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ABSTRACT With in-memory databases (IMDBs), where all data sets reside in main memory for fast
processing speed, logging and checkpointing are essential for achieving persistence in data. Logging of
IMDBs has evolved to reduce run-time overhead to suit the systems, but this causes an increase in recovery
time. Checkpointing technique compensates for these problems with logging, but existing schemes often
incur high costs due to reduced system throughput, increased latency, and increased memory usage. In this
paper, we propose a checkpointing scheme using validity tracking-based compaction (VTC), the technique
that tracks the validity of logs in a file and removes unnecessary logs. The proposed scheme shows extremely
low memory usage compared to existing checkpointing schemes, which use consistent snapshots. Our
experiments demonstrate that checkpoints using consistent snapshot increase memory footprint by up to two
times in update-intensive workloads. In contrast, our proposed VTC only requires 2% additional memory
for checkpointing. That means the system can use most of its memory to store data and process transactions.

INDEX TERMS Checkpointing, in-memory database, logging, persistence, snapshot.

I. INTRODUCTION
In-memory databases (IMDBs) are designed to achieve fast
response time by processing data using the main mem-
ory, without accessing the disk. For this reason, IMDBs
are widely adopted for various applications [1], such as e-
commerce online transaction processing (OLTP) services,
online games [2], finance [3], and more. The entire data
residing in memory guarantees fast processing, but there is a
risk of data loss due to system crashes, hardware failures, and
power outages. To improve fault tolerance in long-running
applications, IMDBs provide persistence through a variety
of strategies. Checkpointing and logging are widely used
techniques for the durability of IMDBs. Disk-based databases
prefer ARIES-style [4] logging and checkpointing protocols,
while most IMDBs record only redo logs excluding undo
logs to reduce logging overhead and help performance. In
addition, IMDBs need to checkpoint much more data than
disk-based databases, so it is common to use an algorithm
suitable for this, such as consistent snapshots [5], [6].
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Many systems provide persistence by combining logging
and checkpointing. Systems that guarantee data durability
only with periodic checkpointing can reduce run-time over-
head, but the trade-off is that the system can lose a large
amount of data due to system failure. Systems that use
logging can lower the risk of data loss. Although logging
increases the recovery interval and requires more storage
space due to logs that accumulate over time, these prob-
lems can be alleviated by using checkpointing together. The
combination of logging and checkpointing reduces recovery
time by loading the latest checkpoint file and rerunning only
subsequent logs. Furthermore, it allows for the space used by
the logs to be reused.

Checkpointing plays an important role in effectively pro-
viding persistence for IMDBs, but it incurs significant costs
for system throughput, latency, and peak memory usage.
Figure 1 shows the memory footprint and throughput of
Redis, one of the most popular commercial IMDBs, dur-
ing checkpointing. When using Redis, the memory footprint
continues to grow over time until checkpointing is com-
plete. As a result, memory usage at the end of checkpointing
has increased up to 67%. Moreover, throughput decreases
by 38% at the beginning of checkpointing due to frequent
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FIGURE 1. Redis memory footprint and throughput during checkpointing
for the Yahoo! Cloud Serving Benchmark (YCSB) (50% update).

copy-on-write (CoW) operations. Redis performs check-
pointing by periodically taking consistent snapshots and stor-
ing them to stable storage. Data in a consistent snapshot
should not be overwritten during checkpointing, so changes
made to a database during client update requests are handled
by CoW semantics. Since physical pages copied by CoW are
not reclaimed until the checkpoint is completed, the memory
footprint may increase up to two times during an update-
intensive workload.

In a broad sense, a checkpoint is a technique that aims to
keep the persistent state of a database up to date with the goal
of reducing recovery time and reusing log space. Redis [7]
and Hyper [8] simply take a consistent snapshot and store
the contents of the snapshot through the fork() system
call [9] and CoW semantics supported by the OS. However,
this method has problems such as latency spikes [10] and
increased memory usage. DMC [11] allows pages to be
returned to the OS sooner before checkpointing is complete.
This lowers the peak memory usage during checkpointing,
but does not completely solve the increase in memory accord-
ing to the update rate. Hekaton [12] and CALC [13] attempt to
reduce the checkpointing overhead by using a partial check-
point algorithm. This algorithm reduces cost by taking partial
checkpoints that contain only some of the latest records.
However, the process of merging partial checkpoints to create
a complete checkpoint incurs another overhead.

In this paper, we propose a validity tracking-based log
management scheme to provide improved durability and
efficient checkpointing by minimizing the use of additional
memory. By distributing and storing logs across multiple
storage devices, we can hide the latency caused by the log
buffer flush so that logging does not affect the throughput of
the system. It also improves durability by reducing the flush
cycle of the log buffer. Instead of generating checkpoints from
the data on the main memory, our validity tracking-based
compaction (VTC) scheme creates checkpoints by identify-
ing valid logs in log files. VTC uses only a small amount
of extra memory because it does not require physical page
duplication or multiple versioning in main memory.

We provide the proposed scheme as a simple user-level
API. To test this system, we applied our scheme to Redis
5.0.6 and evaluate it with the Yahoo! Cloud Serving Bench-
mark (YCSB) [14] to compare its performance against the
persistence schemes of Redis. The experimental results show
that VTC consumes little memory to perform checkpoints and
does not adversely affect system throughput and checkpoint

time. With update-intensive workloads, VTC uses less than
2% of the size of the data set, while the memory foot-
print of the checkpointing scheme using consistent snapshots
increases memory usage by up to 200%. This means that
VTC permits most of an IMDB’s primary resource, system
memory, to be used for data storage.

