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ABSTRACT Increasing flexibility and efficiency of energy-intensive industrial processes is generally seen
as a big lever towards a decarbonized energy system of the future. However, to leverage these potentials,
the accurate prediction of unit behavior is essential to be able to close the gap between supply and demand.
Not only pose nonlinear relations a serious challenge in thermal systems engineering and optimization
but real-world unit behavior furthermore changes during operation due to wear, fouling and other effects.
In the present work, a novel framework for automated data-driven model adaption is presented which is
capable of automating fast and accurate predictions of current system behavior. The framework is based
on open protocol bidirectional live communication and mechanistic grey box modeling. While especially
thermal energy storage is considered a solution to increase flexibility, it is very challenging for operation
optimization. A packed bed thermal energy storage operated under severe conditions leading to continuous
fouling acts as proof of concept of the proposed framework. The obtained results indicate major improvement
for storage output prediction with the novel framework compared to a conventional approach without
readjustment. Furthermore, the presented framework is perfectly suitable and an essential foundation for
live condition monitoring, fault prediction, predictive maintenance, and operation optimization.

INDEX TERMS Automated model adaption, data-driven modeling, industrial energy systems, OPC UA.

ABBREVIATIONS AND SYMBOLS
ṁ Mass Flow of the Heat Transfer Fluid.
li Vertical Distances between the Measurement

Layers.
T1−4 Inner Temperatures of the Test rig.
Tb Temperature on the bottom of the Test rig.
Tin Input Temperature of the Test rig.
Tout Output Temperature of the Test rig.
Tt Temperature on the top of the Test rig.
Vi Partial Volumes of the Test rig.
PBR Packed Bed Regenerator.
PI AF PI Automation Framework.
PI DA PI Data Archive.
PLC Programmable Logic Controller.
RMSE Root Mean Square Error.
SCADA Supervisory Control and Data Acquisition.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jamshid Aghaei .

SM Storage Medium.
TES Thermal Energy Storage.

I. INTRODUCTION
This Introduction presents a short motivation for the present
work and a brief history and summary of related work that can
be found in current literature, followed by highlighting the
main contributions and the remaining structure of this paper.

A. MOTIVATION
Decarbonization efforts are a driving force for the
energy-intensive industries to drastically increase energy
efficiency. At the same time, we are in the middle of what is
often referred to as the fourth industrial revolution or Indus-
try4.0, driven by evolving Information and Communication
Technologies [1]. Industry4.0 and the sustainable energy
transition share important characteristics and can mutually
benefit from each other [2], both being highly influenced
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by technological innovations [3]. Most researchers agree on
the huge potential of digitalization for reducing energy con-
sumption and for increasing economic sustainability [4]–[7].
As another paradigm of Industry4.0, Predictive Maintenance,
achieved by real-time monitoring, can also positively affect
the environment [3]. Preventive and predictive maintenance
promoted by data analytics extends the lifespan of machinery,
thus minimizing end of life waste [8].

The key foundation for Predictive Maintenance, as well
as energy optimization is automated real-time data analytics,
therefore achieving collaborative and real-time interaction
between computational and physical processes [9]. Espe-
cially in thermal process engineering, so called soft sensors
provide essential insights into the state of process operations
especially in cases where the direct measurement of key
process variables is very difficult, impossible or unreliable
[10]–[12]. Such soft sensors have thus been developed to
estimate key quality variables that are difficult to measure by
constructing mathematical prediction models using the easy-
to-measure process variables [13]–[15]. Predictive data, i.e.
probable future values or states forecasted based on accurate
models representing a given process, are therefore essential
for numerous applications [16].

