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ABSTRACT In this era of technological advancement, the flow of an enormous amount of information has
become such an inevitable phenomenon that makes a path for the takeover of the internet of things (IoT)
based smart grid from the currently available grid system. In a smart grid, demand-side management plays
a crucial role in reducing the generation capacity by shifting the user energy consumption from peak period
to off-peak period, which requires detailed knowledge of the user consumption at the individual appliance
level. Non-intrusive load monitoring (NILM) provides an exceptionally low-cost solution for determining
individual appliance levels using a single-point measurement. This paper proposed an IoT-based real-time
non-intrusive load classification (RT-NILC) system considering the variability of supply voltage using low-
frequency data. Due to the unavailability of smart meters at the household level in Bangladesh, a data-
acquisition system (DAS) is developed. The DAS is capable of measuring and storing rms voltage, rms
current, active power, and power factor data at a sampling rate of 1 Hz. These data are processed to train
different multilabel classification models. The best-performed classification model has been selected and
utilized for the implementation of RT-NILC over IoT. The Firebase real-time online database is considered
for data storage to flow the data in two-way between end-user and service provider (energy distributor). The
GPRS module is used for wireless data transmission as a Wi-Fi network may not be available everywhere.
Windows and web applications are developed for data visualization. The proposed system has been validated
in real-time, using rms voltage, rms current, and active power measurements at a real house. Even under
supply voltage variability, the performance evaluation of the RT-NILC system has shown an average
classification accuracy of more than 94%. Good classification accuracy and the overall operation of the
IoT-based information exchange systems ensure the proposed system’s applicability for efficient energy
management.

INDEX TERMS Non-intrusive load monitoring, real-time load classification, IoT framework, machine
learning, variation of supply voltage.

I. INTRODUCTION
Nowadays, people are more involved in ground-breaking
technological research in pertinent areas, especially smart
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cities, smart homes, the internet of things (IoT), and others.
These technological advancements are quite demandable in
present times - from the original constituents of a city,
smart homes, and factories in the fourth industrial revolu-
tion smart cities, which are developed by combining IoT
with artificial intelligence (AI). The rapid development in
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building construction and urbanization increases power
demand, and these changes require an efficient energy
management program (EEMP), especially for developing
countries. EEMP can be obtained by monitoring elec-
tric appliances’ energy consumption patterns in real-time.
To achieve efficient energy management, electric loads must
be identified within a given period in real-time from the
household or workplace. This load identification process is
called load monitoring [1], which can be achieved in intru-
sive and non-intrusive ways. Non-intrusive load monitor-
ing (NILM) is a single sensor-based process, where the sensor
is installed at the power entry point and can recognize turned-
on appliances without the requirement of multiple sensors for
each appliance. The NILM, an exceptionally cost-effective
and promising alternative to intrusive load monitoring, was
originally developed by Hart et al. in the early 1980s [1].
Recent days extensive research has been done to make this
method more reliable and applicable in real-life and real-
time load disaggregation. A detailed comparative discussion
about NILM is available in Refs. 1 and 2. García-Pérez et al.
reported that NILM could help energy management of both
residential and non-residential buildings [3].

The NILM using high frequency (in the range of kHz and
higher) has been observed to attain excellent performance in
many studies. Xin et al. showed that the frequency domain
characteristics had been extracted by analyzing steady-state
current to realize load operation states [4]. Ruyi et al.
utilized 1-16th harmonics and a neural network to differenti-
ate multiple appliances [5]. Le et al. proposed the lower odd
harmonics-based household appliance classification using a
bagging decision tree [6]. A time-frequency analysis-based
NILM was also reported by Lin and Tsai [7]. The parti-
cle filtering was demonstrated for load disaggregation by
Egarter et al. [8]. Liu et al. reported that the on-off transient
signature curve could be employed to identify the appli-
ance [9]. Though the mentioned approaches’ performances
are satisfying [4]–[7], extra hardware is essential to make the
high sampling data collection possible [10].