Our contributions can be summarized as follows.
• We analyze the persistence scheme for an existing in-
memory database.

• We propose a persistence scheme that distributes and
stores logs on multiple storage devices and removes
unnecessary logs in the file by tracking log validity.

• We provide high-level APIs that can be easily applied to
the existing IMDB with little modification.

• The experimental results show that our scheme offers
slightly better throughput than the existing Redis
logging scheme and maintains a more stable mem-
ory footprint than the existing Redis checkpointing
scheme.

The rest of the paper is organized as follows. Section II
describes the background and motivation. Section III intro-
duces the design and implementation of our proposed
scheme. Section IV evaluates VTC and other persistence
schemes. Section V presents a discussion of the design and
experimental results. Section VI discusses the related works.
Finally, Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION
A. PERSISTENCE IN IN-MEMORY DATABASES
Because all of the data for IMDBs is in DRAM, which is a
volatile memory, it is crucial to guarantee data durability with
a fault-tolerance mechanism that will help prevent data loss
in case of system failure [15]. IMDBs prefer data replication
for fast failover and generally maintain replicas across multi-
ple nodes to achieve high availability [12], [16], [17], [18].
However, catastrophic failures such as cluster-wide power
outages can cause data loss if the data are not in stable
storage. To avoid this issue, data must be kept in stable
storage to ensure durability. The traditional techniques used
for database durability are logging and checkpointing.

Most disk-based databases guarantee transaction durability
with ARIES-style [4] logging. The ARIES protocol uses a
write-ahead logging (WAL) scheme that sequentially records
changes before modified pages are written to disk, and log
records include redo and undo. Early IMDBs used similar
techniques [19], [20]. However, logging to IMDBs is grad-
ually optimized for high throughput and low latency, and
the traditional logging scheme, which is relatively expensive
compared to light transaction processing without disk access,
is simplified for in-memory systems. In general, IMDBs
reduce log volume by recording only the redo log and min-
imizing the log record’s information to mitigate the effects
from log creation and log I/O overhead. However, replaying
the log for recovery increases the recovery time. Additionally,
WAL can recycle log space after applying all logs to the
data file, whereas logging in IMDBs consumes more space
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FIGURE 2. Overall procedure.

over time. Therefore, periodic checkpointing is required to
reduce the recovery time and recycle log space.

Checkpointing is also different in IMDBs. Because the
entire data sets for IMDBs are kept in the main memory,
it is common for their checkpoints to be larger than those
of disk-based databases. Many IMDBs use a checkpointing
algorithm that takes a consistent snapshot and stores it in
stable storage. The wide application of consistent snapshots
has led to extensive research in academia, and various algo-
rithms [2], [21], [22] have been proposed. In fact, the com-
mercial systems Redis and Hyper use the fork() system
call as a consistent snapshot algorithm.

Redis, the most popular key-value IMDB [23], provides
persistence via Redis data backup (RDB) and an append-only
file (AOF). RDB is a feature that backs up the entire database
in memory. It obtains a consistent snapshot using fork()
and stores the contents of the snapshot in stable storage in the
background through the child process created by fork().
AOF, a logging feature supported by Redis, appends a log
of events that have changed the database to the log file.
When a log file exceeds a specific size, the system acquires a
snapshot, converts its contents to log format, and saves them
as a file. As a result, it creates a new log file consisting of
only the logs needed for recovery. This process mitigates the
increase in log space and recovery time.

B. FORK-BASED CHECKPOINTING
Fork-based checkpointing is a simple but efficient scheme
that creates point-in-time consistent snapshots and store them
in stable storage with OS supports. It has been demonstrated
that the fork-based consistent snapshot algorithm outper-
forms other algorithms [2], [21], [22] for update intensive
workloads [6]. In fact, many industrial IMDBs like Hyper [8]
and Redis [7] employ the algorithm for checkpointing.

The fork() system call is used to create a child process
by duplicating a process. Physical pages are not actually
copied by fork(), and both processes refer to the same
physical pages through virtual memory pages. If a page
shared by both processes needs to be updated, the CoW tech-
nique copies the physical page to a new memory space and
modifies it. Thanks to this CoW technique, point-in-time data

on the child process (checkpointer) is not affected even as the
parent process (worker) handles the client’s update request.
After fork(), the checkpointer traverses the snapshot and
saves point-to-time data to a file.

However, there are well-known problems with fork-based
checkpointing. The first problem is the latency spike due
to the blocking operation, fork(), which occurs because
IMDBs cannot process or respond to client requests while
creating a process by fork(). Moreover, latency due to
fork() increases as the size of the data set increases.
The second problem is increased latency due to CoW. During
the checkpointing period, the overhead due to CoW for pro-
cessing update requests increases latency and affects through-
put. If the update rate of the workload is high, CoW will
frequently have a greater impact on the throughput. Finally,
the increase in memory footprint by CoW is the most crucial
problem. The parent process handles client requests while
the child process created by fork() writes the snapshot
data to the file. If the request is an update, the physical
page is copied by the CoW, which causes an increase in the
memory footprint. Moreover, the memory footprint increases
proportionally to the update rate of the workload. In the worst
case of all pages being updated, the required memory size is
twice that of the data set. Furthermore, the increased memory
cannot be reclaimed until the child process is terminated.
If there is no more available memory, either the transaction
processing and checkpoint speed will be significantly slowed
during the swap, or the out-of-memory killer will kill the
processes. For this reason, many IMDB vendors [24] recom-
mend that users take into consideration the memory increase
due to fork() and set the swap to prevent out-of-memory
problems.