B. STATE OF THE ART
In the last decades, process analytics and condition monitor-
ing have gained significant importance due to the increasing
complexity of plants and machinery and vigorous economic
competition. Condition monitoring can be described as ‘‘the
assessment of the current condition of a physical entity by
employing measurement data’’ [17], [18]. By preprocessing
the raw data (normalization, PCA, Feature Extraction, sen-
sor fusion, soft sensors, . . .), valuable information about the
current state of the physical entity is gathered and further
utilized in several condition monitoring related services like
fault detection, predictive maintenance, and operation opti-
mization. Condition monitoring approaches have relied on
specific measurements during plant and machinery operation
(e.g. vibration analysis, strain measurement, and thermogra-
phy) [18], [19]. Current developments in sensors and signal
processing systems, big data management machine learning,
and improvements in computational capabilities have opened
up opportunities for integrated and in-depth condition mon-
itoring analytics [19]. Latest concepts like cyber-physical
systems [20] and digital twins [21] aim to take automation to
the next level and achieve collaborative and real-time inter-
action between the real world and the digital world [22]. The
foundation for this is the bidirectional connection between the
real and the digital world [21] and, therefore, virtual model
synchronization.

Automated model adaption in the context of condition
monitoring is primarily applied to classify and detect system
faults. Prominent examples are bearing fault detection for
electric motors [23], fault detection for wind turbines [24],
or general rotary machines [25]–[27]. Also, condition moni-
toring for electrical equipment like transformers [28], or the

wear of cutting tools [29] has been the topic of machine learn-
ing studies where models have been trained for classification
purposes.

In general, the goal of condition monitoring applications
is to detect states of damage early or to initiate maintenance
before actual damage occurs, based on learned characteris-
tics [30]. So basically, the output of the beforehand trained
analysis tools is a decision if the process is in a normal or
abnormal state by determining if parameters (e.g. vibration
signatures, forces or temperatures) exceed defined or learned
borders. This is possible because the damage mechanisms
behind the phenomena to classify are often well known and
distinguishable.

Contrary to this, the automated data-driven model adaption
approach presented in this work allows up-to-date prediction
of the future behavior of the thermodynamic component,
which extends the range of possible enhancements. Common
mechanisms like fouling or abrasion within industrial ther-
modynamic machinery bear the challenge that they are often
hard to monitor during operation and are likely to impact
performance and change important physical properties like
heat transfer. If these changes are not critical for the lifespan
of a machine, the successive task is to adapt it’s operation for
maximum efficiency. Accurate predictions of the asset’s per-
formance gain importance for operational optimization, since
the margins of energy and resource savings are shrinking.
In case of inaccurate optimization results based on non up-
to-date asset models, the forecasted savings are consumed by
process control, needed to keep the real process in a physi-
cally feasible state [31]. To be able to meet the need for accu-
rate predictions mentioned above, the aim of this study was
to create an innovative framework for automated data-driven
model adaption for industrial thermal energy systems.

Industrial thermal energy systems are often designed for
long-time service life, which traditionally comes with com-
munication problems between systems that become deployed
decades apart from each other. Either the software of the sup-
pliers is not compatible or even the communication standard
has changed. To tackle this problem, the use of unified open
protocol standards continuously gains shares in the industrial
communications market [32]. The OPC UA standard is
widely recognized in various industries to enable interoper-
ability and communication in all operational layers. Because
the hardware and software available during the research were
compatible, and the free availability of the communication
standard that enables barrier-free research, OPC UA was
chosen as the base of the proposed framework.

C. MAIN CONTRIBUTIONS
Peres et al. [16] state that there is still a clear need to further
combine real-time and historical data at both the resource and
system levels, as well as closing the loop to autonomously
act on the results of the predictive analytics. Furthermore,
solutions should be highly adaptable, being capable of chang-
ing even after deployment by learning from newly generated
knowledge [33].
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To the best of the authors’ knowledge, no automated
data-driven model adaption framework for industrial ther-
mal energy systems has been presented so far. We therefore
consider our main contribution in presenting an automated
continuous model adaption framework for the application on
industrial energy systems that

- relies on open protocol live communication for maxi-
mum flexibility,

- features real-time analyzes and feedback considering the
current physical properties of the system and,

- is fast and easily modified on models and systems for
similar applications.

Compared to systems that rely on manufacturer-specific
communication standards, the presented framework can be
used with a wide range of devices or programs from differ-
ent sources, as long as they support the open source OPC
UA standard. Because the framework allows a continuous
and automated adaption of prediction models to match the
properties of the real physical system, less human interven-
tion is needed compared to traditional condition monitoring
systems.