With the advent of smart grid, smart energy meter is
becoming an inseparable part of the energy management sys-
tems (EMS). Consequently, NILM with low-frequency data
has been the focus of many researchers due to the availability
of low-frequency data in smart energy meters. Aiad et al. and
Cominola et al. tried to decompose low-frequency total pow-
ers using hidden Markov model-based methods [11], [12].
However, the increasing computational complexity associ-
ated with the growing number of appliances makes the
methods difficult to implement for real-time applications.
Individual appliance identification using features of the
low-frequency power-series signal was demonstrated by
Corrêa and Castro [13] and Zhang et al. [14]. Rafiq et al.
also identified a single appliance using low-frequency active
power (P), apparent power (S), reactive power (Q), rms volt-
age (V), rms current (I), and power factor (PF) data [15].
Le et al. showed a NILM system to identify multiple appli-
ances using transient features from 15 Hz power-series

signals by decision tree algorithm [16]. Dinesh et al.
also demonstrated a NILM system for identifying multiple
appliances using low-frequency power-series signals with-
out showing the possibility of determining a single appli-
ance [17]. For the classification of different combinations of
multiple appliances, the naïve Bayesian estimationmodel had
been employed by Yang et al. [18], while the identification of
appliances with a similar power profile was challenging.

For NILM, S, P, and Q have been the most uti-
lized features [19]–[23]. The P and V have recently been
observed to obtain high performance even at low fre-
quency [24]. The P, V, and S, I are extracted from AMPds
and REDD datasets [25], [26]. Different statistical features,
such as Interquartile Range, Crest Factor, Variance, Kurtosis,
Mean Absolute Deviation, Skewness, and Form Factor, are
extracted from the current waveform and envelope current
waveform with the aim of disaggregating loads in [24].
Shapelet extracted from the envelope of the current waveform
is used in [26]. Due to high-level redundancy, time-series data
is transformed into the frequency domain to extract harmon-
ics information with Fourier transform [27]. DiscreteWavelet
Transform (DWT) [28], [29], Stock well Transform [7], and
harmonic current-based features [30] have also been studied
by researchers.

Both supervised and unsupervised machine learning algo-
rithms have been applied to load classification prob-
lems. The model must be trained offline to learn from
available data before the supervised method’s actual classi-
fication. Most common supervised methods include Support
Vector Machines (SVM) [26], [29], K-Nearest Neigh-
bors (k-NN) [26], naïve Bayes classifiers [27], Multilayer
Perceptron (MLP) [31], Convolutional Neural Networks
(CNNs) [32], [33], Deep Neural Networks [34], and Particle-
Swarm-Optimization [35].

Welikala et al. proposed a power decomposition-based
real-time load monitoring system considering voltage vari-
ability within the power line [36]. Although they achieved
good load identification accuracy, their approach was based
on a local machine. One of the most crucial IoT-based
EMS issues using NILM is data transmission from local-
ized creation points to the cloud database for further pro-
cessing and applications. This transmission can be attained
with a wide range of technologies and protocols, such as
Wi-Fi, GPRS, ZigBee, Bluetooth, etc. [37]–[39]. The smart
edge analytics-empowered power meter prototype employs
ThingSpeak as cloud storage where only two appliances
were considered, such as electric fan and hairdryer for load
identification [40]. Moreover, the ethernet connection was
considered for data transmission, which is not feasible at
all. The IoT-based intrusive load monitoring (ILM) had
been proposed by Franco et al. for activity recognition in
smart homes [41]. As ILM requires a lot of sensors, it is
not a cost-effective solution. Most of the previous NILM
reports are conducted on local machines using either an
online database [13]–[35], [40] or collecting data from smart
meters [36]. If NILM can be implemented to observe the
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current load condition over the internet, the power authority
can observe the current load condition, leading to success-
fully achieving the EEMP. To the best of our knowledge,
there is no report on real-time load monitoring feasibility
over IoT considering supply voltage variability in NILM
algorithms. Further, none of the studies provides a complete
demonstration of a practically feasible end-to-end solution
for load monitoring in real-time over IoT. Therefore, a com-
plete practicable end-to-end solution for load monitoring in
real-time over IoT is essential. This work demonstrates a
practically implementable software and hardware package for
real-time non-intrusive load classification (RT-NILC) over
IoT using machine learning. The proposed system has been
developed by designing a data acquisition system (DAS) that
can measure and store rms voltage, rms current, active power,
and power factor data to a micro-SD card. These data are
employed to train and select a machine learning model for
the implementation of RT-NILC. Finally, using some IoT
framework, real-time load monitoring over the internet is
achieved.

Therefore, the significant contributions of this work are as
follows.

1. Designing a low-cost data acquisition system in case of
the unavailability of a smart meter.

2. Collection of data using a customized system at dif-
ferent supply voltage from a household in a realistic
scenario.

3. Introduction to a novel current decomposition-based
on state appliances database building using individual
appliance database by combination.

4. Implementation of a real-time IoT-based NILM system
using low-frequency data with a complete hardware
and software solution.

