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ABSTRACT Scenario-based testing is an important verification and certification measure to evaluate the
safety of automated vehicles. In view of the existing test scenario composition methods, which may miss
some critical scenario problems that have low occurrence probability, we fully combined the ego-vehicle
with the possible relative positions and movement directions of surrounding traffic participants based on
a complex scenario group. We applied scenario-screening rules to obtain the functional test scenarios with
different traffic environments and driving task complexities, which ensured the coverage of the test scenarios
and reduced the number of test scenarios. The problem arose that the amount of test cases was too large after
the discretized combination of test scenario parameters, so we adopted a three-way combinatorial testing
strategy to greatly reduce the number of test cases. Taking the complicated lane changing scenario of the
ego-vehicle as an example, the simulation method was adopted, and the critical test cases were obtained by
screening through safety indicators. Finally, the K-medoids clustering method was used to further reduce
the number of critical test cases, and a pairwise combinatorial test strategy was used to combine dynamic
scenario and static scenario elements to obtain critical test cases for closed-road testing.

INDEX TERMS Automated vehicles, combinatorial testing strategy, functional test scenarios, critical test
cases, safety indicators.

I. INTRODUCTION
Automated vehicle technology has developed rapidly in
recent years. The failure rate of automated vehicles at present
is higher than that of traditional vehicles, and their safety
needs to be improved. The test of automated driving is an
important verification and certification measure to evaluate
the safety of automated vehicles. To ensure the safety of
automated vehicles is to ensure the correctness of their per-
ception, decision-making, path planning algorithms, control
algorithms, and the normal operation of the hardware system.
Automated vehicle testing is divided into public-natural-road
testing, closed-road testing, virtual testing, and hardware-
in-the-loop testing. Since extremely dangerous scenarios are
difficult to encounter in actual roads, seven billion kilometers
of testing are required in the natural-road environment [1],
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making the cost of testing too high to be feasible. Scenario-
based testing is considered to be an economical and feasible
method for safety assessment of Highly Automated Driving
(HAD) vehicles. By identifying critical scenarios with test
significance, this method can be used for virtual simulation
testing, hardware-in-the-loop testing, and closed-road sce-
nario testing, which can shorten the test cycle, accelerate
the safety test verification and certification of automated
vehicles, and reduce the burden of test mileage on public-
natural roads.

According to Schuldt et al. [2], a scenario is defined
as something that ‘‘describes the temporal development
between several scenes in a sequence of scenes.’’ Scenar-
ios are further divided into function, logic, and specific
scenarios [3]. Functional scenarios are described by lan-
guage, logical scenarios give the value range of scenario
description parameters, and specific scenarios, also called
test cases, are defined by specific scenario parameter values.
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The sources of test scenarios for automated vehicles include
accident data, real-world driving data, scenario catalogs,
and expert knowledge. Test regulations for Advanced Driver
Assistance Systems (ADAS) mainly come from the analyses
of accident databases, such as the General Estimate Sys-
tem (GES) database released by the U.S. Highway Admin-
istration in 2015, which lists six categories and 13 types of
collision scenarios [4]. The China Deep Accident Database
extracts typical accident scenarios through the analysis of the
Chinese accident database [5]. However, automated vehicles
above the L3 level are currently in the testing stage and
the accident data accumulation is insufficient, so the test-
ing method used to approve ADAS cannot be transferred to
HAD [6]. The German PEGASUS project [7] is mainly based
on Field Operational Tests, Naturalistic Driving Studies, and
traffic accidents to establish a scenario database as well as
test and verify the automated driving system based on the sce-
nario database. The European AdaptIVe test project proposes
three types of test conditions covering short-distance, urban,
and highway conditions, including 33 main scenarios and
36 alternative scenarios [8], but the number of test scenarios
is small.

Based on a five-layer scenario model, Ponn et al. [9]
manually determined the weak links of the tested automated
system based on sensor analysis, driving behavior analysis,
and consideration of the complexity of traffic conditions. This
was done to adjust the test scenario, to adapt to the found
weaknesses, and to extend the logical scenario to a complex
scenario and test the planning algorithm of the tested vehicle,
but no optimization model of the scenario parameters was
given. Zhou et al. [10] proposed to start from a basic test sce-
nario with only one influencing factor and gradually increase
the number of influencing factors and collision avoidance
behavior to form a complex test scenario, but the formation
mechanism of the scenario was not clear enough. Based on
ontology, the formal representation of knowledge and its rela-
tionships, Bagschik et al. [11] used an adaptive hierarchical
model to represent scenarios, creating automated vehicle test
scenarios in five layers, but the scenarios created completely
depended on expert knowledge. Khastgir et al. [12] used
constrained randomization technology to create ADAS ran-
domized test scenarios and test cases in the driving simulator,
which can better reflect the authenticity of the scenario, but
they did not give a reasonable solution for the number of test
cases.

