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ABSTRACT The need for automated production plans has evolved over the years due to internal and external
drivers like developed products, new enhanced processes and machinery. Reconfigurable manufacturing
systems focus on such needs at both production and process planning level. The age of Industry 4.0 focused
on mass customization requires computer aided planning techniques that are able to cope with custom
changes in products and explores intelligent algorithms for efficient scheduling solutions to reduce lead
time. This problem has been categorized as NP-Hard in literature and is addressed by providing intelligent
heuristics that focus on reducing machining time of the products at hand. However, as 70% of the lead
time is consumed in non-value added tasks, it is fundamental to provide modular solutions that can reduce
this time and handle part variety. To address the subject, this paper focuses on the generation of automated
process plans for a single machine problem while focusing on reducing time lead time. Two evolutionary
algorithms (EAs) have been proposed and compared to answer complex problem of process planning.
A modified genetic algorithm (GA) has been proposed in addition to cuckoo search (CS) heuristic for this
discrete problem. On testing with selected benchmark part ANC101, significant improvement was seen
in terms of convergence with proposed EAs. Moreover, a novel Precedence Group Algorithm (PGA) is
proposed to generate quality input for heuristics. The algorithm produces a set of initial population which
significantly effects the performance of proposed heuristics. For the discrete constrained process planning
problem, GA outperforms CS providing 10% more feasible scheduling options and three times lesser run
time as compared to CS. The proposed technique is flexible and responsive in order to accommodate part
variety, a necessary requirement for reconfigurable systems.

INDEX TERMS Process planning, reconfigurable systems, heuristics, evolutionary algorithms, genetic
algorithm, cuckoo search.

I. INTRODUCTION
Process planning is a vital step for computer aided process
planning (CAPP). It can be defined as the generation of
sequence of operations in order to manufacture the desired
product. The evolution of modern manufacturing with indus-
try 4.0 concepts has further emphasized the research in CAPP
for handling part variety. The plan should be flexible at
product as well as systems level for a dynamic demand.
This notion has further created the need for responsiveness
on both planning and control level. In order to achieve this
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desired level of flexibility, six special design characteristics
have been defined in literature [1] for a product or process
to be termed as ‘reconfigurable’. These characteristics focus
on adaptability of a manufacturing system at machine and
process level that can be upgraded in the system with prod-
uct development and technological changes [2]. Numerous
researches in the area of reconfigurable machine tools (RMT)
are available that focus on optimization of machine fea-
tures that may provide desired level of flexibility to build
a part family without redundancy [3], [4]. However, this
study deals with another aspect of reconfiguration aimed
to provide ‘convertibility’ and ‘integrability’ on planning
and scheduling level. Reconfigurable process plans (RPP)
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promote concurrent engineering by working on machine
selection and process sequencing in parallel at initial stages of
manufacturing. Such dynamic process plans that are scalable
to handle part variety are of significance as they affect the
entire production process [5]. Moreover, to address the recon-
figuration issues, processing routes can provide sequencing
and processing flexibility [6]. The current paper focuses on
the development of alternative plans for a single machine
environment. For a job-shop having high variety and low
volume products, single machine cells with higher manufac-
turing capabilities are of significance [7].

With the motivation of accommodating variety and pro-
ducing high quality products, researchers have focused on
the development of planning and scheduling for computer
numeric control (CNC) with computer aided process plan-
ning [8]. Prabhu et al. [9] worked on rotational components
with plans in the form of a decision tree. Branches of the
tree indicated alternative process plans. However, the study
was limited to rotational components and lacked diversity
required for prismatic parts. Waiyagan and Bohez [10] pro-
posed process planning system for a part with rotational and
prismatic features termed as prisronal. The approach was
more focused towards feature recognition for a part. In a
similar study [11] feature based modelling was suggested
for automated retrieval of process plans. However, these
techniques emphasized on feature recognition methods for
part manufacturing. Chung and Suh [12] developed branch
and bound algorithm for optimal process plan with the aim
of minimizing machining time on a CNC turning machine.
The machines were considered to have a parallel machining
capability in order to reduce machining time. A similar study
proposed priority heuristic for CNC with parallel machining
in order to reduce lead-time [13]. Such studies with parallel
machining limited their use to particular part families.