The rest of the manuscript is organized as follows. The
basic overview of the proposed RT-NILC over IoT is dis-
cussed in Section II. Section III clearly explains the hard-
ware description of the data acquisition system (DAS).
Section IV describes the data preparation procedure for

machine learning. Evaluation and selection of machine
learning algorithms are discussed in Section V. Section VI
explains the complete implementation of RT-NILC over IoT.
Results and discussion are included in Section VII. Finally,
Section VIII concludes the article.

II. OVERVIEW OF PROPOSED SYSTEM
The proposed RT-NILC system for real-time non-intrusive
load monitoring over IoT is implemented utilizing custom-
designed hardware, software, and webpage, as shown in
Fig. 1. The whole work is divided into two stages. At Stage 1,
a data acquisition system (DAS) is developed to prepare a
database to train different machine learning classification
algorithms. Then best machine learning model is selected
based on performance scores. The description of DAS and
database preparation are described in Sections III and IV,
respectively. In Stage 2, the best load classification model
has been employed to implement RT-NILC over IoT. The
description of RT-NILC is given in Section VI. The hardware
used in RT-NILC is an AC meter that reads rms voltage,
rms current, and active power data from a house and sends
these data to a real-time cloud database using GPRS com-
munication. The software section reads data from the cloud
database, makes load classification using the best machine
learning model, and sends the classification results to the
cloud database. A webpage is hosted on a website to view
the current load conditions of a specific house remotely. The
software and load classification models were developed in
Python 3.8. Firebase is used here as a cloud database, and
the website is hosted on 000webhost.com server.

III. DESCRIPTION OF DATA ACQUISITION SYSTEM
Due to the unavailability of smart meters in Bangladesh,
a data acquisition system (DAS) has been built using
PZEM-004T-100 A [42], Current Transformer (CT), Arduino
Uno, micro-SD card module, and RTC module. The required
components and their specifications are listed in TABLE 1.
The detailed description is as follows:

FIGURE 1. Overview of the proposed system.
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TABLE 1. Component list for data acquisition system (DAS).

PZEM-004T: It is an AC communication module capable
of measuring rms voltage, rms current, active power, fre-
quency, power factor, and energy. It sends data via TTL serial
interface, which is compatible with software and hardware
serial communication with Arduino.

CT: 100A CT (1000:1) is used to reduce current to
PZEM-004 T’s compatible level.

Arduino: Arduino Uno is used here to read the TTL serial
data from PZEM-004T-100 A and stores the data in comma-
separated values (.csv) format in a micro-SD card with date-
time information.

Micro SD TF card module: A 16 GBmicro-SD card is used
to store data from PZEM-004T-100 A.

RTC module: DS3231 RTC module is used here for data
acquisition date and time information.

DC power supply unit: A 5 V, 1 A DC power supply is
used to power all of the hardware components mentioned
above.

The block diagram (a), hardware implementation of
DAS (b), and a snapshot of recorded data (c) are shown
in Fig. 2. Figure 2 (b) also shows the CT connection to a
distribution board and the DAS. The data has been stored in
the micro-SD card using the developed DAS, as shown in
Fig. 2 (c). To ensure the DAS’s measurement accuracy, it is
calibrated with the standard calibration meter named Fluke
5502A [43]. The rms voltage, rms current, active power, and
power factor are measured for four types of appliances by
varying the supply voltage from 200 to 230 V using the

developed DAS and standard Fluke 5502A meter. TABLE 2
shows the comparative measurement data and % error in
terms of power. It is found that there is a slight difference
between themeasurement data of DAS and the standard Fluke
5502A meter. Thus, it can be concluded that the DAS has a
good measurement accuracy. The total cost of the DAS is
∼$ 22, which is very low compared to the commercially
available system [44].