Amersbach et al. [6] decomposed the HAD function into
six layers, performed specific tests on each layer, and deter-
mined the failure criteria of the test cases according to the
fault-tree analysis. They reduced the test workload by elim-
inating redundant test cases and aggregating test cases that
were subsets of each other. Rocklage et al. [13] integrated
the combined interactive testing methods with simple trajec-
tory planners to generate static- and mixed-scenario test sets
with variable coverage. Erdogan et al. [14] used the scenario
database and the test case generator to select and config-
ure scenarios and created parameterized test cases according

to each scenario. The action parameters of each scenario
could be modified to generate more test cases, but there are
too many scenario combinations.

Due to the infinite diversity of actual road traffic condi-
tions, most scenarios have no test significance, and therefore
how to reduce the number of test scenarios and ensure high
coverage of test scenarios are important issues that need to
be resolved. In response to this problem, a scenario-based
test method has been developed in recent years. By finding
critical scenarios for testing to reduce the test workload, this
method has proven to be an economical and feasible method
for safety verification of HAD. Hallerbach et al. [15] pro-
posed a generic simulation-based toolchain to identify critical
scenarios. For specific scenarios, safety indicators and traffic
quality indicators were compared with specific thresholds
to determine whether the scenario was a critical scenario.
In order to perform virtual tests on the safety of automated
vehicle motion planning, Althoff et al. [16] optimized the
drivable area of the vehicle to reduce the motion space of
the vehicle and automatically generate critical scenarios.
Klischat et al. [17] improved this method and proposed a
method for automatically generating critical scenarios based
on minimizing the solution space of the vehicle under test.
This was accomplished by using evolutionary algorithms to
solve the optimization problem, which can optimize the crit-
icality of complex scenarios. The above methods generated
one critical scenario for each calculation.

Another type of method is to find critical scenarios through
natural driving data. Feng et al. [18] defined the criticality
of a scenario as the combination of maneuvering challenges
and exposure frequency. Maneuvering challenges refer to the
probability of an automated vehicle encountering an event
of interest in a scenario, which is estimated using an alter-
native model of the automated vehicle. Exposure frequency
represents the probability of this happening on the road and
is calculated from natural driving data. In order to reduce
the computational complexity, the multi-start optimization
method and seed filling method were used to search for
critical scenarios. Xia et al. [19] screened out 80 samples of
cut-in dangerous driving conditions from natural driving data.
The hierarchical clustering method was used to analyze the
proportion of real hazards and the degree of risk in 43 sam-
ples of the first type of cut-in dangerous conditions that the
Autonomous EmergencyBraking (AEB) system played a role
in, and four critical test scenarios of theAEB system under the
cut-in dangerous conditions were obtained. Zhao et al. [20]
established a statistical model of the cut-in vehicle scenario
based on the natural driving database, extracted critical sce-
narios through importance-sampling theory and the cross-
entropy method, estimated the conflict, collision, and injury
rate between the automated driving ego-vehicle and the cut-
in vehicle, and realized the safety-accelerated evaluation of
vehicles. On this basis, Huang et al. [21], [22] used the
segmentedmixed-distribution and kernel functionmethods to
model the behavior of the cut-in vehicle and accelerated the
evaluation of the ego-vehicle. The above methods are mostly
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for simple scenarios, requiring a large amount of natural
driving data to be acquired, which is time-consuming and
costly. Additionally, the frequency of dangerous and complex
scenarios in the natural driving data is low, and it is easy to
miss some critical scenarios.

Most of the existing test scenarios are relatively simple or
are small in number. The critical scenarios are determined
by natural driving data, accident data, expert opinions, and
scenario catalogs, which make it easy to miss some critical
scenarios with a low probability of occurrence. In response to
this problem, we adopted a full combinatorial testing strategy
to form functional scenario groups with test values, based
on research on the creation of functional scenario groups
in pairwise combinations [23] and complex scenario groups.
The method generated a wide coverage of scenarios, includ-
ing simple and complex functional scenarios, with both clear
logic of scenario composition and fast speed of scenario gen-
eration. Aiming to solve the problem of too large a number
of scenario parameter combinations, we adopted a three-way
combinatorial test strategy to parameterize scenarios so that
the critical scenarios generated had high coverage and a small
number of calculations. Taking a complex lane changing
scenario as an example, the scenario parameters generated
by the combination were screened through safety indicators,
and a significantly reduced number of critical test cases were
obtained through clustering. Compared with other methods,
the safety indexwe designedwas able to evaluate the safety of
lane changing conditions and generate a significantly reduced
number of critical test cases for closed field testing, with
relatively high scenario coverage.

The rest of this paper contains the following contents:
Section II describes the construction method of the functional
test scenario based on the full combinatorial test strategy.
Section III contains simulations, three-way combinatorial test
strategies, safety indicators, and clustering methods to create
critical test cases. Section IV describes the use of a two-way
combination strategy to combine dynamic scenario and static
scenario elements to generate critical test cases for closed-site
testing. Lastly, Section V is the conclusion and prospects.