While sequencing, maintaining precedence constraints in
a process plan is an essential requirement. For various opera-
tions performed on the machine, generating a feasible process
plan is a NP-Hard problem [14]. While generating automated
process plans, the feasibility problem has been addressedwith
two main approaches in literature. The first one is reactive in
a sense that it reacts after identification of infeasible points
in the plan which violate precedence constraints [15], [16].
The other strategy is proactive as it generates process plans
in a step-wise manner in order to avoid infeasible process
plan [17], [18]. During each step of such algorithms, topo-
logical constraints are considered before adding an operation
in the process plan chain. With these techniques, multiple
process plans can be generated for a single machine problem
where the number of alternatives depends on the number of
precedence constraints. However, both these techniques do
not pay attention on integration of a feasible planwith optimal
schedule. Huang et al. [19] pointed out that for effective
process planning, the plans should be integrated with pro-
duction facility. In this new mode of research, product and
process selection cannot be bounded to a simple optimization
problem. In an effort by Manafi et al., [20] custom rule

based algorithm was proposed in order to extract machining
features for process plans. In another similar study by Sormez
and Khoshnevis [21] knowledge based rules were proposed
for alternative process plans while taking into account the
limitations of machine tool and the capital available for man-
ufacturing.

In case of alternatives, the aim of production manager
is to answer this question: which is the best plan for the
given production scenario? Alternative process plans explore
various possibilities of sequencing of a part. The problem
can be categorized as a variant of vehicle routing problem
(VRP) with additional constraints. The presence of these
technological, design and topological constraints in a part
add to the complexity scale of the problem making it NP-
Hard. In the past, exact algorithms like branch and bound,
linear and dynamic programming have been proposed to
resolve this issue [22]. These enumeration techniques are
applicable when the problem of interest is of smaller size.
Recently, researchers have been focusing on expert-based
intelligent heuristics for the solution of process planning
problems [23]. As there is no such optimization algorithm
that is best to achieve targeted results for every problem,
different techniques are chosen depending upon the problem
of interest. Afteni & Frumusanu [24] did a detailed review of
optimization techniques that have been applied in non-linear
constrained problems. Literature conducted in the field of
applied computing suggests that in comparison with exact
classical approaches, evolutionary algorithms can provide
improved solutions rather than sub-optimal solutions [14].
Numerous evolutionary algorithms have been proposed for
the optimization of process plans. Krishna and Rao [25]
proposed an ant colony algorithm (ACO) in addition to a
simulated annealig (SA) approach but with a different objec-
tive [26]. Another variation of SA was suggested by Li
et al. [15] with a feature recognition method used to extract
features and develop alternative route plans for the part.
Salehi and Bahreininejad [27] provided a hybrid genetic algo-
rithm (GA) designed to obtain optimal process plan in a job-
shop environment. However, these evolutionary algorithms
were unable to accommodate complex part features and the
non-conformities which may occur by not satisfying the tech-
nical constraints. Moreover, the proposed strategies work for
a certain set of operations and lacked responsiveness.

For selection of best among alternatives, various aspects
of manufacturing operations may be considered for defining
objective function. Numerous studies have been performed
for optimization of flow shops sequencing with the objective
of minimizing time [15], [28]. The studies differ in their
method for selecting next set of solutions (next generation
of population) from the previous one. The methodology was
combined with an intelligent search technique for clustering
in a job shop environment. In a similar effort by Reddy
et al. [29], they used GA for obtaining near optimal alter-
native feasible plans for current set-up of production floor
in order to make it dynamic and reduce tardiness. Such
objectives focused on overall reduction of lead time at the
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production floor. In case of singlemachine, the focus has been
towards parameteric optimization with target of achieving
better machining quality for the product [11], [30]. However,
it has been established that non-value added tasks such as
setup and tool change utilize 70% of the total time required
for job completion [31]. With this premise, an objective
function can be chosen that minimizes time by reducing non-
value adding tasks. Moreover, as the set-up tasks are reduced,
the inherent problem of variability in machinig can also be
effectively handled.