IV. PREPARATION OF DATABASE
One-minute data from six commonly used household appli-
ances (rice cooker, LED lamp, CFL lamp, water heater,
fridge, and ceiling fan) are collected using the DAS.
TABLE 3 shows the rated wattage ratings of the six appli-
ances used here. The sampling frequency of the data acqui-
sition system is 1 Hz (1 data/second). To incorporate the
variability of the supply voltage, data from each appliance
are collected at different voltages from 210 to 240 V with a
2 V increment per step. This voltage range (210 – 240 V) is
selected because the supply voltage to the residence usually
remains within this range. The voltages are changed using a
single-phase autotransformer (3 kVA, 0 - 250 V, 50 Hz) [45].
Therefore, the data length is 60× 16= 960 for each appliance
for sixteen different voltage levels. During data collection
regulator of the ceiling fan was fixed to a particular position.
The effect of voltage variability is shown in Fig. 3, which
shows the change of power consumption of LED, CFL, water
heater (WH), and rice cooker (RC) with a change in supply
voltage ranging from 221 to 229 V, and it is found that
there exists a significant difference in power consumption for
resistive loads e.g. RC and WH while a negligible effect for
non-resistive loads for instance CFL and LED. For instance,
at 221 V, RC and WH’s power consumption is 975 W and
678.4 W, respectively. While the power consumption of RC
and WH are 1015W and 728 W, respectively, at 229 V. The
power consumption difference of 40 W and 49.6 W have
been observed for RC and WH, respectively, by changing
supply voltages. The combined power difference of RC and
WH is 89.6 W, which is between the fridge’s power rating
(100 W) and the ceiling fan (80 W). Thus, the supply voltage
variation may negatively affect the load classification accu-
racy if it is not accounted for. For instance, at 229 V, only
rice cooker may be misclassified as rice cooker plus LED or
CFL as LED and CFL alone have power consumption near
about 32 W.

The developed DAS is installed at a house, where rms
voltage, rms current, active power, and power factor data
are collected by turning ON only one appliance at a time
for 1-minute. This process has repeated for sixteen different
voltage levels (210 - 240 V, 2 V increment per reading),
as discussed earlier. At the same time, the data are stored
in a micro-SD card. Since individual appliance data are col-
lected, and any combinations of appliances may occur, it is
required to calculate the rms current, active power, and power
factor data for each possible combination. The goal is to
determine all possible ON-state rms current, active power,
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FIGURE 2. Schematic block diagram of the DAS (a), hardware implementation (b) and snapshot of recorded data format (c).

TABLE 2. Measurement accuracy of the developed data acquisition system (DAS).

and power factor data of all appliances for each voltage.
Therefore, the prepared database should contain the com-
bined rms current, combined active power, combined power
factor, and the name of each combination’s appliances for
each voltage level. In each combination, rms current of the
individual appliance is decomposed into the rectangular form

using equations (1-4).

Imax =
√
2I (1)

∅ = cos−1 (PF) (2)

IRE = Imax cos∅ (3)

IIM = Imax sin∅ (4)
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TABLE 3. Ratings of employed appliances.

FIGURE 3. Power consumption of LED, CFL, rice cooker, and water heater
with voltage change.

where, ∅ is the phase difference between voltage and cur-
rent, PF represents power factor, IRE represents the real
part of current, and IIM is the imaginary part of the cur-
rent. Hereafter, the real and imaginary parts of current from
different appliances have been added in any possible com-
bination to create the total real and imaginary current, IS
component for that particular combination using equation 5.
The power factor and the maximum total current IT for
each combination are calculated using equations 6 and 7,
respectively.

IS =
∑

IRE + j
∑

IIM (5)

Power Factor = tan−1(

∑
IIM∑
IRE

) (6)

IT =
√
I2RE + I

2
IM (7)

Finally, the total rms current ILC is obtained for each load
combination using equation 8.

ILC =
1
√
2
IT (8)

TABLE 4. Possible combinations of appliances with the corresponding
label.

The total active power, PTA of each combination is calcu-
lated using a simple summation of active power, PA of each
load in each combination using equation 9.

PTA =
∑

PA (9)

For N appliances, the possible combination is 2N-1. There-
fore, the total number of possible combinations of six appli-
ances are 26-1 = 63. During database preparation, in each
combination, the appliance’s name is assigned with a unique
label (0 - 62). The appliances combination and correspond-
ing label are listed in TABLE 4. The 63 combinations of
appliances are constructed by adding current vectors and
active power data. As a result, the training database consists
of 960 × 63 = 60480 data samples of active power (P),
rms voltage (V), rms current (I), power factor (PF), and
corresponding label. The procedure of database preparation
from individual appliance’s data is described inAlgorithm 1.
Similarly, two separate databases are prepared for two differ-
ent voltage levels at 221 and 227 V to verify the performance
under a new unknown database which is not included during
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Algorithm 1 Training Database Preparation
Input: V, I, P, PF data of N appliances
Output: 2N -1 data of V, I, P, PF and Label
1 for j← 1 to N do
2 data[j]← read V, I, P, PF data for N appliance
/∗ Store V, I, P, PF data in N different variables ∗/
3 applianceName[]← make list of N appliances name
4 for k ← 1 to length(data[1]) do
5 read V[k], I[k], P[k], PF[k] data for N appliance
6 v← V[k] for N appliance
7 pf← PF[k] for N appliance
8 i← convert I[k] to rectangular form using PF[k] for