D. PAPER STRUCTURE
The remainder of this paper is structured as follows:
In Section II, the proposed automation framework is
described. In the following Section III, the use case subject
to the proof of concept is given. The results of the exemplary
framework application are then discussed in Section IV, fol-
lowed by Section V, where the conclusion and an outlook on
future research is given.

II. AUTOMATION FRAMEWORK
The way measurement data is recorded has undergone a long
series of changes and improvements. Starting from written
recordings, the emerging of new information processing tech-
nologies led to new paradigms. As data storage became cheap
and practicable enough, the storage of considerable amounts
of raw measurement data started. Nowadays, it is clear that
the simple storage of measured data without proper proces-
sion is not sufficient for detailed analyzes that are needed
for improvements of efficiency or resource demand. The raw
measurement data has to be enriched with semantic data
like the accuracy of the used sensors, measurement position,
calibration data, or control values. A framework for automatic
data acquisition and model training for industrial energy
systems based on OPC UA and other modern communication
protocols has been implemented exemplary on an existing test
rig to meet the requirements above.

A programmable logic controller (PLC) from hardware
manufacturer B&R Industrial Automation GmbH provides
the operational data of the test rig via an OPC UA server
hosted on the PLC itself. The test rig is controlled via the
XAMControl SCADA system from evon GmbH, whereas the
data handling and storage are performed by the OSIsoft R© PI
System.

A complete illustration of the digital infrastructure of this
framework is given in Fig. 1. The test rig is located in a
laboratory of TU Wien. It is connected via the university
network to the control and data processing server, located in
a central server room in a different physical location.

The digital and analog sensor data of the test rig (on the
left-hand side of Fig. 1) gets processed in the PLC and passed
on to the OPC UA server, which supplies the data to possible
clients in the same network. Alongwith everymeasured value
of a data point, the timestamp of the measurement and the
quality of the data are transmitted.

The so-called ‘‘PI Connector for OPCUA’’ of the PI system
acts as an OPC UA client that requests the time-series data
with all its associated information from the PLC in defined
intervals. This information is then copied into a specific
subsystem of the PI server, the PI Data Archive (PI DA),
where it is stored as a PI point. The PI DA retrieves data
and serves it in real-time to all components of the PI sys-
tem. The PI Asset Framework (PI AF), which is the second
part of the PI server, allows an object-orientated, consis-
tent grouping of the measurements of assets. Within the PI
AF, the first analyses with low complexity are performed.
For example, suppose redundant temperature measurements
on the same measurement position are compared, and the
difference is higher than expected by known uncertainties.
In that case, a warning will be generated that initializes
external intervention or even emergency procedures if nec-
essary. So-called event frames allow the classification of
states like charging or discharging, making it easier to com-
pare the behavior of an asset for recurring operation condi-
tions. Another connector of the PI System, the PI SQL Data
Access Server, is used as a gateway to pass time series data
via SQL queries to MATLAB R© (on the right-hand side of
Fig. 1), where the actual model training and simulation takes
place.

In the given use case, the query requests a defined amount
of recently completed charging and discharging events to
train the model with the current state of the test rig. The
trained model is then used to predict the response of the PBR
and thus its temperature curves for planned future operation.
The resulting prediction is then transferred back into the PI
system with the help of a universal file loading interface
that reads the data points from a defined output file of the
MATLAB R© model and copies them into the PI DA (bottom
right in Fig. 1).

The predicted values of the temperature measurements are
stored as future control values, which can be seen as addi-
tional attributes of the measurements, allowing for a real-time
comparison of the measured values and their prediction,
taking the test rig’s real condition into account. Decisions
resulting from the analyses or comparisons are then sent back
to the PLC and thus to the SCADA system via a custom pro-
grammed PythonTM Wrapper that acts as connector between
OPC and OPC UA, allowing the system to react to them
directly.
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FIGURE 1. Digital infrastructure of the presented framework.