The research presented in this paper draws its motiva-
tion from the aforementioned shortcomings in literature. The
problem of routing and process planning is well-established
NP-hard problem in literature. Exact enumeration methods
are not considered appropriate to find solutions to such prob-
lems. Because of the probabilistic nature of heuristic algo-
rithms, problems such as slow convergence, local optima,
variance in end results and longer computation times arise.
None of the methods have been proved perfect to solve indus-
trial scale problems. However, among the various proposed
heuristics, simulated annealing (SA), GA (genetic algorithm)
and PSO (particle swarm optimization) are the most widely
discussed techniques in literature [32]. SA is a single point
search technique that progresses with a single solution and
a single search direction due to which it is criticized for
slow convergence. PSO is a population-based technique with
multiple search directions but is most widely used for contin-
uous variable problems while routing and process planning
is a discrete problem. GA is a well-known population-based
technique in the area of discrete constrained problems that are
NP-Hard in nature. GA has been used extensively in literature
for scheduling and routing problems. However, one of the
major demerits of GA is slow convergence and variance in
results. The leading factor of variance is its stochastic search
nature. In comparison, CS is a relatively new heuristic intro-
duced in 2010 and has been reported to outperform GA for
various scheduling problems and benchmarks [33]. However,
there was a gap in application of CS for constrained and
discrete problem of process planning. This motivated to apply
CS algorithm on single machine process planning problems
and investigate its performance with most widely adopted
GA. Most of the researchers have focused on using GA that
produced better results with reasonable computation time as
compared to exact and exhaustive search algorithms [27].
However, multiple random decision parameters of GA such
as selection methods, crossover and mutation operator and
population size make this heuristic more ambiguous. In the
current approach, a new version of these decision parame-
ters has been adopted to provide better optimal results and
have been compared with a bench mark problem. In addi-
tion, cuckoo search (CS) heuristic approach has been devel-
oped for process planning in a single machine environment.
GA and CS are population-based techniques which require a
set of initial solutions to explore the search space. As the qual-
ity of solution generated from meta-heuristics significantly
depends on initial population [34], the current study provides

a new approach for generating alternatives with precedence
group algorithm (PGA). It is initiated for the creation of ini-
tial population that produces feasible and diversified process
plans for initial population. For both algorithms, the quality
of initial solutions improved search directions and provided
faster convergence to global optima. The PGA can be modi-
fied easily for a part family and increases reconfigurability in
the system by adding integrability. Performance of CS was
found to be lower than GA for process planning problem
due to its discrete and constrained nature. The next section
provides detail on this algorithm followed by the proposed
heuristics for single-machine process planning problem.

II. METHODS
A. PROCESS PLAN GENERATION
Process planning is defined as a group of instructions fol-
lowed in a step-wise manner to manufacture a product.
Shabaka and Elmaraghy [35] have classified various types of
process plans in three categories based on their precision level
(multi-domain, macro and micro process planning level).
Multi-domain is the least detailed form of process planning
concerned with initial decisions required before planning
such as assembly method and material selection. Macro pro-
cess planning defines set of instructions regarding sequencing
of operations. Unlike dedicated matching systems (DMS)
with fixed setups, this process needs frequent revisions due to
product design changes in RMS. Micro level planning is the
search of best sequence defined by criteria of manufacturers
at earlier stages of planning.

In literature, macro level process planning has been
adopted for generating alternative plans. The present work
proposes PGA for generation of alternatives to find optimal
sequence at micro level. The proposed PGA provides an
extension of the algorithm proposed by Zahid and Baqai [36].
Process planning problem has two stages which are operation
selection and sequencing. This particular problem cannot be
correlated with the usual travelling salesman problem (TSP).
In TSP, for ‘n′ number of cities, n! would be the number of
total possible routing options. However, in case of process
planning, options would be less than n!. This happens due
to the technical feasibility constraints of the part under con-
sideration. Various types of datum, geometrical and logical
constraints need to be kept in mind for developing feasible
process plans.