II. THE CONSTRUCTION FRAMEWORK OF FUNCTIONAL
TEST SCENARIO GROUP BASED ON FULL
COMBINATORIAL TEST STRATEGY
A. GENERATING FUNCTIONAL TEST SCENARIOS WITH
A FULLY COMBINATORIAL TESTING STRATEGY
Each scenario is composed of static and dynamic elements.
The static elements of the scenario include roads, transporta-
tion facilities, surrounding landscape, weather, and obsta-
cles. Along with these static elements is the time of day,
which includes day, night, sunny day, rainy day, snowy
day, and foggy day. The dynamic elements of the scenario
include the driving state of the automated vehicle, the driving
state of the surrounding interfering vehicles, pedestrians, and
sounds. When the static elements of the scenario are deter-
mined, the changes in the dynamic elements of the scenario

constitute a different scenario. These scenarios assume that
only the ego-vehicle and surrounding interfering vehicles
are considered and that the sensor perception system is not
malfunctioning. G and H represent the number of traffic par-
ticipants. When the static elements of the scenario are deter-
mined, the scenario group is formed by the combination of the
relative positions and movement directions of the ego-vehicle
and the surrounding G traffic participants, which covers the
scenarios with the largest number of traffic participants and
most complex driving tasks, and altogether these combina-
tions are called complex scenario groups. In this complex
scenario group, if H (1 ≤ H < G) traffic participants
are arbitrarily removed, the scenario group formed by the
combination of the relative position and movement direction
of the remaining traffic participants and the ego-vehicle has
less driving task complexity than the complex scenario group.
Therefore, considering the comprehensiveness and swiftness
of scenario construction, we built a functional scenario library
based on complex scenario groups, and the steps were as
follows:

1) The relative positions of the ego-vehicle and traffic
participants were determined. The combinations of possible
relative position and movement direction of the ego-vehicle
and the surroundingG traffic participants were then analyzed.
The complex scenario group was determined based on the
premise of covering themost complex combination of driving
tasks, and thus the relative position ranges of the ego-vehicle
and G traffic participants were determined.

2) The relative movement directions of the ego-vehicle and
traffic participants were determined. For a complex scenario
group with a given set of static elements, the possible move-
ment directions of the ego-vehicle were determined along
with the movements of each interfering vehicle that affected
the movement directions of the ego-vehicle, according to
the level and function of the automated vehicle and the test
target based on the perception, decision-making, planning,
and control functions of the ego-vehicle. If the longitudinal
and lateral movements of the interfering vehicle (including
stationary) had little or no impact on themovement of the ego-
vehicle, the interfering vehicle was deleted from the scenario.
If the movement of the interfering vehicle in a certain direc-
tion did not cause interference to the designated movement
of the ego-vehicle or the interference had little influence, the
movement direction of the interfering vehicle was deleted.

3) The functional scenarios were formed. Each possible
movement direction determined by the ego-vehicle function
was fully combined with the possible movement directions of
each interfering vehicle respectively (including the situation
where any interfering vehicle did not exist) to form functional
scenarios. Therefore, we used the Pairwise Independent Com-
binatorial Testing (PICT) tool to achieve this full combination
by adding necessarymotion constraints and selected coverage
standards of parameter combinations to generate all combina-
torial scenario groups automatically.

4) The scenario selecting rules were determined.
We selected the scenarios with test values from the full
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combinatorial scenario group, which formed a functional
scenario library. The principles of scenario screening were
as follows: 1) delete the scenarios that cannot be realized in
real road traffic scenarios; 2) scenarios contained in other
combined scenarios are deleted; 3) delete similar scenarios
that have less impact on the movement of the ego-vehicle.

5) The complexity of the road traffic environment and
the complexity of driving task was calculated. For each test
scenario, we used the analytic-hierarchy process and graph-
entropy method to calculate the complexity of the traffic road
environment. For the driving task of the test scenario, we used
the graph-entropy method to evaluate the complexity of the
driving task using the four aspects of the number of operation
steps, operation logic, traffic environment information, and
task information.

B. EXAMPLES OF USING THE FRAMEWORK TO
GENERATE FUNCTIONAL TEST SCENARIOS
The road section is the scenario that appears most frequently
in the traffic environment. Taking a three-lane scenario with
the ego-vehicle in the middle lane as an example, a complex
scenario group of the ego-vehicle with nine interfering vehi-
cles appearing in its surroundings simultaneously is shown
in Fig. 1. EV represents the ego-vehicle (the automated vehi-
cle under test) and C1-C9 represent the surrounding interfer-
ing vehicles and their possible location area. To ensure that
the interfering vehicles had an impact on the movement of the
ego-vehicle, C4 andC6were longitudinally located in front of
the ego-vehicle to ensure that C4 and C6 could perform cut-in
actions. Similarly, the positions of C1 and C3 were selected.
The positions of the other interfering vehicles also ensured
that each vehicle could perform lane-changing operations.

FIGURE 1. Directions of movement of the interfering vehicles that affect
the movement of the EV.

According to the current automated driving functions
above level two, the ego-vehicle’s U-turn was temporarily
not considered, and the possible movement directions of the
ego-vehicle were straight, left/right lane change, and left/right
yaw. Considering the influence of the interfering vehicles
on the movement of the ego-vehicle under the possibility
of actual traffic, the possible movement directions of the
interfering vehicle C5 were straight, left/right lane change,
left/right lane change failure, left/right yaw, and standstill.
One of the possible movement directions of C4 was to
continuously change lanes from the left lane to the right
lane, which could test the ego-vehicle’s lane keeping plus
following function. All the possible directions of movement
of C4 were straight, right lane change, right lane change
fail, lane changing continuously to the right, and standstill.