III. SELECTED USE CASE
Industrial energy systems typically consist of energy supply-
ing components, energy storages, energy conversion compo-
nents like heat pumps, and energy demanding components as
exemplary depicted in Fig. 2. Therein, two processes, a frac-
tionating column and a particle dryer, are fed with thermal
energy by an energy supply component. Without the possi-
bility of storage or conversion of energy, the energy supply
has to satisfy the demands regardless of efficiency concerns
to keep the processes running. As addressed in earlier work
of Prendl et al. [34], energy demand and excess energy in
industrial processes are often offset in time. Hence, heat
recovery in combination with energy storage allows to reduce
the external energy demand and, thus, the use of resources
and the emission of CO2. Furthermore, since different tem-
perature levels often occur in energy-intensive processes and
not only one temperature level like in Fig. 2, the integration
and operational optimization of several different storage units
is a common problem. Economic operation of such industrial
energy systems is even more complicated by the increasing
share of renewable energy sources and the resulting highly
volatile energy prices. Therefore, increasing focus is laid on
process control with optimized storagemanagement, which is
dependent on accurate predictions of component behaviour.
In the following, this paper deals with the storage as central
component.

A. PBR TEST RIG
As exemplary use case, an existing packed bed regenera-
tor (PBR) thermal energy storage (TES) test rig situated in a
TUWien laboratory is used. It consists of an insulated conical
metal container filled with gravel as a storage medium (SM)
that is equipped with temperature measurement sensors in
several layers as shown in Fig. 3. The PBR is charged by
electrically heated air acting as heat transfer fluid (HTF) from
top to bottom and discharged with ambient air from bottom
to top. A detailed description of the PBR can be found in
several scientific publications that dealt with different aspects
of the storage and already provided insights on it’s properties

and behavior [35]–[39]. Also, different models for simulation
[36], [37], [40] and optimization [31], [38] for the test rig have
been created and validated in the past.

However, in real operation, deviations from ideal labo-
ratory conditions can influence the behavior of machinery.
Processes such as fouling or wear that occur over time are
often hard to measure or quantify, especially in the running
operation. In case of the PBR for example, deposition can
occur if the HTF is polluted with particles smaller than the
bed material. The passable cross section can change, flow
channels can form, or the heat transfer to the bed material
can be influenced. Further, the particle size of the bedmaterial
can change because of thermal degradation or abrasion. These
or similar effects can occur during real plant operation and
change the heat transfer inside the PBR. Thus, to maintain
optimum operational capability, models used to predict the
future behavior of assets must be kept up to date.

B. GREY BOX MODEL
Amongst the simulation models mentioned above, espe-
cially the mechanistic grey box model developed by
Halmschlager et al. [40] is capable of fast and easy adaption
to changed properties and is robust at the same time. This
modelling approach is therefore used and adapted for the
proof of concept of our framework and described in the
following paragraph. For a detailed mathematical descrip-
tion of the applied modelling approach, we refer to the
chapter ‘‘Extended Grey Box Model 2’’ in the original
publication [40].

The mechanistic grey box model consists of physical
relations/equations and uses measurement data to optimize
specific parameters of these equations. While only a small
number of equations needs to be solved for model training,
the model shows excellent prediction performance and stands
out compared to data-driven and physical models by its high
accuracy, low computational effort and high robustness [40].
An illustration of the test rig and the vertical position of
the measurement layers is given on the left hand side of
Fig. 3. The model uses the inlet temperature Tin and the mass
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FIGURE 2. Exemplary industrial energy system, consisting of energy supplying components, energy storage components, energy
conversion components, and energy demanding components.

FIGURE 3. Actual conical shape of the PBR with the vertical position of
the measurement layers in comparison to the cylindrical simplification of
the grey box model.

flow ṁ of the HTF to calculate the corresponding output
temperature Tout of the PBR. During charging, Tin equals
the temperature at the top of the PBR Tt and the Tout equals
the temperature at the bottom of the PBR Tb. During discharg-
ing, Tin equals Tb and Tout equals Tt , since the direction of
flow is reversed, as explained above.