We focused on a persistence scheme that combines logging
and checkpointing, along with a checkpointing algorithm
to minimize the memory use increase and provide stable
throughput.

III. DESIGN AND IMPLEMENTATION
A. DESIGN OVERVIEW
Our key idea is to distribute the logs into multiple files
and reorganize them by identifying valid logs in the files.
Figure 2 shows the overall procedure of the proposed scheme.
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The worker creates logs of events that change the database
and writes them to the log buffers. The flushers then flush the
log buffer to the stable storage in the background. We hid the
latency caused by flush by dividing the log into several SSDs
and improved durability by reducing the flush interval.

The VTC scheme performs checkpointing based on logs
stored in storage rather than on data in themainmemory. VTC
leaves only the logs needed for recovery through file-to-file
copying, so to achieve this, we maintained an up-to-date log
location for each database entry. An invalid_bitmap is
allocated per log file, and each bit indicates the validity of
each log in the file. The invalid_bitmap makes it sim-
ple to examine the validity of the log during checkpointing.
When the number of invalid logs in each log file reaches
the threshold, chekcpointing is triggered. Only one file can
be checkpointed at a time, and logs are not stored in the
file until checkpointing is complete. The separation of I/O
between logging and checkpointing reduces checkpointing
time and avoids log flush delays due to latency spikes caused
by checkpointing.

Recovery works by sequentially replaying logs read from
log files. To maximize the I/O bandwidth during recovery,
several loaders simultaneously read logs from files and fill
the buffers. Since the logs in each log block are guaranteed to
be serialized, the recoverer compares the timestamps of the
log blocks and processes them in order, starting with the log
block having the smallest value.

Wewill explain each scheme inmore detail in the following
sections.

B. DISTRIBUTED LOGGING AND LOG DATA FORMAT
For strong durability, logs should be immediately stored in
stable storage. Unfortunately, synchronous durability leads
to performance degradation. Therefore, many systems adopt
asynchronous durability that buffers logs and flushes them to
stable storage periodically. If the interval is too long, a large
amount of data may be lost in case of system failure. If the
interval is too short, the system throughput may be degraded
due to write stalls. Write stalls occur when the storage device
operation for the previous buffer flush is not completed when
attempting to flush the buffer.

We use multiple storage devices to store logs in order
to overcome the limitation on durability due to the storage
device’s performance. In addition, the use of multiple storage
devices makes it possible to separate storage I/O for logging
and checkpointing. This strategy ensures a stable log buffer
flush cycle and system throughput by avoiding the effect of
latency spikes on logging that can occur due to large data
storage during checkpointing.

Figure 2(a) shows the processing and logging for client
requests. When a request such as insert or update is received
from a client (¬), the worker reflects the processing result
to the corresponding entry in the database and also stores the
location information where the log will be stored in a variable
called log_pos (­). The variable exists for each entry
in the database and is used for checkpointing. If the entry

already exists, the worker updates the invalid_bitmap
to invalidate its old log (®). After that, the worker creates
a log and writes it to the active log buffer (¯). When the
log buffer is filled to more than the minimal number of logs,
the worker requests that the log buffer be flushed and then
activates the next log buffer. Finally, durability is guaranteed
when the buffer is flushed to stable storage by the flusher (°).
For recovery, it is necessary to identify the order of logs
distributed across multiple SSDs, but because the logs stored
in each buffer are serialized, we only need to clarify the order
between log blocks, which is a unit flushed from buffer to
storage. To do this, we add a 4-byte timestamp to the header
of the log block.

FIGURE 3. Proposed log format.

Figure 3 shows our proposed log format. An existing log
file consists of a log file header and logs. We add a com-
paction timestamp to the header to demarcate the check-
pointed and unchecked parts of the file. In addition, for
efficient recovery, we store logs that are flushed to log files
at once as log blocks. The log block have a 4-byte timestamp
to determine the recovery order. 1-byte BOB (Beginning of
Block) and 1-byte EOB (End of Block) indicate the start and
end of a log block, respectively. The existing log contains
information such as log type, key, and value necessary for
recovery. Our log contains the log length along with the
existing information. The value helps ascertain the size of
each log without complex parsing when copying logs during
checkpointing.

FIGURE 4. Log file compaction.

C. LOG FILE COMPACTION
We propose the VTC, a checkpointing scheme to reduce
recovery time and recycle log space. Figure 4 presents the
key idea of VTC. The VTC identifies the log needed for
recovery by referring to invalid_bitamp (¬). It then
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checks the length of the log (­) and copies it to a new file
if it is valid (®).
To manage the validity of logs in files, it is necessary

to know the location of the latest log for each entry in the
database. For this reason, the variable log_poswas defined
to indicate the location of the log within the structure of
the existing database entries. Logs in the file are accessed
sequentially from the first log when restoring data or check-
pointing. Because there is no need to search for a spe-
cific log, log_pos represents the order of logs in the file
rather than a byte address. The upper few bits of log_pos
are used to indicate which file the log is stored in. The
invalid_bitmap allows the VTC to immediately recog-
nize whether the logs are valid. One invalid_bitmap
exists for each log file, and its bits indicate the validity of
each log in the file. If the bit is 1, it means that the log is no
longer needed for recovery.