Similarly, the possible movement directions of C6were deter-
mined. C1 and C3 were far away from the ego-vehicle, and
their lane-changing and left/right yaw behaviors had little
impact on the motion of the ego-vehicle. Therefore, the pos-
sible movement directions of C1 and C3 were straight and
stationary. The possible movement directions of C2 that had
an impact on the ego-vehicle were straight, left/right yaw,
and standstill. When the ego-vehicle changed lanes, it was
necessary to judge whether it could change lanes according
to the relative distance and relative speed between the ego-
vehicle and the front and rear vehicles in the adjacent lane.
The possible movement of C8 that affected the ego-vehicle
was overtaking. When C8 overtakes, the ego-vehicle must
be courteous, and the lane change will be cancelled. The
possible movement direction of C7 and C9 that affected the
ego-vehicle was straight. We fully combined the possible
movement directions of the ego-vehicle with the surrounding
nine interfering vehicles and considered the situation where
each interfering vehicle did not exist. The following describes
the scenario construction based on the control function of the
ego-vehicle.

1) THE EGO-VEHICLE GOING STRAIGHT
When the ego-vehicle was going straight, it was in the adap-
tive cruise control mode or active brake-assisting control
mode. The movements of the interfering vehicles C7, C8, and
C9 had no effect on the ego-vehicle and were not included in
the scenario. Similarly, straight and stationary movements of
vehicles C1, C3, C4, and C6 had no effect on the ego-vehicle
and were not considered. The possible movement directions
of the ego-vehicle and the interfering vehicles were fully
combined. We used the PICT combination test case gener-
ation tool and added necessary constraints (such as scenarios
that cannot be realized in reality) to automatically generate
scenarios, and then, according to the scenario screening con-
ditions, we obtained 34 functional scenarios with test values,
some of which are shown in Fig. 2.

2) THE EGO-VEHICLE CHANGING LANE
When the ego-vehicle changed lanes to the left, it was in the
active lane-changing control mode, that is, adaptive cruise
control plus lane-change mode. We adopted the scenario
construction method to obtain six functional scenarios with
test values, as shown in Fig. 3. In the same way, six functional
scenarios with test values were obtainedwhen the ego-vehicle
changes lanes to the right.

3) THE EGO-VEHICLE YAWING
When the ego-vehicle was yawing to the left or right, it was in
the active lane-keeping following control mode. In addition
to the lane-keeping mode, some ego-vehicles also have the
lane-keeping lateral followingmode.We adopted the scenario
construction method to obtain 24 functional scenarios with
test values, some of which are shown in Fig. 4.

In summary, we had constructed 70 functional test sce-
narios with different levels and functions for three-lane
conditions. When the ego-vehicle is in the left or right lane at
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FIGURE 2. Part of the functional scenarios with the EV going straight.

FIGURE 3. Functional scenarios with the EV changing lane to the left.

three-lane conditions, the corresponding functional test sce-
narios can be determined in the same way. Using this method,
it is possible to establish functional test scenario group for
other scenarios such as intersections without traffic lights,
roundabouts, and etc.

III. CRITICAL TEST CASES GENERATION BASED ON
COMBINATORIAL TESTING STRATEGY
AND CLUSTERING
A critical test scenario is a test scenario that is dangerous,
but no collision occurs. Carrying out safety test verification
of automated vehicles based on critical scenarios can reduce

FIGURE 4. Part of the functional scenarios with the EV left yawing.

test costs and test mileage on public roads. First, we param-
eterized functional scenarios to form logical scenarios and
reduced the number of specific test scenarios through combi-
natorial testing methods. Next, we selected critical test cases
for virtual simulation testing through simulation and safety
indicators and finally obtained fewer critical test cases for
closed-field testing through clustering methods.

A. PARAMETERIZATION OF TEST SCENARIOS BY THE
COMBINATORIAL TESTING STRATEGY
For a designated functional scenario, a logical scenario was
first formed. Then the logical scenario was discretized, and
a specific scenario was formed through parameter combina-
tion. If the full combination of scenario parameters was used,
the number of scenarios would be large, and the calculation
time would be too long to be realized. Since the combina-
torial testing method has advantages in reducing test costs
and maintaining high coverage, we adopted a combinatorial
testing strategy to achieve scenario-parameter combination.