N appliance
9 p← P[k] for N appliance
10 make list of i, p for N appliances
11 I_comb← make combinations of N elements in the

list i
12 P_comb←make combinations N elements in list

the p
13 name_comb←make combinations of N elements in

list the applianceName
14 for n← 1 to length(I_comb) do
15 I← abs(sum(I_comb[n])) for each combination
16 I_real← take real part of I_comb[n] for each

combination
17 I_imag← take imaginary part of I_comb[n] for

each combination
18 PF← calculate power factor using I_real and

I_imag for each combination
19 P← sum(P_comb[n]) for each combination
20 V← round(v[n]) for each combination
21 Label← name_comb[n] of each combination
22 trainData← append V, I, P, PF and Label data for

each combination
23 return trainData

the training. The new test database consists of 2 × 60 ×
63 = 7560 data samples of P, V, I, PF, and corresponding
label.

V. EVALUATION AND SELECTION OF MACHINE
LEARNING MODEL
The training database is employed to train different super-
visedmachine learning classification algorithms such as Ran-
dom Forest (RF), XGboost, k-nearest neighbors (KNN), and
Naïve Bayes. The detailed information of Random Forest
(RF), k-nearest neighbors (KNN), and Naïve Bayes algo-
rithms are available in scikit learn [46] package of Python,
while the detailed information of XGboost classification
algorithm can be found in Ref. 47. A 10-fold cross-validation
has been performed on the prepared train dataset using those
classification algorithms for four different sets of features.
In this work, the Accuracy, F1-score, Precision, and Recall

are considered as classification metrics.

% Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100 (10)

Precision =
TP

TP+ FP
(11)

Recall =
TN

TP+ FN
(12)

F1-score = 2×
Precision× Recall
Precision+ Recall

(13)

where, TP, FP, TN, and FN are denoted the number of
true positive, false positive, true negative, and false negative
instances, respectively. The goal is to train the machine
learning algorithms to choose the best combination of
hyperparameters for each algorithm (RF, XGboost, KNN)
using the training dataset. Therefore, hyperparameter tun-
ing (for RF n_estimators, max_depth, max_features, crite-
rion, min_samples_split, min_impurity_decrease, bootstrap;
for Xgboost n_estimators, max_depth, min_child_weight,
tree_method, eta, gamma, objective; and for KNN
n_neighbors, weights, algorithm, leaf_size, p; are used as
tuning parameters) is performed by using 10-fold cross-
validation (in each iteration 9 subgroups were used to train
themodel, and the rest one is used for testing themodel) using
sklearn.model_selection.Randomized SearchCV library for
each machine learning algorithm except the Naïve Bayes.
The Naïve Bayes algorithm is excluded from hyperparameter
tuning because it does not have any iterable parameters.
Using the library, the accuracy on 10 test datasets (of cross-
validation) is computed 250 times for the random combi-
nations of the hyper-parameters for each machine learning
algorithm. Hereafter, the best combination of the hyper-
parameters, which shows the maximum mean accuracy on
cross-validation test datasets, are selected. The hyperparam-
eter tuning is performed on four different sets of features
in Python programming language on a single computer
(Intel R©Core(TM) i5 - 6200U CPU @ 2.30 GHz, 8.0 GB
RAM) with Windows - 10 operating system. The outcome
results for four different sets of features are shown in
TABLE 5. It is found that there is a significant improve-
ment in classification score when the rms voltage is incor-
porated as a feature. It is also observed that the RF and
XGboost classifiers represent better performance scores
than the others for the feature set V, I, and P. In addi-
tion, the RF classification algorithm shows slightly better
performance as compared with XGboost. To choose the
best classification algorithm, the RF (n_estimators = 500,
max_depth = none, max_features = ‘log2’, criterion =
‘gini’, min_samples_split = 2, min_impurity_ decrease =
0, bootstrap = True) and the XGboost (n_estimators =60,
max_depth = 20, min_child_weight = 1, tree_method =
‘auto’, eta = 0.3, gamma = 0, objective = ‘multi: softmax’)
models are stored using the pickle library of Python for
further validation. Hereafter, the new unknown test dataset
which consists of rms voltage, rms current, active power,
and the corresponding label for two different voltage levels
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FIGURE 4. Methodology of the proposed RT-NILC over IoT.