The proposed methodology has been developed as a gen-
eral applicable methodology with following assumptions:

• The methodology has been proposed for single machine
problem.

• Simultaneous machining is not allowed.

There are no limitations on geometry of the part. For PGA,
a precedence group matrix (PGM) is developed to group
operations in a column as per their constraints. Each group
represents a level of precedence between operations and any
member from a group can be randomly selected. After all
the elements of a group are selected, the algorithm moves
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FIGURE 1. Flowchart for precedence group algorithm (PGA).

towards the next group. No precedence is established among
the activities of a same group. If an activity is written twice
in a group, it is not a necessary activity and algorithm may
continue to the next group without selecting that activity.
However, for a complete process plan, every activity must be
included in the sequence, which is assured by a check placed
in the flowchart. The flow chart for generation of process plan
is show in Figure 1.

A hand spike, an industrial part frequently used in liter-
ature [29], [37], shown in figure 2 is used for description
of process plan generation method. It has been adapted fre-
quently in literature to suggest and compare optimization
algorithms and process plan methodologies. This component
is a pre-formed part and it requires 16 operation to be done on
a machining centre. The part drawing has been appropriately
modified to include constraints like datum and location. Four
types of machining features (milling, drilling, boring and
reaming) need to be performed for manufacturing the desired
part. Description of machining operations is provided in
table 1.

1) INPUT DATA
Algorithm starts with information shown in figure 1 while
the precedence group matrix PGM is created by analysing
technical constraints of the part. The machining steps in
table 1 along with part geometry and drawings are used as
an input here.

This matrix has been developed through network diagram
of the part shown in figure 3. There is no precedence in

TABLE 1. Machining features for example part.

the groups and the number of operations may vary. Each
operation in a group, i.e. Oij stands for ith operation in group
j where n is the total number of operations which need to
be performed. There is no priority among operations in the
same group and are chosen randomly. It should be noted that
no repetition of an operation is allowed in the same group
however, operations may repeat in different groups. Such
operations are termed as flexible and algorithm can jump to
the next group without performing these operations.

2) SELECTION OF ZERO PRECEDENCE OPERATIONS
The machining operations having zero precedence are those
present in the first group of PGM. In this example, operation
number A1 is going to have zero precedence.

In case of multiple zero precedence operations, a random
operation would be selected from the list. In this particular
case, operation A1 (op1) is selected from group I and added
in the sequence array.

3) UPDATE ZERO PRECEDENCE OPERATIONS
To continue with sequence array, the group is updated in
PGM deleting the already selected operation (i.e. op1). This
step ensures that there is no repetition that may result in
an infeasible process plan having an operation performed
twice.Moreover, with this approach, input to the optimization
algorithm is feasible thus reducing the computation time in
later stages since optimizer searches for the optimal solution
without worrying about the feasibility test. The operation
selected here is deleted from the PGMmatrix in order to avoid
repetition of the same operation in sequence array.

4) GROUP COMPLETION
The algorithm verifies if all the necessary operations of the
group have been added in the sequence array. It means that
the flexible tasks may be performed in the next group and
the group can be removed at this stage. If yes, the algorithm
updates PGM by deleting the current group and the next
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FIGURE 2. Part Features for hand spike.

FIGURE 3. Network diagram for example part.

group becomes zero precedence group. If not, step 2 and 3 are
repeated.