The combinatorial testing strategy is a method of selecting
test cases that is widely used in computer software testing
and quality control. It generates test cases by combining the
values of input parameters of different test objects based on
a certain combination strategy. The t-way coverage requires
that every possible combination of valid values of the t param-
eter is included in a certain test case in the test suite [24].
PICT is a test case generation tool developed by Microsoft
that implements any t-way (1 ≤ t ≤ N ) test strategy. The core
generation algorithm of the combined test case is a greedy
heuristic algorithm [25]. Gao et al. [26] proposed a test sce-
nario generation method that combines complexity and com-
binatorial testing methods and used the analytic hierarchy
process to determine the contribution of the 16 influencing
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factors of the Lane Departure Warning (LDW) system to the
scenario complexity. Improved combined testing algorithms
were used to reduce the number of scenarios to be tested
and increase the complexity of scenarios. Xia et al. [27]
used an improved PICT method to generate a more compact
LDW system test suite, which ensured complete coverage of
the specified t-way combination. Tuncali et al. [28] used a
combination of two-way coverage arrays to generate discrete
parameter combinations of test scenarios and presented auto-
matic falsification methods to identify challenging scenarios
in the perception system of automated vehicles. Research by
Kuhn et al. [29] showed that, for browsers, more than 75% of
bugs are triggered by the interaction of two or less parameters,
and about 95% are triggered by the interaction of three or
fewer parameters. In NASA database applications, 98% of
failures were triggered by a three-way combination [30].
Three-way combined testing can significantly reduce the
number of test cases while ensuring relatively high test qual-
ity and scenario coverage. Therefore, we adopted a three-way
combinatorial test strategy to carry out the parameterized
combination of scenarios.

The generation of the critical test scenario of a two-lane
automated vehicle’s left lane change was taken as an exam-
ple for research. As shown in Fig. 1, it was assumed that
there is an interfering vehicle C5 in front of the ego-vehicle,
an interfering vehicle C4 in front of the left adjacent lane, and
an interfering vehicle C7 behind it. C4, C5, and C7 were all
in straight-driving conditions, and there were no interfering
vehicles in other places. The ego-vehicle will change lane to
the left, which created a complex lane-changing scenario.

We parameterized the motion states of the ego-vehicle
and the three interfering vehicles to form logical scenarios.
Considering the low-speed, medium-speed, and high-speed
lane-changing scenarios of the ego-vehicle, the driving con-
ditions of the ego-vehicle were divided into three categories:
congestion conditions, suburban conditions, and highway
conditions. The suburban driving conditions were taken as
an example, and the speed range of the ego-vehicle and the
interfering vehicle in the initial state was set to 40∼80 km/h.
An interval of 5 km/h was used to discretize the speed of
the ego-vehicle and the interfering vehicles, such that there
were nine values for the initial speed of the ego-vehicle and
interfering vehicles. When the ego-vehicle changed lanes,
it was assumed that the interfering vehicles had either con-
stant speed or constant deceleration, or were in a stationary
state. The interfering vehicle C5 was in the same lane as
the ego-vehicle and the interfering vehicle C4 was in the
adjacent lane in the initial state, and the acceleration states
of these two interfering vehicles were less likely to be in a
dangerous state than the deceleration state. In order to form
a challenging scenario for the ego-vehicle’s motion planning
algorithm, the deceleration range of C5 and C4 was set to
−8 m/s2 ∼0 m/s2, with an interval of 0.5 m/s2 for dis-
cretization, defining 17 deceleration values for those inter-
fering vehicles. For the interfering vehicle C7, although its
acceleration state posed a greater threat to the ego-vehicle,

C7 generally would not choose to accelerate if there was a
vehicle in front of it in the same lane in the actual driving
process. If it was set to decelerate, it would have less impact
on the safety of the ego-vehicle, so the interfering vehicle
C7 was set to a constant speed state. The initial distances
between the ego-vehicle and each interfering vehicle were
greater than the minimum longitudinal safety distances, and
the maximum deceleration time of the interfering vehicle
C5 was set to 15 s. The maximum deceleration time of the
interfering vehicle C4 was set to 3 s, and then it was at a
constant speed or at a standstill to ensure that the ego-vehicle
was between the interfering vehicles C5 and C7 after the
lane change was completed. If the full combination were to
be adopted, the number of test cases where the ego-vehicle
changes lanes to the left would be 1896129, which is too large
to be feasible.

We used the three-way combinatorial testing method to
combine the scenario parameters, and in the end, we arrived
at 3019 test cases. The generated parameter combination cov-
ered any combination of three scenario parameters, ensuring
a high coverage rate of scenario parameters while also greatly
reducing the number of calculations.

B. SAFETY EVALUATION INDICATORS FOR
CRITICAL TEST CASES
The criticality of test cases is generally evaluated by safety
indicators. At present, the most commonly used safety eval-
uation index is the Time-To-Collision (TTC). The traditional
TTC is the ratio of the relative distance and the relative speed
between the vehicles. If only the TTC is used as the evaluation
index, it is easy tomiss the critical test caseswhere the relative
speed of the two vehicles is small but the relative distance
is smaller. The point distances between the ego-vehicle and
the interfering vehicles were included in the evaluation index
as a supplement. Additionally, the impact of the longitudinal
deceleration of the ego-vehicle on the driver and passengers
was considered, and the maximum value of the longitudinal
deceleration during the lane change of the ego-vehicle was
also included in the evaluation indexes. The combination of
multiple evaluation indicators can reduce the number of false-
positive and false-negative evaluations and improve the accu-
racy of scenario evaluation. Since there were three interfering
vehicles, there were three index values for the TTC indexes
and the corner distances between the ego-vehicle and the
interfering vehicles respectively, giving seven index values in
total. So long as the threshold of any indicator was reached,
it was considered to be a critical test case.