TABLE 5. Performance scores using four different sets of features.

221 and 227 V are considered for the validation. The valida-
tion scores of the RF and XGboost classification algorithms
are listed in TABLE 6. Once more, the RF classifier shows
better scores than XGboost. Therefore, the RF classifier has
been chosen for the implementation of RT-NILC over IoT.

VI. IMPLEMENTATION OF RT-NILC OVER IoT
To develop the RT-NILC over IoT, it is essential to modify the
DAS. A wireless communication medium is required to send
the V, I, P data and receive the classification results from a
cloud database. The block diagram of hardware components
of the proposed RT-NILC is shown in Fig. 4. The relay serves

TABLE 6. Performance scores of random forest and XGBoost classifier
using new validation dataset.

an additional purpose like turn ON/OFF the main supply of
a house. Since Wi-Fi network may not be widely available,
GPRS wireless communication system is considered. For
GPRS communication with the cloud database, the SIM900A
module, is employed. The workflow diagram and algorithm
of the proposed RT-NILC over IoT are shown in Fig. 4
and Algorithm 2, respectively, which has two parts, such as
Hardware part and Software part. The proposed system has
been developed using an IoT infrastructure that consists of
four layers, as shown in Fig. 5. The bottom layer, named the
device layer, has two sub-layers, such as things and gateway.
The measurement sensors (PZEM-004T and CT: 100 A) are
the parts of things layer, which measures V, I, P, and PF
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data, whereas Arduino Uno and SIM900A are in the gateway
layer, building connections between the components of the
things layer and network layer. The network layer uses GPRS
communication for data transmission from the device layer
to the cloud service layer. The cloud service layer consists
of a hosting server and Firebase real-time database for data
storage and retrieval. The application layer is the top layer
that provides service to the end-users.

Algorithm 2 Hardware and Software Part
/∗ Start of Hardware Part ∗/
1 while Data.available() do
2 read V, I, P from a house
/∗ using serial communication of PZEM-004T and

Arduino Uno ∗/
3 send V, I, P data to cloud database
/∗ using SIM900A GPRS communication using http

GET() method ∗/

4 read OnOff control data from cloud database
/∗ using SIM900A GPRS communication using http

GET() method ∗/
5 if OnOff==0 then
6 turn Off main supply
7 end if
8 if OnOff==1 then
9 turn On main supply
10 end if
11 delay(seconds)
/∗ End of Hardware Part ∗/
/∗ Start of Software Part ∗/
1 while DataReading.available() do
2 read V, I, P from cloud database
3 label←make classification
/∗ using V, I, P as feature and previously saved ML

model ∗/
4 PF← calculate power factor using V, I, P
5 send label to cloud database
6 read OnOff control data form user
7 send OnOff control data to cloud database
8 display V, I, P, PF and name of running appliances

name
9 delay(seconds)
/∗ End of Software Part ∗/

A. HARDWARE PART
This part involves reading data from a house and transmit-
ting data to a cloud database. During reading data, Arduino
reads real-time rms voltage, rms current, and active power
using serial communication with PZEM-004T. These three
data are the features required for the load classification. For
transmission of these data to a cloud database, it is required
to create a real-time database in a cloud server. Firebase real-
time database have been employed to send and receive data.
As Arduino Uno cannot generate https connection which is
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FIGURE 5. Considered IoT architecture consists of four layers.

essential to send and receive data in the Firebase database,
a PHP proxy server is built in www.000webhostapp.com.
The Arduino Uno communicates with the 000webhost PHP
proxy server via http protocol (GET(), POST() method) using
SIM900A and the PHP proxy server makes https connection
(GET(), SET() methods) with Firebase. By this way, it is
possible to transfer data between Arduino Uno and Firebase.
The hardware is configured to send data to Firebase at 0.2 Hz
sampling rate. Here cost-free limited service of Firebase and
000webhost is used for demonstration. Figure 6 shows the
firebase real-time database. Field-1 shows the rms voltage,
rms current, and active power, Field-2 represents the classi-
fication result, Field-3 represents the ON/OFF status of the
main supply to a house. The Arduino sends data to the Field-1
and reads data from the Field-3. Based on the Field-3’s value,
Arduino turns ON and OFF the main supply to the load (1 =
ON, 0=OFF) using the relay as shown in Fig. 4. The Field-2
is associated with the software part.
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FIGURE 6. Process of firebase real-time database.

FIGURE 7. Developed GUI layout of RT-NILC.