FIGURE 5. Example of logging for insert and update.

Figure 5 shows how the worker processes inserts and
updates from clients. First, when a client requests an insert
for a new key, the worker creates an entry with the key and
value and adds it to the database. In addition, the location
where the log will be stored is recorded in the variable
log_pos in the entry (¬). Then, the worker creates a log
for insert and appends it the active log file (­). Later, when
an update request for the same key is received, the worker
updates the value and log_pos in entry (®). Because the
previous insert log for the key is no longer needed for
recovery, the worker sets the bit in the invalid_bitmap
corresponding to the old value of log_pos (¯). Finally,
a log for the update request is created and stored in the
active log file (°). The insert log and update log for the
same entry may be saved in different files. The procedure for
delete requests is similar. The worker deletes the entry and
sets the invalid_bitmap in the same way as for update.
Subsequently, the worker appends the delete log to the active
log file for recovery.

The gradually accumulated logs not only require more
disk space but also take more time to recover. VTC prevents

Algorithm 1 Overview of the VTC Procedure
1: cp_time = get_curr_time(); F step 1
2: min_cp_time = get_min_cp_time();
3: dst_fp = create_file(temp.log)
4: write_cp_header(dst_fp, cp_time);
5: delta = allocate(log_count)
6: for each log blocks stored in file do F step 2
7: blk_ts = get_timestamp(block);
8: for each logs stored in logblock do
9: type = get_type(log)
10: len = get_len(log)
11: if type = delete then
12: if blk_ts > min_cp_time then
13: copy_log(dst_fp, log, len)
14: else
15: removal = removal + 1
16: else
17: if is_valid(bitmap, i) then
18: copy_log(dst_fp, log, len)
19: else
20: removal = removal + 1
21: delta[log_num] = removal
22: i = i + 1
23: flush(dst_fp)
24: clear_invalid_bitmap(bitmap)
25: for each entries stored in DB do F step 3
26: old_pos = entry→log_pos
27: if is_on_compaction(old_pos) then
28: entry→log_pos = old_pos − delta[old_pos]
29: if entry→lazy = 1 then
30: set_invalid_bitmap(bitmap, entry→log_pos)
31: entry→lazy = 2
32: release(delta) F step 4
33: rename_file(dst_fp)
34: delete_file(src_fp)

this problem by removing unnecessary logs from log files.
Algorithm 1 describes the VTC procedure, which requires
four steps: preparing, copying, remapping, and completing.
In the preparing step, VTC creates a new file, temp.log,
to copy the valid log and writes the current timestamp as the
compaction timestamp. In addition, VTC allocates memory
for delta, a temporary array for calculating the locations of
logs moved by copying (step 1, lines 1—5). The size of the
array is determined by the number of logs in the file. Then,
in the second step, copying, VTC sequentially reads logs from
the target log file and copies only valid logs to temp.log
file. VTC identifies the validity of each log by referring to
the invalid_bitmap and copies the logs by referring to
the log length in the header, without complicated parsing
(step 2, lines 6—20). This step also fills the delta array
to be referred to in the next step, remapping (step 2, line 21).
Each element of the delta array corresponds to the logs in
the file at the start of compaction. The values of the elements
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indicating the number of previously removed logs are referred
to update the location of logs moved by compaction. After
copying all valid logs, the VTC completes the second step by
clearing all bits of the invalid_bitmap for reuse (step 2,
line 24). The next step is remapping to update the log location
of each entry in the database (step 3, lines 25—28). VTC
traverses all the entries in the database and adjusts the value
of log_pos, which has the location of the latest log. VTC
determines how much to change the log_pos value of each
entry by referring to the delta array filled in step 2. For
example, if log_pos is n, VTC gets the value of delta[n]
and then decreases log_pos by the value of delta[n]. After
updating the log location of entry, if the entry is lazily
invalidated, the VTC reflects it in the invalid_bitmap
(step 3, lines 29—31). Lazy invalidation will be discussed
in more detail in the next section. When the above steps are
completed, the VTC completes compaction by releasing the
temporary array, deleting old log file, and renaming the new
log file (step 4, lines 32—34).

The VTC’s handling of delete logs is different from write
logs. Because the delete log is not invalidated by other logs,
VTC does not refer to the invalid_bitmap when remov-
ing the delete log. Instead, the delete log can be removed
when all other logs for the same entry are removed through
checkpointing. The VTC determines whether to remove the
delete log by comparing the delete log’s timestamp with the
compaction timestamp of each file. If the timestamp value
of the delete log is smaller than the compaction timestamps,
the VTC removes it. Otherwise, the VTC should keep the
delete log in the log file to ensure correct recovery (step 2,
lines 11–15). We will explain the removal of the delete log in
more detail in section III-F.

D. LAZY INVALIDATION
Even if the worker does not append logs to the log file
where compaction is in progress, the logs in the target file
may be invalidated by an update or deletion. This may cause
problems in log management. For example, if the worker
updates an invalid_bitmap to invalidate a log that has
already been copied during the copying step, the information
is lost due to the invalid_bitmap initialization at the
end of the step. As a result, the log is not removed even by
subsequent compaction. This inconsistency continues until
the invalid_bitmap is rebuilt by replaying the logs on
recovery.