1) TIME-TO-COLLISION
The TTC is one of the most common safety indicators for
determining critical test cases. The smaller the value of the
TTC, the more critical the scenario. However, the TTC used
in the past literature was calculated under the assumption that
both the ego-vehicle and the front interfering vehicle were
simplified as mass points, which is not suitable as a safety
indicator for the ego-vehicle lane changing scenario [31].
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In order to make the TTC suitable for the evaluation of lane-
changing conditions, we referenced Qin et al. [32], regarded
the ego-vehicle and the interfering vehicle as rectangles, and
considered the heading angle of the ego-vehicle and the cen-
troid positions of the two vehicles to calculate the longitudi-
nal distance between them. Taking the longitudinal distance
between the ego-vehicle and the preceding vehicle in the
adjacent lane as an example, the relative position relationship
between the two vehicles is shown in Fig. 5.

FIGURE 5. The relative position of the ego-vehicle and the front vehicle in
different lane.

According to Fig. 5, the calculation formula of the longitu-
dinal distance x between the ego-vehicle and the front vehicle
when considering the heading angle is

x = d − a cos θ + w sin θ
/
2− b (1)

where x is the relative longitudinal distance between the
two vehicle, d is the longitudinal distance between the cen-
troids of the two vehicles, a is the distance between the ego-
vehicle’s centroid and the front end of the ego-vehicle, b is
the distance between the front vehicle’s centroid and the rear
end of the front vehicle, w is the width of the ego-vehicle, and
θ is the heading angle of the ego-vehicle.
Considering that the interfering vehicle may accelerate

or decelerate in the lane-changing scenario, the TTC that
takes acceleration/deceleration into account was selected as
one of the safety indicators for screening scenarios. We cal-
culated the TTC by solving (2) [33], choosing the lowest
positive root as the value of the TTC. If there is no posi-
tive root, the TTC is infinite. It is generally considered that
0 s<TTC <0.5 s is a pre-collision, 0.5 s≤TTC<1 s is an
emergency state, 1 s≤TTC<2.5 s is a dangerous state, and
TTC≥2.5 s is a normal driving state. We selected the scenario
satisfying 0 s<TTC<2.5 s as the critical test case.

ẍt2T
/
2+ ẋtT − x = 0 (2)

where tT is the value of the TTC.

2) DISTANCE BETWEEN THE CORNERS OF TWO VEHICLES
During the lane change, the right-front corner point A of
the ego-vehicle can easily collide with the left rear corner
point A’ of C5, the left front corner point B of the ego-vehicle
can easily collide with the right rear corner point B’ of C4,
and the left rear corner point C of the ego-vehicle can easily
collide with the right front corner point C’ of C7, as seen
in Fig. 6. The distance between the two corner points reflects
the safety of the longitudinal and lateral movement of the ego-
vehicle during the lane change, which can be used as a safety

FIGURE 6. Schematic diagram of the collision corner position between
the EV and the interfering vehicles.

indicator for critical scenarios. If the distance between the two
corners was less than 1.8 m, we considered the scenario to be
dangerous and regarded it as a critical test case.

Taking the centroid coordinates of the ego-vehicle and
the interfering vehicle as reference points, we obtained the
distances between the corner points of the two vehicles after
deduction.

AA′=

√√√√√√ (x0 + a cos θ +
1
2
w sin θ − xC5+bc5)2

+(y0 + a sin θ −
1
2
w cos θ − yC5 −

1
2
wc5)2

(3)

BB′=

√√√√√√ (x0 + a cos θ −
1
2
w sin θ − xC4+bC4)2

+(y0 + a sin θ +
1
2
w cos θ − yC4 +

1
2
wc4)2

(4)

CC ′=

√√√√√√ (x0 − be cos θ −
1
2
w sin θ − xC7 − aC7)2

+(y0 − be sin θ +
1
2
w cos θ − yC7 +

1
2
wc7)2

(5)

where x0 and y0 are the horizontal and longitudinal coordi-
nates of the centroid of the ego-vehicle in the inertial coor-
dinate system; ac7 is the distances between the centroid and
the front end of vehicle C7; be, bc4 and bc5 are the distances
between the centroid and the rear end of the vehicle of the
ego-vehicle, C4, and C5, respectively; xc5 and yc5 are the
horizontal and longitudinal coordinates of the centroid of
C5 in the inertial coordinate system; xc4 and yc4 are the
horizontal and longitudinal coordinates of the centroid of
C4 in the inertial coordinate system; and xc7 and yc7 are
the horizontal and longitudinal coordinates of the centroid of
C7 in the inertial coordinate system; wc4, wc5 and wc7 are the
width of vehicle C4,C5, and C7, respectively.

3) THE MAXIMUM OF LONGITUDINAL DECELERATION
The deceleration of the ego-vehicle will affect the safety and
ride comfort of the driver and passengers. Generally, if the
deceleration is greater than 2 m/s2 it affects the comfort of
passengers, and it affects safety if it is greater than 3 m/s2.
Therefore, we took the maximum deceleration as a safety
indicator with a threshold of 3 m/s2.