If the model’s target is to predict the output temperature,
the cost function to be minimized consists of the root mean
squared error (RMSE) of the model output temperature com-
pared to the training data output temperature. In [40], existing
measurement data of the PBR is used for the training and
validation of the model. While predictions of Tout showed
high accuracy, predictions of internal temperature values T1
to T4, which were not part of the optimization target, showed
significant deviations. This is due to the fact that the conical
vessel shape of the PBR was approximated to a cylindri-
cal shape.

In case not only the output temperature of the PBR, but
also its internal condition is of interest, the prediction of
the internal behavior gains importance. In order to improve
the prediction, the vector of the measurement positions is
corrected in this work, in a way that the ratios of the volumes
and thus the ratio of the masses between the measurement
layers match the ratio of the volumes of the real conical shape.
This transformation is depicted in Fig. 3. Because the heat
capacity of the SM, the HTF, and the wall are included in
the factors that are fitted during training, only the ratio of the
volumes (Vi) and not the absolute values of them is of impor-
tance for the accurate prediction of the internal temperatures
T1 to T4. The assumption of a cylindrical vessel causes the
ratios of the distances (li) between the measurement positions
to equal the volume ratio as expressed in (1). The correction
introduced here has no significant impact on the prediction
of Tout but results in a vast improvement of the prediction of
the internal temperatures, which can be seen in Fig. 4. In the
upper part of Fig. 4, a time series of simulated temperature
measurements of the PBR compared with the predictions of
the uncorrected model (dotted lines) and the new corrected
model (dashed line) is shown. In combination with the pre-
diction error plot below, it is visible that drastic improvement
could be achieved. This shows the importance of choosing the
right assumptions and simplifications for the development of
models or correlations to meet specific demands.

V1 : V2 : V3 : V4 : V5

= l1 : l2 : l3 : l4 : l5

= 0.117 : 0.352 : 0.503 : 0.682 : 0.375 (1)

IV. EVALUATION AND RESULTS
For a comprehensive testing of the framework, a validated
one-dimensional finite difference model of the PBR based
on the modelling approach introduced by [39] is used to
generate training and test data sets. The assumed load cycle
as given in Fig. 5 is used as an exemplary measurement
data. The charging temperatures vary between 170 ◦C and
260 ◦C whereas the discharging temperature is constant at a
22 ◦C ambient temperature. The HTFmass flow ṁ is assumed
constant at a value of 150 kg/h.
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FIGURE 4. Comparison of simulated inner temperatures with the uncorrected model (Ti g.un) and the corrected grey box
model (Ti g) and their respective error compared to the measurement values (Ti ).

FIGURE 5. Time series of temperature values of the assumed test data set.

For the simulation of pollution or fouling, it is assumed
that the given load cycle is repeated in a cyclical manner
while the heat transfer coefficient between HTF and SM
is gradually decreasing over time. Naturally, real pollution
processes not only cause a reduction of the heat trans-
fer coefficient. A variety of mechanisms lead to changes
in the behavior of the PBR or the flow conditions of the
HTF. However, in this work, the change of the heat transfer
coefficient was chosen as pollution indicator, because of
the clear impact and traceability of the simulated behavior
change.

The temperature response of the PBR is simulated for 8
example cycles while the heat transfer coefficient between
the HTF and the SM is reduced by 10 % in every cycle. The
resulting temperature curves are then stored on the PLC and

supplied to the framework as would be the case when using
real sensor data.

Two different model training scenarios are assumed for
evaluation of the proposed framework on real operation
conditions. Firstly, a traditional model training approach is
applied, where the model is trained only once with the ini-
tial data without reduced heat transfer coefficient. Secondly,
a model is initially trained with the same data but is retrained
after every full cycle with the measurements from the previ-
ous cycle in order to adapt to changes in the physical behavior
caused by pollution. The predictions of the temperatures for
the subsequent cycles of the only once trained model (in the
following denoted as Ti g) and the continuously trainedmodel
(in the following denoted as Ti gtrain) are then compared to the
simulated measurement data.
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FIGURE 6. Comparison of simulation results for the input and output temperatures of the cyclical trained model (Ti gtrain)
and the only initial trained model (Ti g) over the continuous sinking heat transfer between HTF and SM and their errors
(Ei ) compared to the generated measurements (Ti ).