We solve this problem by applying a lazy invalidation
strategy. If the log in the file where compaction is in progress
needs to be invalidated by an update or delete request,
we delay it until compaction is complete. Before updating
the entry, the worker checks to see if the old log of the
entry belongs to a file that is undergoing compaction. If it
is true, the worker sets the entry’s lazy variable to 1 and
does not change the invalid_bitmap. Instead, the VTC
creates a new entry and adds it to the database. Lazy invali-
dation immediately releases the memory for the entry’s key

and value, thereby mitigating the increase in memory usage
caused by entries that are delayed for deletion.

Lazily invalidated entries are dealt with in the VTC’s
remapping step. In the remapping step, when after the
log_pos of the lazily invalidated entry is adjusted,
the compactor notes the new location of the log with the
invalid_bitmap, and the log is removed in the next
compaction. The compactor completes the processing of lazy
invalidation entries by setting the lazy variable of those
entries to 2, indicating that they should be deleted by the
worker later. If the compactor were to delete those entries,
there could be a conflict with the worker’s add entry or delete
entry, which is why we give the worker the role of deleting
those entries.

E. RECOVERY
As shown in Figure 2(b), the recoverer restores data by
sequentially executing logs. In the VTC, we allocate loader
and buffer per storage to maximize I/O bandwidth.

FIGURE 6. The recovery order (TS: timestamp).

The loaders read log blocks from their respective files
and fill the designated buffers (¬). The recoverer selects log
blocks in timestamp order and recovers data by replaying
the logs in the log blocks (­). As the recoverer inserts the
key and value into the database, it also stores the location
of the log read for compaction (®). If overwrite or delete
occurs during recovery, the recoverer records the event in the
invalid_bitmap (¯). For example, as shown in Figure 6,
the recoverer compares the timestamp of each buffer’s first
log block and selects the log block with TS(4) as the first
recovery block. After completing the recovery of log block
with TS(4), the recoverer determines the next log block to
recover by comparing the timestamp of log block with TS(7)
with others. In general, the use of timestamps causes an
increase in recovery time. However, our recovery scheme
uses a timestamp to determine the recovery order of log
blocks. Since timestamp comparison is unnecessary while
logs in a log block are sequentially executed, overhead due
to timestamp use is insignificant.

When the recoverer encounters the write log, it checks
whether an entry containing the same key exists in the
database, and replays the log by selecting between insert and
update. Therefore, a lookup is required for every log execu-
tion. To reduce the overhead caused by lookup, we divide the
log into two groups based on whether a lookup is needed.
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The smallest value among compaction timestamps in each log
file is the criterion for separating the two groups. The front
group logs are guaranteed to have no duplicate keys, so keys
and values are inserted immediately, without lookup.

Furthermore, we apply optimizations for sorted sets [26]
on recovery. Since sorted sets, a data type provided by Redis,
must be stored in ascending order, they take a lot of time
to restore. To optimize for this, we allocate a dedicated
log buffer for the logs of sorted sets during recovery. The
recoverer collects the logs that require sorting in a dedicated
log buffer and batches them. This method helps reduce the
recovery time by increasing the cache hit rate during sorting.

F. CORRECTNESS
Having explained how the VTC performs checkpointing by
reconstructing log files using only the latest log for each
entry, we will now provide proof of how the VTC guarantees
correctness in all scenarios. The VTCmaintains logs by entry,
which is the smallest unit that the system can modify. This
ensures that the system can restore data by replaying only
the latest log of all entries. For instance, consider an entry
A that is initially inserted with the value of a1, then updated
to a2, and finally updated with the value of a3. These three
write logs are stored across multiple log files. In this state, if a
recovery proceeds due to system failure, the system executes
three consecutive writes by referring to the timestamp of the
log block. However, as a result, the final state of entry A is
determined by the a3 update log, and the other two logs do
not affect it. The VTC performs checkpointing individually
for each file, and thus one or both of the a1 and a2 logs can
be removed. Nevertheless, entry A can be restored correctly
using the a3 update log remaining in the log file.

Next, we look at the process of the VTC removing the
delete log. As we discussed, to properly remove the delete
log, the VTC needs to confirm that all other logs of the deleted
entry have been removed by checkpointing. If the VTC
deletes the delete log without going through this process,
at the time of recovery, entry A may be erroneously revived
by a write log that may have remained in another log file. For
example, consider the process in which VTC removes its logs
after entry A is deleted. To remove the delete log of entry A,
the VTC must first confirm that logs for three writes do not
exist in other log files, which necessitates tracing all of the
logs for each entry, incurring significant overhead. To avoid
this, we use a compaction timestamp that represents the last
checkpointing time for each file.

The VTC compares the delete log’s timestamp with all
compaction timestamps to determine removing the delete log
of entry A. The timestamp of the delete log can be found by
referring to the timestamp of the log block towhich it belongs.
If the delete log timestamp is less than the compaction times-
tamp from all of the log files, the VTC can safely remove the
delete log because it is guaranteed that all three writes of entry
A have been removed. Thus, in this case, no log for entry
A remains, so no processing for entry A will occur during
recovery. Conversely, if the compaction timestamp of any file

has a value smaller than the delete log’s timestamp, correct
recovery can be guaranteed by maintaining the delete log for
the corresponding entry. To do this, the VTC retains the delete
log by copying it to a new file. In this case, the write log for
entry A may be executed during recovery, but the delete log
also remains, so entry A can be deleted and restored to the
correct state.