B. SOFTWARE PART
This part deals with three tasks. Firstly, it involves the extrac-
tion of feature data (i.e., rms voltage, rms current, and active
power) from Firebase to classify the load combination label
using the RF model. Secondly, sending the information of
that label to Field-2 of Firebase. Finally, data visualization
in a graphical user interface (GUI). To perform the above-
mentioned tasks, a desktop GUI application and web appli-
cation have been developed. The desktop GUI application
has been built using tkinter library package of Python and
hereafter has been converted to a windows application using
pyinstaller library package of Python. The layout of the GUI
is represented in Fig. 7. The GUI shows the rms voltage, rms
current, active power, power factor, and current load status of
the selected house. The power factor, which is displayed in
the GUI, has been calculated using equation 14.

Power Factor =
Active Power

Apparent Power
=
Active Power
Vrms × Irms

(14)

It is noted that the computer which runs the GUI appli-
cation should have a good internet connection. This GUI
application does not require any third-party online machine
learning hosting services.

FIGURE 8. Layout of the webpage.

In addition, a webpage is developed using HTML and
JavaScript and hosted on 000webhost server. The webpage
requires a username and password. By providing correct
information, currently running load status, rms voltage, rms
current, active power, and power factor information of the
selected house where the device is installed can be seen
remotely. The power factor data is obtained using Equa-
tion 14 in JavaScript. Figure 8 shows the webpage layout.
The desktop application should be in operation to view the
running load combinations for a house on the web page.
Besides, in the proposed system, the old data sets are replaced
by new data sets, and only 699 Bytes of storage is occupied
in Firebase database for a user. Thus, a large storage is not
required for the proposed system.

VII. RESULTS AND DISCUSSION
This section discusses the experimental results of RT-NILC
over IoT, implementation cost with execution time, and a
comparative study with the existing work.

A. PERFORMANCE EVALUATION
After complete installation, ten readings have been taken for
each of 63 combinations of loads from a real house without
regulating the supply voltage, which varies between 220 to
235 V during the experiment. The hardware sends feature
data (V, I, P) at 0.2 Hz (in every five seconds) sampling rate
to the Firebase. The classification predicted results of RT-
NILC over IoT have been taken from the webpage, which are
compared with the actual load combinations. The predicted
labels and true labels are shown in the confusion matrix in
Fig. 9. It is observed that the classifier classifies accurately
in every label except labels 7, 8, 25, 28, 29, 47, 48, 50, and
60. Label 7 (LED + Rice Cooker) misclassified 2 times out
of 10 as label 11 (CFL+ Rice Cooker). The classifier only
misclassifies CFL as LED and vice versa. Similar results are
found in label 28 (LED + Water heater + Fan), which is
misclassified 3 times out of 10 as label 34 (CFL + Water
heater+ Fan). Also label 47 (LED + Rice Cooker + Water
heater + Fan) is misclassified 5 times out of 10 as label
51 (CFL + Rice Cooker + Water heater + Fan). These
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FIGURE 9. Confusion matrix; (a) Confusion matrix for label 0 to 20
(b) Confusion matrix for label 21 to 41 (c) Confusion matrix for
label 42 to 62.

TABLE 7. Performance scores of the implemented RT-NILM over IoT.

inaccurate results may be due to the similar wattage ratings
of the CFL and LED. The performance scores of the imple-
mented RT- NILC over IoT are calculated using Equations
10-13, then averaged and listed in TABLE 7. Even under
realistic scenarios, the proposed system has produced very
accurate results with an average accuracy of more than 94%.

B. IMPLEMENTATION COST AND EXECUTION TIME
The required hardware components are shown in Fig. 4. The
cost of the hardware part is∼$35. The software part requires
the purchasing of hosting and data plan for GPRS communi-
cation. If the RT-NILC sends V, I, P data every five seconds
to the Firebase using SIM900A, then∼200 Megabytes (MB)
of data per month per user is required for the GPRS com-
munication. The per month MB uses can be minimized by
increasing data transmission delay in the hardware section.
Since the price of web hosting and mobile data plans varies
from country to country, it isn’t easy to address the overall
cost of the proposal. Moreover, the proposed system uses
a cloud database and webpage, there might be a concern
regarding security and privacy issues. Also, the proposed
IoT-based system requires a secure internet connection for
data transmission. Proper protocols and robust coding might
ensure cybersecurity, whereas the internet connection quality
entirely depends on the service providers.