B. SEQUENCE COMPLETION
After updating PGM, sequence is checked for completion at
the current stage. The total number of elements in a sequence
array should be equal to the total number of operations. For
instance, a complete sequence for the part may result in the
following sequence array:

A1→ A2→ B1→ B2→ B3→ B4→ B5→ C1→ G
→ D1→ E1→ F1→ D2→ F2→ E2→ C2

C. OPTIMIZATION OF PROCESS PLANS
The proposed methodology generates given number of alter-
native process plans in according with the chosen population
size. Instead of single solution, meta-heuristic algorithms
start with a set of solutions where the quality of output is
significantly dependent on these initial solutions [38]. This
kind of problem cannot be constrained to a finite solution
space with simple explicit constraints which makes it difficult

to solve by exact optimization techniques. The present study
suggests customized evolutionary approach for the genera-
tion of optimal process plans. In later part of this section,
GA and CS methodologies for optimized process plan will be
discussed in detail. Figure 4 describes these two individual
population-based heuristics. The initial population input is
generated with the use of PGA. The flowchart describes the
main highlighted difference between these two algorithms.
The creation of new population and hence, the new set of solu-
tions is different for both heuristics. While GA uses crossover
and mutation, CS makes the use of levy flight phenomenon.

1) FITNESS FUNCTION
For an optimal process plan, an objective function needs to
be assigned for the purpose of comparison. To account for the
non-value added time, minimal tool and set up changes are set
as the desired criteria in the current work. Weightage method
has been used for assigning weights to both criteria. Tool
change matrix is composed of binary values in a matrix form.
In case of a tool change from one to the next operation in
sequence array (i.e. TC i→i+1,where i is the operation index),
a value equivalent to 1 is assigned in the matrix and otherwise
it is 0. Number of columns and rows represent total number
of operations. Hence, all the diagonal entries show relation
between same operations and will always be zero. Total num-
ber of tool changes in a sequence can be represented as;

TCk =
∑n−1→n

i→i+1
TC i→i+1 (1)

where TCk = number of tool changes in sequence k
n = total number of operations in a sequence
Same methodology will be used for setup change matrix

i.e. SC i→i+1.
In the same manner, value of 1 is assigned when a

setup change is required for manufacturing and 0 otherwise.
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FIGURE 4. Flowchart for GA and CS algorithm.

It should be noted that setup change ismainly linked here with
tool approach direction (TAD) considering a machine with
single axis for machining (z-axis). However, for a multi-axis
machine, the matrix can be constructed in the same manner.

SCk =
∑n−1→n

i→i+1
SC i→i+1 (2)

Fitness criteria has been considered as;

(minimize)Z = W1 ∗ TCk +W2 ∗ SCk (3)

As an example, TCk and SCk for the part in figure 2 is
calculated here in table 2. The first row represents a process
plan generated with PGA. The tool requirements for the
operations have already been displayed in table 1.

The fitness function is used to select best solutions from the
search space fort the next steps of proposed meta-heuristics.
Various methods for example roulette selection, tournament
selection, elitism and rank selection etc., have been proposed
for this purpose [39]. Elitist method [40] has been used for
selection purposes in the present work for GA. This method
selects best ranked individuals as parents while discarding the
other ones. For CS, a fraction of poor solutions are removed

from the next iteration while keeping population size con-
stant. Solutions are ranked based on their performance as per
the objective function and are included in the next iteration
based on probability of acceptance i.e. Pa which is kept
between 0.1-0.5 [41].

2) CREATION OF NEW POPULATION
After selecting parents for creating next group of popula-
tion, evolutionary algorithms explore different strategies for
exploring the global search space for optimal solution. In the
subsections, we propose two different heuristics (i.e. GA and
CS) for creation of new set of solutions.

3) GENETIC ALGORITHMS
Crossover and mutation are performed for combining fitter
parents for the creation of new population. Mutation operator
is used to introduce diversification in order to explore search
space efficiently. Crossover is used to change the program-
ming of chromosomes between generations. Crossover is per-
formed in many variations such as single, multiple or uniform
crossover. These traditional strategies cannot be adopted for
this specific sequencing problem. Consider an example below
in figure 5 having a string of ten operations with single point
crossover. It can be observed that after crossover, the new
solutions (represented as children) are infeasible as some
operations are repeated (e.g. op9 in child 1) while some
operations are not performed (e.g. op8 in child 1).