G. IMPLEMENTATION
We implemented the proposed scheme on Redis 5.6.0.
In Redis, write operations either create entries for new key-
value pairs or update existing ones. Then write operations
generate logs and write them to the log buffer. For these
operations, we used the code path of Redis. To handle over-
writing when the old log of an entry is stored in a file in
which compaction is in progress, we insert codes for lazy
invalidation, which sets a lazy variable and inserts a new entry
instead of updating the entry. In addition, the entries contain
the log_pos variable, which is 8 bytes in size, to keep track
of their latest log. The upper 2 bits of the variable are reserved
for the lazy invalidation of the entry. For the read operation
we follow the Redis code path and add only the code to
handle lazily invalidated entries. We also add functions for
new algorithms and change the call path in order to replace
the existing Redis algorithms such as logging, checkpointing,
and recovery.

We allocate as many threads as the number of files (storage
devices) to flush the log buffer. These threads are responsible
for reading log blocks from a file during recovery; we also
add one thread for checkpointing. We only allow workers
to add or remove entries in the database. This restriction
prevents performance degradation due to contention between
the worker and the compactor. Additionally, we use atomic
operations to ensure atomicity for some variables that are
shared between threads. We count the number of logs and
the number of invalidation processes for each file for check-
pointing with an appropriate frequency, and checkpointing is
triggered when the number of invalidated logs and their ratio
to total logs reach the thresholds. The user can determine
thresholds in consideration of checkpointing frequency and
execution time.

IV. EVALUATION
A. EXPERIMENTAL SETUP
In this section, we describe the experiments conducted to
measure the performance of the proposed scheme under var-
ious conditions. We conducted all experiments using two
machines as a client and server, each of which is equipped
with an Intel Xeon W-2245 CPU running at 3.9 GHz; the
CPU had 8 physical cores and 16 logical cores with hyper-
threading and 32 GB of DRAMmemory. The machines were
connected through a 10 Gbps network. We used Samsung
860 PRO [25] SATA SSDs to store logs and checkpoints.
Our scheme distributes logs to three SSDs, and Redis-AOF,
which uses the existing logging scheme, stores logs in a single
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SSD or a RAID-0 array with three SSDs. One additional SSD
was used as a swap device to prevent the process from being
killed by an out-of-memory killer. The machines ran Ubuntu
18.04.4 LTS distribution with the Linux kernel 4.15.0.

To demonstrate the efficiency of our scheme, we applied
the VTC to Redis-5.0.6 and compared the VTC performance
to the following Redis protocols:

Redis-RDB: No logging, and all of the data were periodi-
cally backed up to a file through checkpointing.

Redis-AOF: This records the log of all events that change
the database and manages the size of the log file through
periodic checkpointing.

Redis-AOF with RAID-0 Setup: This has the same con-
figuration as Redis-AOF except that it uses a RAID-0 array
across the three SSDs handled through a software RAID
driver in Linux.

TABLE 1. Parameters of YCSB workloads.

To evaluate the performance of each scheme, we used
Yahoo! Cloud Serving Benchmark (YCSB) [14] as the tar-
get workload. Table 1 summarizes the parameters of YCSB
used for throughput evaluation. In order to evaluate the
performance of each scheme with various configurations,
we changed the number of records and the update propor-
tions of workload A (mix of 50% update and 50% read),
as shown in the table. After loading YCSB data into Redis,
we measured the performance while the YCSBworkload was
running. For fair comparison we forced checkpointing at the
same time. If the checkpointing time increased rapidly due to
swap, we measured the performance for up to 600 seconds.

We disable the RDB compression option for a fair compar-
ison because our prototype does not currently support data
compression.

FIGURE 7. Throughput for varying record count (50% update proportion).

B. THROUGHPUT
Figure 7 shows the throughput of each system for the
YCSB workload with various record counts. As shown
in Figure 7(a), Redis-VTC offers an average of 8% higher

throughput than Redis-AOF with logging and similar
throughput as Redis-RDB using only checkpoints. This
means that Redis-VTC has little overhead for logging pro-
cessing. Also, as the throughput of AOF-RAID0 is similar
to that of Redis-AOF, we can see that the performance of the
storage device does not affect the system throughput. Overall,
for all of the schemes, the throughput was not appreciably
affected by the size of the data set. However, throughput
during checkpointing tends to be different for each system
depending on the size of the data set. Figure 7(b) shows
the throughput of the YCSB workload for a 50% update
proportion while checkpointing was performed in the back-
ground. When the system memory was sufficient (a record
count of 8M or less), each scheme exhibited a similar trend
to normal throughput. Conversely, when the size of the data
set increased, there was a difference in results that corre-
sponded to the checkpointing scheme. In contrast to Redis-
VTC, which showed stable throughput regardless of data set
size, other schemes had severely degraded throughput when
the size of the data set was larger than about 60% of system
memory. Specifically, systems that use fork-based snapshots
for checkpointing increase memory usage by CoW when
processing an update request from a client. If the record count
is 10M and the update proportion is 50%, more than 10 GB of
memory is used by CoW during checkpointing. Eventually,
swap due to insufficient system memory causes throughput
degradation. In contrast, Redis-VTC performs checkpointing
based on the validity of the logs and thus requires only a small
amount of additional memory.

FIGURE 8. Throughput for varying update proportion (10M records).

Figure 8(b) shows the throughput for varying update pro-
portions with a record count of 10M.As shown in Figure 8(a),
a high update proportion usually has a positive effect on per-
formance. However, when the system memory is marginal,
a high update proportion causes frequent CoW during check-
pointing, which can cause swap. This means that using fork-
based snapshots requires more extra system memory for
update-intensive workloads.

