased. In Fig. 16,
even if the load suddenly increases, the source current
(curve 4) can quickly become a sinusoidal waveform, and the
THD is 3.4%.

Finally, consider the reduction of nonlinear load. Fig.18
is the experimental results under SMC with NN. The

FIGURE 14. Steady-state THD rate under FMHLNSMCMFL.

FIGURE 15. Dynamic-state oscilloscope waveform after the load
increases under SMC with NN.

FIGURE 16. Dynamic-state oscilloscope waveform after the load
increases under FMHLNSMCMFL.

steady-state THD of the system is 4.72%, which is less
than 5%, but it is significantly large. Figs. 19 and 20 show
the experimental results when using the FMHLNSMCMFL.
In Fig. 20, the grid current power supply quickly returns
to a sine wave, and the THD at this time is 3.90%. The
data in Table 3 is the current distortion rate. From the above
comparative experimental results, the proposed control algo-
rithm not only satisfies the current distortion rate of less
than 5%, but also has certain advantages over SMC with NN
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FIGURE 17. Dynamic-state THD rate after the load increases under
FMHLNSMCMFL.

FIGURE 18. Dynamic-state oscilloscope waveform after load reduction
under SMC with NN.

FIGURE 19. Dynamic-state oscilloscope waveform after load reduction
under FMHLNSMCMFL.

TABLE 3. Comparison of THD under three controllers.

in power harmonic compensation. In addition, in Table 3,
we have added a set of algorithms currently used for APF
harmonic control as a comparison [33]. We can see that

FIGURE 20. Dynamic-state THD rate after the load reduction under
FMHLNSMCMFL.

FMHLNSMCMFL is better than this algorithm in both steady
state and sudden load conditions.

VI. CONCLUSION
In this paper, a sliding mode control strategy of a single-
phase active power filter based on a fuzzy multiple hidden
layer neural network with multiple feedback loop is studied.
A FMHLNSMCMFL scheme is introduced to approximate
the unknown nonlinear tem in the dynamic system. The
proposed neural network introduces double hidden layers,
which reduces the number of nodes while improving accu-
racy. In addition, the introduction of double feedback also
enables the neural network to self-adjust in combination with
the state information at the previous moment, improving the
approximation ability of the neural network. The simulation
and experimental results demonstrate that current tracking
error will converge to zero asymptotically, and show that the
proposed controller has high compensation accuracy, good
dynamic performance and strong robustness. This seemed to
be a clear proof of the proposed filter performing well in the
harmonic elimination. In the future, in addition to optimizing
the structure of the neural network, in-depth research on the
adjustment of the learning rate will be carried out to improve
the performance of the neural network.
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