To deal with this issue positional crossover is used in the
proposed methodology. By selecting two crossover points,
a temporary solution is generated for children as depicted
in figure 6. Temporary solution is then completed by invert-
ing the order of operations. For instance, to create Child 1,
the temporary segmented part is completed by placing same
operations as existed in parent 1. The difference lies in
their sequence which is adopted from the second parent.
This ensures that the new solutions are feasible and main-
tain precedence constraints as well. The same procedure is
repeated for generating C2.

The next step is to perform mutation which provides diver-
sification in the population in order to explore search space
more efficiently. Mutation is considered necessary in order
to avoid a locally optimal solution. Two mutation sites are
randomly chosen to swap operations. Repetition will not
occur in this case but the solution may still become infeasible
due to the violation of precedence constraints. Based on a
study by Carlson [42], the present study assigns penalty (via
penalty matrix) in case of this violation which is added in the
fitness function. This, in turn, makes the individual solution
less likely to continue in the next population.

Fitness Function = W1 ∗ TCk +W2 ∗ SCk + Pk (4)

4) CUCKOO SEARCH
Several studies on engineering problems have shown that
among all metaheuristics, CS algorithms tend to provide
best results [43]. In this algorithm, the behaviour of cuckoo
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FIGURE 5. Single-point crossover with infeasible plans.

FIGURE 6. Proposed crossover technique.

TABLE 2. Fitness for process plan.

breeding is used for the development of a novel meta-
heuristic [44]. The concept of Levy flights is used to generate
next set of solutions in order to ensure effective search for
optimal solution. It is a type of random walk and follows
Markov’s chain phenomena [45]. It implies that the future
value or state of a variable depends upon its present value
and not on its past. The new individual is calculated using
equation 5. It can be seen that the second term on right hand
side of the equation follows power law [46] with heavy tailed
probability distribution. This categorizes infinite variance and
infinite mean and is used as a step-function for obtaining
a new solution. The step function enables CS algorithm to
search solution space with a random walk and reach a global
optimum. The levy flight concept enables CS to find new
solutions with a structure random walk [41]. It has been
proved in literature that structured random walks are better in
finding a global solution than randomwalks proposed in other
heuristics such as PSO and ant colony optimization [33].

yt+1 = yt + α∗t−β (5)

This heuristic has been applied with standard [47] and
modified levy flight [48] to solve large scale problems. How-
ever, most of the applications deal with continuous variables.
Despite showing better performance for multiple engineer-
ing problem, application of CS for process planning is not
well known. A few studies [49], [50] discuss application

of CS for discrete engineering problems including job-shop
scheduling. We propose CS algorithm with modified step
size technique in order to generate new solutions (i.e.yt+1)
and compare it with GA discussed in the above section. The
solution in this case represents a string of operations. For
instance, for a problem with 14 operations, a solution is
represented with a string of 28 digits as shown in table 3.
In order to accommodate this long sequence, wemultiply step
size with a scaling factor α which equals 10e5. α is the scale
adjusting factor that is set according to the encoded problem.
This factor can set to be of increased order in case of a
longer string with greater number of operations. For a specific
encoded problem size, this factor is treated as a constant.
In order to avoid convergence with local optima, we have
selected value of β to be 2. For β > 3, the distribution is
with limited variance which drives the algorithm to converge
locally [51].

As it can be observed from table 3, with levy flight, the new
solution can be infeasible in multiple ways. For instance,
op9 is repeated twice in the plan while op5 is neglected.
To avoid this infeasibility, a repair strategy is proposed.

5) REPAIR SCHEME
A repair scheme solves the problem of infeasible pro-
cess plans. After the generation of new process plan (i.e.
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TABLE 3. Process plan from CS.

TABLE 4. Repaired process plan.

FIGURE 7. Tool change results (Proposed GA) for ANC101.