C. MEMORY FOOTPRINT
Figure 9(a) shows the memory footprint of the data set
with varying record counts. Redis-VTC had a 3.5% larger
memory footprint than other schemes because variables for
managing logs were added for each entry. However, during
checkpointing, Redis-VTC required less additional mem-
ory than other protocols. As shown in Figure 9(b), during
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FIGURE 9. Memory footprint comparison with existing schemes (50% update
proportion).

FIGURE 10. Increased memory footprint (8M records).

checkpointing, the memory footprint of Redis-RDB and
Redis-AOF increased by 69.6% and 79.7%, respectively,
while the memory increase of Redis-VTC is less than 2%.
Figure 10 shows that this gap can be wider as the update
proportion is increased. This is because the higher the update
proportion, the more CoW that occurs during checkpointing,
which consumes more memory.

Redis-VTC creates a temporary array to update the loca-
tion of the logs during checkpointing, but this is insignifi-
cant compared to the size of the entire data set because it
only requires 8 bytes per entry. However, with Redis-RDB
and Redis-AOF, memory usage continuously increases from
CoWduring checkpointing. Moreover, the increasedmemory
cannot be reclaimed until the process in charge of storing the
snapshot is terminated.

D. CHECKPOINTING TIME
The VTC performs checkpointing independently for each log
file, but in order to have a fair comparison, we measured time
by sequentially performing checkpointing for all log files.
Redis-RDB was also configured not to use incremental-fsync
option as Redis-VTC uses fsync() only once, after the
last write when saving checkpoints to a file for optimization.
However, this option was enabled in Redis-AOF because
logging can be affected by latency spikes, and enabling this
option increases the checkpoint time by about 20% because
fsync() is called for every 32 MB write.

Figure 11 shows the time taken for checkpointing with
varying record counts. In all schemes, under conditions of
sufficient memory (record counts of less than 6M), the
processing time increased as the size of the data set rose.

FIGURE 11. Checkpointing time.

We found that Redis-VTC required less than half the time of
the other schemes under this condition. Because Redis-VTC
performs checkpointing through file-to-file copy, it requires
more I/O than other schemes to read the logs from storage
device. However, if the system memory is sufficient, Redis-
VTC can read logs to be copied from the buffer cache.
Furthermore, a simple way to determine which log to copy
by bitmap reference reduces checkpointing time.

We can see that the processing time for all three schemes
increases as memory becomes insufficient. In particular,
for schemes other than Redis-VTC, checkpointing time
increases rapidly by swap. In this case, we only plotted
up to 600 seconds, but checkpointing would normally take
ten or more minutes. Redis-VTC also takes more time for
checkpointing if the record count is 8M or more, because
some logs are read from disk due to insufficient memory
used as the buffer cache. However, Redis-VTC alleviates the
increase in processing time because it reads the contents of a
file sequentially, without random access.

E. FILE SIZE
Redis allows insert or update requests with set data [26] that
include several sub-key and value pairs in the key. Because
Redis-VTC has to manage the validity of logs by entry,
it records the set data as separate logs for each sub-key/value
pair. In this case, the file size increased because each separate
logmust include the parent key’s information. For this reason,
the YCSB workload, which uses bundled requests for data
set loading before performance measurement, is not good for
Redis-VTC in terms of file size.
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FIGURE 12. File size.

Figure 12 is the result of measuring the file size with a
varying record count for the three schemes. We measured
the file size when the YCSB workload ran the workload at
a 50% update rate for 60 seconds after loading the data.
The file sizes of Redis-VTC and Redis-AOF were mea-
sured before checkpointing. The file size of all schemes
increases in proportion to the record count. For the reasons
described above, the file size of Redis-VTC was, on average,
22% larger than Redis-RDB and 6% larger than Redis-AOF.
For all schemes other than Redis-RDB, which does not use
logging, the file size may be larger depending on the check-
pointing interval and running time.

FIGURE 13. Restoring time.

F. RESTORING TIME
Figure 13 shows the restoring time by record count. We mea-
sured the data recovery time under the same conditions as
measuring the file size. Redis-VTC took longer by an average
of 53% to restore as compared to Redis-RDB. As described
in the result of the file size, because the set data are logged
separately, Redis-VTC executes each log independently for
recovery. Conversely, Redis-RDB reduces the recovery time
by handling the data set all at once. Moreover, as a property of
checkpointing using snapshot, all data with the same parent
key are stored together. This enables fast sorting with a high
cache hit rate when recovering the sorted data set, which is
one of the data types used by the YCSB workload. Accord-
ing to the results, Redis-VTC had 10% faster recovery time
than Redis-AOF. However, if recovery was attempted after
checkpointing, Redis-AOF recovered as quickly as Redis-
RDB. Although our scheme takes more time to restore than
other schemes with consistent snapshots, we believe that
reducing memory usage and maintaining stable throughput
are preferable for IMDBs.Moreover, data restorationmay not
occur frequently.

V. DISCUSSION
As we discussed, the VTC reads logs from the log file for
checkpointing. Since the storage device has a relatively long
read latency than the main memory, VTC may increase the
checkpointing time compared to the conventional method.
Therefore, we considered a method of copying valid logs
from one SSD to another using two SSDs for fast check-
pointing. However, this method requires an extra SSD, and
one SSD is always idle except for the checkpointing period.
In general, considering that the checkpointing time is short
compared to the overall system operating time, this causes a
waste of storage resources. Finally, we chose to handle check-
pointing within a single SSD and instead use only sequential
reads to suppress the increase in checkpointing time. Also,
fortunately, when the system memory is sufficient, the read
operations to the storage device do not occur thanks to the
buffer cache supported by the OS.