C. CRITICAL TEST CASES GENERATION BASED ON
SIMULATION AND SAFETY INDICATORS
Aimed at the simulation of automated vehicles, we devel-
oped a new algorithm for automated vehicle decision-making,
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motion planning, and control based on Model Predictive
Control (MPC) [34]. The effectiveness of the automated
vehicle dynamics model has been verified by real vehicle
tests, and a variety of simple and complex lane change,
cut-in, and lane keeping scenarios were simulated to verify
the effectiveness of the algorithm. The algorithm decoupled
the traditional automated vehicle multi-control variable MPC
motion-planning and control framework and proposed an
automated vehicle MPC motion-planning and tracking con-
trol framework based on longitudinal and horizontal separa-
tion focused on longitudinal safety priority, which improved
the calculation speed of the algorithm. In addition, the vehi-
cle kinematics and dynamics constraints were added to the
motion-planning and control process to achieve a safe, stable,
and comfortable motion-planning and control process.

According to the ego-vehicle lane-changing motion-
planning and control algorithm, we established a
co-simulation model of ego-vehicle lane-changing based on
the software MATLAB/Simulink and CarSim. The dynamic
parameters of the test scenarios obtained by the three-way
combination of suburban driving conditions were simulated,
the scenarios where the ego-vehicle failed to change lanes
and collided with an interfering vehicle were deleted, and
then the critical scenario evaluation index thresholds were
screened to obtain 185 critical test cases. Among them, there
were 64 groups meeting the TTC threshold requirements,
157 groups meeting the deceleration threshold requirements,
and 77 groups meeting the corner point distance threshold
requirements. These critical test cases can be used for virtual
simulation and hardware-in-the-loop simulation tests.

D. CRITICAL TEST CASES BASED ON THE
CLUSTERING METHOD
In section C, critical test cases were obtained through sim-
ulation and safety indicators of the lane-changing process
of automated vehicles. However, for closed-road testing, too
many test cases will lead to an increase in test costs, so to
reduce the number of critical test cases we used the clustering
method.

Clustering is the process of dividing a data set into many
clusters according to a certain guiding ideology. The principle
of the division is to make the result of clustering meet the
conditions that the gap between data objects in the same clus-
ter is as small as possible, while the gap between processing
objects in different clusters is as large as possible.We used the
clustering method to classify critical test cases with the same
characteristics and test the representative data in the cluster
to improve the test efficiency.

For clustering we used the K-medoids algorithm, which
uses the object at the center of the cluster as a reference,
handles outliers well, and has good robustness. In this way,
the data points obtained by clustering are data points that
exist before the clustering. This means the scenarios obtained
by the clustering also met the critical test case indicator
threshold, that is, the critical test cases. K-medoids is based
on distance measurement, and the dimensions of the different

variables contained in the test scenarios to be clustered are
different. If the dimensions of different variables are too dif-
ferent, it may cause a small number of variables to dominate
the clustering trend and affect the clustering effect. Therefore,
the data needed to be standardized before calculation, so we
used the method of range standardization.

The sample to be clustered contains multiple variables.
For each variable, the standardized calculation formula is as
follows [19]:

x∗ij =
xij − min

1≤i≤Nc
xij

max
1≤i≤Nc

xij − min
1≤i≤Nc

xij
(6)

where x∗ij is the normalized variable, i = 1, 2 . . .Nc and j =
1, 2 . . .M , xij is the variable to be clustered, Nc is the number
of critical lane-changing scenarios, and M is the number of
variables to be clustered.

The standardized variable value ranges from 0 to 1 and is
dimensionless. The elbow method was used to determine the
number of clusters. As the number of clusters K increases,
the data segment is more detailed, the degree of aggregation
of each cluster increases, and the Sum of the Squared Errors
(SSEs) gradually decreases. When theK value is less than the
optimal number of clusters, the SSE value decreases more
significantly with the increase of K value. After K reaches
the optimal number of clusters, the SSE value decreases rel-
atively slowly with the increase of K value. The relationship
between the SSE and the cluster number K is similar to the
‘‘elbow’’ shape, and the ‘‘elbow’’ corresponds to the optimal
K value. The calculation formula of SSE is as follows [35]:

SSE =
k∑

i=1

∑
mp∈Cq

∣∣mp − mq
∣∣2 (7)

where SSE is the sum of the squared errors, Cq is the
qth cluster,mp is the sample point in Cq,mq is the mean value
of all samples in Cq, and k is the number of classification
groups.

FIGURE 7. Relationship between cluster number K and SSE.

The upper limit of clustering was selected as 30, then
each K value was clustered and the corresponding SSE was
written down. The relationship between K and SSE is as
shown in Fig. 7. It can be seen from Fig. 7 that the K
value corresponding to ‘‘elbow’’ was seven, so the optimal
cluster number was seven. The parameters of the seven sets
of critical test scenarios obtained are shown in Table 1, with
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TABLE 1. Dynamic scenario parameters based on K-medoids clustering.

the initial speed of the ego-vehicle and interfering vehicles
C4, C5, and C7 represented by V0e, V0c4, V0c5, and V0c7,
respectively, and the acceleration of interfering vehicles C4,
C5, and C7 represented by ac4, ac5, and ac7, respectively.