FIGURE 8. Tool change results (Proposed CS) for ANC101.

yt+1), it is checked for feasibility. If an element in the
string is greater than the number of operations, then pre-
vious element is retained in the sequence. However, if an
element is repeated, it is swapped with the parent solu-

tion (i.e. yt). For the above case, the new solution will
swap op5 and op9 for a feasible child as depicted in
table 4. The fitness of solution is calculated by using
equation 4.
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FIGURE 9. Fitness function obtained by GA for ANC 101.

6) STOPPING CRITERIA
Limit criteria cannot be used in our problem due to the large
search space and absence of an optimal benchmark. More-
over, literature argues the use of stalling limit as stopping
criterion while using elitism as parent selection. The reason
behind this is the erratic behaviour of algorithms observed by
the use of this combination [34]. Hence, number of genera-
tions/iterations is used as a stopping criterion in this paper.

III. EXPERIMENT AND RESULTS
For the examination of proposed algorithms, we chose exist-
ing benchmark part (ANC101) that has been used in literature
for such CAPP problems [11]. With 14 machining features,
a total of 28 operations need to be performed for part
manufacturing. The inputs required for optimization of the
part (e.g. Network diagram with PGM, setup, tool change
and penalty matrix) has been provided in (Supplementary
materials). Matlab 2016b was used for simulation of both
heuristics and their comparison. Crossover and mutation
rate are stochastic parameters for GA. For the present case,
crossover and mutation rate was selected to be 0.9 and
0.1 respectively which has been recommended in litera-
ture [3], [52]. While comparing the process plans obtained
with GA, it was observed that process plans obtained by
Kumar & Deb [53] were unable to maintain precedence
constraints which resulted in infeasible plans. The proposed
technique with GA algorithm considered objective functions
separately. It was able to obtain an optimal process plan with
six tool changes where as the number of setup changes varied
from 11-15. The results were obtained in 147th iteration
while using elitist model for selection. Below are the results
displayed in figure 7 and 8 by using GA showing tool changes
during iterations. It can be seen that the optimal process plans
(table 5 and 6) had 6 number of tool changes which was

obtained after only 4th generation. Moreover, the generated
process plan does not violate any constraint. While compar-
ing the proposed GA and CS, we used combined objective
function (equation 4) giving equal weightage to setup and tool
change. It can be seen in figure 9 that GA tends to provide
better results.

IV. DISCUSSION
The GA algorithm was tested on a benchmark problem and
performed well. The optimal value was achieved with faster
convergence. This was possible due to the fact that as com-
pared to previously proposed GA, the algorithm starts with
feasible initial population and does not undergoes feasibility
tests but focuses on searching optimal solution in search
space. CS was compared with GA on process planning prob-
lem and although, CS outperforms GA for continuous prob-
lems, it did not perform well in case of discrete constrained
process planning problem. Figure 7 displays the results for
GA tested on ANC101 with desired objective minimum num-
ber of tool changes. Variation in setup changes was also
recorded during iterations and was seen to fluctuate between
11-15. It can be seen in table 6 that best optimization run
for GA gave optimal result at 4th iteration. However, due to
stochastic nature of the algorithm, the runs were performed
100 times on average and it was seen that 70% of the time,
optimal valueswere achieved in first 15 iterations and reached
to 100% for 30 iterations. It should be noted that these
results were obtained by keeping the population size of 50.
Figure 8 displays the results for CS algorithm with the same
objective of minimizing number of tool changes. As com-
pared to GA, the convergence to optimal value for CS was
slower with the best run giving optimal value at 67th iteration.
However, on average, 100% of the time optimal results were
achieved with less than 100 iterations. The total number of
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FIGURE 10. Fitness function obtained by CS for ANC101.

FIGURE 11. Population Size Vs Convergence Iteration in GA for ANC101.

TABLE 5. Optimal process plan for ANC101.
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FIGURE 12. Impact of crossover and mutation probabilities in GA for ANC101.