The power consumption curve of the RT-NILC is shown in
Fig. 10 for twenty minutes. The power consumption of the
IoT-based RT-NILC system is < 4 W when the relay (shown
in Fig. 4) is energized, and the rest of the time, it consumes
< 3.5 W. When the GUI software (Fig. 7) of the RT-NILC
system is executed on a computer (Intel R©Core (TM)
i5 - 6200U CPU @ 2.30 GHz, 8.0 GB RAM with
Windows - 10 operating system), the average time to display a
result in the GUI is 3.884 sec (which includes reading feature
data (i.e., V, I and P) from Firebase, making classification and
sending classification label to Firebase). During performance
evaluation, the proposed RT-NILC system is configured to
send feature data every five seconds to the Firebase. The
proposed system requires < 10 sec to display a new result on
the webpage (Fig. 8). However, the total execution time can
be reduced by decreasing the delay time (which is set to 5 sec
in this work). Besides, the data transmission speed from an
IoT device to a cloud database depends on the internet con-
nection speed. If a faster communication speed is required,
the 4G/3G (such as SIM7600CE shield for Arduino, which
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TABLE 8. A comparative study with existing low-frequency NILM systems.

FIGURE 10. The power consumption curve of the RT-NILC system.

supports 4G, 3G, andGPRS data transmission)module can be
employed.

C. COMPARATIVE STUDY
The comparison of this work with some previous NILMwork
at low-frequency data is shown in TABLE 8. Corrêa et al.
introduced auto-associative neural network (AANN) and
multi-layer perceptron (MLP) neural network algorithms on
low-frequency power series signals for individual appliance
identification [13]. They employed REDD and UK-DALE
datasets and achieved F1-scores of 0.879 and 0.858, respec-
tively, for the datasets. Zhang et al. demonstrated power

series signal for individual appliance identification on REDD
dataset using CNN [14]. Rafiq et al. reported P, Q, S, V, I,
and PF as a feature for individual appliance identification
using multi-feature input space long short-term memory
(MFS-LSTM) algorithm [15]. They employed UK-DALE
and ECO datasets and gained F1-scores of 0.89 and 0.976,
respectively, for the datasets. The rms voltage and active
power series data were considered to identify multiple appli-
ances by Welikala et al. [36]. They developed a power
matching algorithm to identify combinations of multiple
appliances. An experimental dataset was prepared and had
achieved an accuracy of 92.5% using a power matching
algorithm. Transient features from 15 Hz power series sig-
nal were represented by Le et al. for multiple appliance
identification using a decision tree algorithm [16]. They
considered the experimental data and achieved the F1-score
of 0.926 with an accuracy of 92.64%. Tracebase and REDD
datasets had been employed for multiple appliance identi-
fication by Dinesh et al. [17]. They employed the features
of power-series signal and achieved accuracy 94.04% and
95.10%, respectively, using a power matching algorithm.
Though there are many works related to the NILM system
at low frequency, it is difficult to compare the previously
reported results because of different datasets, appliances, and
devices for data preparation. This work proposed a low-cost
hardware and software solution for real-time load classifica-
tion (single or multiple) and electricity monitoring over IoT.
The proposed system is validated in real-time using 0.2 Hz
sample frequency of V, I and P data from a house. There-
fore, the proposed cost-effective RT-NILM over IoT provides
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a complete NILM solution, especially for low-frequency
applications.

VIII. CONCLUSION
The NILM is an exceptionally cost-effective and powerful
tool for loadmonitoring. Instead of installingmultiple sensors
for monitoring various electrical appliances, a single-entry
point sensor instalment can yield a cost-effective and effi-
cient solution. Therefore, the NILM idea emerges as a very
promising concept for identifying individual electric appli-
ances from a single point accumulated data. This work pro-
vides a practically feasible end-to-end hardware and software
solution for non-intrusive real-time load identification over
the internet. The training database building algorithm uses a
novel approach to build all possible combinations of individ-
ual appliances using supply voltage-dependent signatures of
each appliance. Using these training datasets, best-performed
machine learning models are selected and then validated
under a new dataset. The outperformed machine learning
model is then incorporated with real-time load classification
over IoT. After the complete implementation of RT-NILC
over IoT, a final validation is performed in a real residential
house. The final stage performance evaluation confirms the
efficacy and feasibility of the proposed RT-NILC. Even under
realistic scenarios, the proposed system has produced very
accurate results with an average accuracy of more than 94%.
The presented prototype system incorporates a dedicated low-
cost hardware design, online database management, and soft-
ware interface to facilitate user-friendly real-time operation
over the internet.
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