FIGURE 8. The speeds of the ego-vehicle and the interfering vehicles.

After analyzing the simulation results of the critical test
cases after clustering, it was found that for the seven sets
of critical test cases in suburban conditions, there were two
sets that met the TTC threshold requirements, six sets that
met the deceleration threshold requirements, and two sets that
met the corner point distance threshold requirements. The
critical test case with an initial speed of 75 km/h for the ego-
vehicle obtained by clustering was taken as an example to
analyze. In this critical test case, the initial speeds of the ego-
vehicle, C4, C5, and C7 were 75 km/h, 75 km/h, 60 km/h,
and 55 km/h, respectively, and the deceleration of C4 and
C5 were−0.5 m/s2 and−3.5 m/s2, respectively, with C7 at a
constant speed. Due to the restrictions of suburban conditions,
the maximum speed of the interfering vehicles and the ego-
vehicle should not exceed 80 km/h, and the minimum speed
should not be less than 0 km/h. The speeds of the ego-vehicle
and the interfering vehicles, the longitudinal acceleration of
the ego-vehicle, the yaw rate of the ego-vehicle, and the
lateral acceleration of the ego-vehicle obtained by the sim-
ulation are shown in Fig. 8-11, respectively. It can be seen
from Fig. 8 that before and during the lane change of the
ego-vehicle, when the front vehicle C5 decelerated, the ego-
vehicle decelerated in order to maintain a safe distance. After
the ego-vehicle successfully changed lanes, it first acceler-
ated and then decelerated to keep the minimum safe distance
from C4 as quickly as possible. Finally, the two vehicles’
speeds were equal, and the vehicles were kept a certain safe
distance. At the time of 0.95 seconds, the deceleration of the

FIGURE 9. The longitudinal acceleration of the ego-vehicle.

FIGURE 10. The lateral acceleration of the ego-vehicle.

FIGURE 11. The yaw rate of the ego-vehicle.

ego-vehicle exceeded the threshold of 3 m/s2 in order to avoid
collision with the front vehicle C5. Then, at 1.5 seconds,
the ego-vehicle was in the process of lane changing, and the
TTC between the ego-vehicle and the front vehicle C4 in the
adjacent lane was less than the threshold of 2.5 s, so this
scenario was the critical test case.

IV. GENERATING TEST CASES BASED ON THE
COMBINATION METHOD
According to the different levels of intelligent behavior of
automated vehicles, it was necessary to designmodularmulti-
level test scenarios with different degrees of difficulty. The
critical test cases generated in Section III only contained the
dynamic elements of the scenario, not the static elements
of the scenario. We used a combinatorial testing method
to design critical test cases containing static and dynamic
elements to detect the perception and motion-planning capa-
bilities of the ego-vehicle.
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Based on the functional scenario when the ego-vehicle
changes lanes on the left side of the two-lane road segment
and the seven sets of critical dynamic scenario parameters
obtained in TABLE 1, the specific critical scenarios were
designed when the ego-vehicle changes lanes by considering
the traffic elements including the time of day, road, traffic
facilities, and dynamic elements. The time of day included
weather and illumination, where weather was divided into
sunny days, rainy days, snowy days, and foggy days, num-
bered 1–4, respectively, and illumination was divided into
day, night, and flickering, numbered 1–3 respectively. The
road included the length of the road and the number of
lanes, where the road length was estimated according to
each scenario, and the lane data were one-way and two-
lane, numbered 1. Traffic facilities were lane lines, including
white dashed lines and blurred lane lines, numbered 1–2.
The traffic participant was a car, numbered 1. Seven critical
lane-changing test cases were obtained by clustering dynamic
element selection, numbered 1–7. We used the PICT toolbox
to perform themethod of pairwise combination and three-way
combination to combine the above parameters and obtained
28 and 85 groups of critical test cases containing static
environmental elements and dynamic elements, respectively.
Considering the cost and conditional constraints of the actual
field test, a pairwise combinatorial method was selected, and
some of the generated critical test cases are shown in Table 2.

TABLE 2. Some of the generated critical test cases.

V. CONCLUSION
This paper introduced a method of generating functional test
scenario groups based on complex scenario groups and using
a full combinatorial testing strategy. This method can be used
for the construction of functional test scenario groups for
multi-lane road sections, intersections without traffic lights,
roundabouts, and more. The paper also introduced a method
of batch generation of critical test cases using combinatorial
testing strategies. We adopted a three-way combinatorial test-
ing strategy for the parameterized combination of scenarios,
which greatly reduced the number of test cases. Additionally,
multiple safety indicators were used to screen test scenarios
and obtain critical test cases. On this basis, clustering was
used to obtain representative critical test cases with a greatly
reduced number, and dynamic scenarios and static scenario
elements were combined to obtain critical test cases that

could be used for closed-road testing. This method is suit-
able for the construction of critical test cases for automated
vehicles. In the future, we will study the impact of the main
parameters of the ego-vehicle (such as vehicle mass and air
resistance coefficient) on critical scenarios, so that the critical
test cases are suitable for various automated passenger cars
for safety testing and verification. An optimization study of
scenario parameters will also be carried out to obtain better
critical test cases.
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