TABLE 6. Comparison of results for ANC101.

setup changes varied from 12-17. This is possible due to the
fact that in order to apply CS methodology on process plan-
ning problems, we have to produce new solutions/sequences
via levy flights. But when levy flight concept is applied on
a process plan to create new population, it violates prece-
dence constraints which leads to increased penalties on the
generated sequence. Such sequences are then eliminated for
next simulation run due to poor fitness value. This proves
our initial point that one algorithm might not perform best
for every problem under consideration and decision has to be
taken for the appropriate choice of optimization algorithm.
Figure 9 and 10 show results against the total fitness function
defined in equation 4 with equal weightage given to both
setup and tool change criteria. Similar results were observed
with CS converging slower as compared to GA. On detail
analysis of the results, it was seen that CS population results
in a large number of penalties that compromises their fitness
to be selected as parents for the next iteration. Experimen-
tal evaluations were also performed to investigate the effect
of stochastic parameters of population size, mutation and
crossover rate in GA on the performance. Figure 11 shows
the effect of population size (mutation rate 0.1, crossover
rate 0.9) on convergence performance of GA heuristic. The

performance was measured by plotting the iteration on which
optimal value was achieved for each sample of population
size. It can be seen that lower population size seems to provide
slower convergence while a size of 50-60 provides the best
results. Figure 12 shows the impact of mutation and crossover
rate variation on the convergence performance. A higher
mutation rate results in slow convergence and higher com-
putation time requirements due to violation of constraints.
The optimum value for mutation ranges from 0.05-0.1 while
a higher value results in slower convergence. It is because
mutation results in increased number of penalties for the
generated process plan. Such process plans are then elim-
inated from the population by the elitist selection method.
On the other hand, lower crossover rate results in limiting
the search direction providing repetition of solutions in next
generations/iterations. For CS, the stochastic parameter is
probability of acceptance i.e. Pa [0.1-0.5] with a step size
of 2 as recommended in literature [41]. A higher value of Pa
exhibits that there are more chances of selecting a poor solu-
tion for the next generation. A value of 0.5 converged rapidly
to provide a sub-optimal fitness value of 15 for ANC-101
while a value of 0.25 and 0.3 provided fitness value of 13.
A lower value of Pa ranging from 0.1-0.20 did not provided
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any improved solutions but converged slowly towards opti-
mum solution. The investigation shows that although GA has
more stochastic parameters as compared to CS, it is capable
to provide better results in case of discrete problem of process
planning. CS should be explored more in terms of step size
to generate feasible solutions.

V. CONCLUSION
The present work lies in the domain of optimization in indus-
trial systems. It aims at generating optimal process plans for a
part/part family for a single machine. Along with that, search
areas in optimization are also discussed in order to yield opti-
mal process plan from the alternatives. The proposed GA out-
performs other algorithms in literature and provides improved
performance in terms of fitness function as well as com-
putation time. Although CS algorithm is argued to provide
good results for continuous problems, its performance in case
of discrete problems with complex constraints is somewhat
limited. The step-size used to generate new sequences should
be further explored. The proposed PGM matrix provides a
novel way to obtain initial solution set. The matrix can be
easily modified to add new features in a product making it
robust. Furthermore, variety of solutions generated by PGM
provide a good quality of initial population which improves
performance of proposed evolutionary strategies. Percentage
of the optimal solution provided by GA was more than 80.
However, in case of CS, this percentage was reduced to 70.
For ANC101 part, the best solution was always obtained in
less than 50 iterations. Furthermore, run time required by CS
was 3 times higher than of GA.

Certain future work areas can provide a wider range of
practical applications of the study. Parallel sequencing can
be considered for cases in which minimum machine time is
required and precision is not an issue. Along with the speci-
fied criteria, parameter optimization can be performed result-
ing in suggesting optimal feed, speed and depth of cut for the
part. This will require detailed literature review on tooling and
cutting force directions. The problem should be extended to
multi-modal resource constrained scheduling problem with
multiple machines and jobs. CS algorithm will be explored
in future work to investigate its strength in manufacturing
industry.
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