FIGURE 7. Simulation results of the cyclical trained model (Ti gtrain) and the only initial trained model (Ti g) for the cycle
with the maximum pollution and their respective errors (Ei ) compared to the generated measurement values (Ti ).

In Fig. 6 the input and output temperature curves are given
with their respective prediction results and the absolute errors
between them. The values for the static model Ti g are dotted,
and the values of the adapted model Ti gtrain are dashed. It is
clearly visible here, that the absolute error of the once trained
model is steadily increasing over time while the error of the
continuously trained model stays in the same range. The error
for Ti gtrain even slightly decreases over time, which might
be a consequence of more data that is available for model
training.

For the sake of better visibility, the inner temperatures
predictions are not shown in Fig. 6. However, to visualize the
vast improvement the last test cycle with maximum pollu-
tion is given in detail with all inner temperatures in Fig. 7.
One can see that the predictions of the static model (dot-
ted lines) clearly differ from the measurements, while the
predictions of the continuously trained model are hardly

visible because of the small error. This also shows in the
lower part of Fig. 7, where the errors of the predictions are
displayed.

For quantitative analysis, the total RMSE (Root Mean
Square Error) for all temperature predictions of the cycle
with the highest pollution, given in Fig. 7, is calculated.
For the untrained model, a RMSE of 9.10 ◦C was obtained
whereas the retrained model featured a RMSE of 4.05 ◦C.
This improvement in accuracy requires additional computa-
tional time of only a few seconds for retraining of the model,
whereas measurement intervals for the PBR sensors of one
minute are considered sufficient. Even this seemingly small
difference of a few degrees in the model output can signif-
icantly change the optimum solution of optimization proce-
dures like the heat exchange network synthesis (HENS) [34]
or scheduling [31], resulting in deviating planning and control
strategies.
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V. CONCLUSION
A novel framework for the automated data-driven model
adaption for industrial energy systems is presented. The
framework’s capability to autonomously collect measure-
ment data, train a model, predict an asset’s future behavior,
and analyze the current system behavior is shown with the
help of a PBR TES as a use case.

The automated model adaption is applied on an assumed
cyclical operation of the storage where continuous pollution
reduces the heat transfer betweenHTF and SMover time. The
predictions of the model that was able to learn the changed
behavior of the PBR due to the developed framework provide
an accurate forecast and show considerable improvements in
accuracy compared to a static model. The maximum absolute
error of the static model was up to 14.2 ◦C whereas the
maximum error of the learning model was only 4.3 ◦C. This
means the prediction error could be reduced up to 70 %
within the given boundaries. Considering that even small
potential efficiency improvements add up to large monetary
savings for the energy-intensive industry, improvements like
this are gaining importance as the crucial factor in economic
operation.

However, it is important to consider that automated model
adaption comes with all its advantages and disadvantages.
As long as a robust and suitable model is used, the automa-
tion reduces the operator’s workload. However, if incorrect
measurement data is not detected and then used for the
model training, the resulting model and it’s predictions
are also incorrect. Thus, accurate and up-to-date predic-
tions are needed to monitor the measurements and initial-
ize immediate system response or external intervention if
necessary.

The implemented framework can be seen as a foundation
for real-time condition monitoring, fault prediction, predic-
tive maintenance, and operation optimization, all of which
rely on advanced communication.

The presented automation framework yields the potential
to characterize similar TES with small adaptions and only
little training data from initial measurements.

Furthermore, our framework is applicable for variable
industrial energy systems, provided appropriate system mod-
els are used. For further evaluation of this topic, a research
project concerning the enhancement of the test rig that allows
for the contamination of the HTF with pollutants is already
in the development state within the author’s research unit.
The real measurement data obtained by this enhancement
of the test rig will allow for comprehensive comparisons of
different prediction approaches for this problem and further
evaluation of the framework presented in this work.
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