We conducted experiments in a single-node environment,
but we believe VTC can be applied to other environments like
multi-nodes or flash arrays. When a distributed in-memory
database is used, each node performs logging operations in
an orthogonal manner. Therefore, VTC can be applied to each
node without major modifications. Flash arrays can hide the
internal flush delay of flash storage. Therefore, we expect
that even if log flush and checkpointing are processed simul-
taneously in the flash array, performance similar to that of
separating them using multiple SSDs is expected. We plan
to study the effectiveness and scalability of VTC for various
classes of systems in future work.

VI. RELATED WORK
In this section, we epitomize the techniques required to pro-
vide persistence in IMDBs. There have been several studies
to provide logging suitable for IMDBs. The fast processing
speed of IMDBs makes the run-time overhead of traditional
logging relatively large. To avoid the throughput degradation
caused by logging,many IMDBs [8], [27] attempt lightweight
logging based on logical logging. Command logging [28]
used by H-Store is a logical logging variant that records a
single log record including only a procedure ID and input
parameters. While redo-only logging such as command log-
ging reduces run-time overhead, it takes more time to recover
because logs are replayed for recovery.

Adaptive logging [29] is a logging method that focuses
on the balance between run-time and recovery performance.
It extends command logging to distributed systems and
allows all nodes to perform recovery in parallel. Moreover,
It reduces the recovery time by re-executing only transac-
tions related to the failed node through dependency analysis
between transactions. Taurus [30] and SiloR [31] also use
distributed logging to solve the performance bottleneck prob-
lem caused by logging. Taurus performs logging in parallel
using a log sequence numbers vector to manage transaction
dependency. Taurus performs logging in parallel andmanages
the dependency of logs scattered in several files using a
log sequence numbers vector. SiloR allocates one thread for
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each storage to write and flush logs in parallel. The system
performs group commit in the epoch using optimistic con-
currency control.

Our logging system is in line with these approaches
[29]–[31], in terms of storing logs across multiple stor-
age devices. However, in general, single-stream logging
records are logged in one storage device, but our scheme
improves durability by distributing logs across multiple stor-
age devices. Furthermore, our scheme avoids logging and
checkpointing I/O from affecting each other by separating
them into different storage devices.

An efficient checkpointing method has been continuously
proposed by several studies. Systems for some applications
are sufficient to guarantee durability with only periodic
checkpoints. However, most systems use a combination of
logging and checkpointing to minimize data loss due to sys-
tem failure. The checkpointing method employed by many
IMDBs is to use consistent snapshots. It takes a consistent
snapshot of the in-memory and stores its contents in sta-
ble storage. Representative consistent snapshot algorithms
include naive snapshot [32], copy-on-update(COU) [2], [21],
Zigzag [22], and PingPong [22]. Naive snapshot stops the sys-
tem for a consistent snapshot. It is the simplest algorithm, but
it is not suitable for in-memory database systems that need to
process transactions even during checkpointing. COU is the
most widely used algorithm for non-blocking checkpointing,
and a number of variants have been studied. In contrast to
the general COU algorithm using physical page shadowing,
SIREN [21] proposes a COU algorithm based on tuple units
smaller than pages. Small duplication granularity has the
effect of reducing memory usage, but the average latency
may increase due to tuple-level locking. Algorithms using
fork() are applied to many IMDBs [7], [8] because it
can easily implement COU with OS support, but there are
problems with latency spike andmemory increase. DMC [11]
uses a memory dump to overcome the increase in memory
usage, returning the page to the OS before the checkpoint is
complete. However, at high update proportions, this scheme
also requires a significant memory footprint.

Incremental or partial checkpointing reduces cost by lim-
iting the amount of data processed at one time. Hekaton [12]
creates a checkpoint file from the transaction logs not covered
by a previous checkpointing and manages updates or dele-
tions by recording them in delta files. The incremental check-
points used by Hekaton can lower the cost by creating a
checkpoint file only for new transactions. In contrast, a large
number of files and a high ratio of deleted contents in the
checkpoint file degrades recovery performance. To allevi-
ate this, an additional process such as merging between
checkpoints files is required. CALC [13] supports partial
checkpointing. It performs checkpointing, including only
records that have changed since the most recent checkpoint.
It is effective in workloads where updates are not frequent,
whereas in the opposite case, it may be inefficient in compar-
ison to complete checkpointing due to overhead for merging
files.

These systems that checkpoint data in main memory
require page copying or version control, which causes
increased memory usage. However, our scheme consumes
less memory than the existing checkpointing scheme because
it performs checkpointing using the log in the file. This
enables efficient use of memory, the most important resource
for IMDBs.

VII. CONCLUSION
This paper proposed an effective transaction log-based per-
sistence scheme for IMDBs. Our key idea is to distribute logs
across multiple storage devices and use log file compaction
for checkpointing. The use of multiple storage devices
improves the durability of the log without sacrificing system
throughput. The log file compaction bymanaging log validity
can keep the peak memory usage lower than the scheme
using consistent snapshots. We implemented and evaluated
our scheme in a famous IMDB, Redis, and the experimental
results show that our proposed scheme can more stably man-
age memory during checkpointing compared to the scheme
currently applied to commercial IMDBs. This is very desir-
able for IMDBs, because it allows the memory reserved for
peak usage to be used for data storage.
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