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ABSTRACT A simple mathematical model of the scientific peer reviewing process is developed. Papers
and reviewers are modeled as numerical vectors, respectively representing the paper’s value among multiple
quality dimensions, and the importance given to these dimensions by a given reviewer. Computer simulations
show that the model can reproduce various characteristics of a real-world paper decision process, and in
particular its propensity to act as an ‘‘arbitrary’’ decision procedure for a range of submissions. A key
finding of this study is that the appearance of randomness can be explained by a mismatch between high
quality dimensions of a paper, and those valued by the reviewers it is assigned to. As a consequence,
a program committee may exhibit arbitrariness even with a set of completely reliable reviewers. Various
factors contributing to this arbitrariness are then examined, and alternate selection models are studied that
could help reduce arbitrariness and reviewer effort.

INDEX TERMS Computer simulation, peer reviewing.

I. INTRODUCTION
Peer reviewing is the cornerstone of research publication, and
the favored means by which scientific output is evaluated
and curated. An important part of every researcher’s time is
either spent writing and submitting papers to peer review,
or standing on the other side of the fence and reviewing papers
submitted by others. Putting a new scientific result under the
scrutiny of a number of knowledgeable experts of a field is
widely believed to ensure the quality and soundness of the
manuscripts that are deemed suitable for publication [26].
Even when papers are rejected by the members of a program
committee, the feedback coming from peer review can also
often result in improvements over the original submissions,
that may then be re-submitted to another peer reviewing trial.
To paraphrase Richard Feynman, peer reviewing is a system
that has been put in place so that we, as scientists, do not fool
ourselves.

Yet, peer reviewing is not without its critics. Its slow
turnaround time, especially for journals, has been criticized as
being an impediment to the quick dissemination of important
results [3]. Peer reviewing has also been criticized for a
perceived lack of reliability and fairness [4]. The anonymity
of reviewers can also lead to abuse; some scientific communi-
ties, such as Computer Science, have already pointed out that
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‘‘nasty reviewing’’ is more common than one would like [19],
and that overall, some members of a program committee
may resort to adversarial tactics to reject submissions on
dubious grounds [8]. Even without these factors, scientific
publication is an unforgiving activity, where many journals
and conferences boast acceptance rates lower than 20%, and
where facing repeated rejection is the daily bread of most
authors.

Given such a harsh process, it is not surprising that many
authors sometimes feel they are unfairly deprived of an oppor-
tunity to publish; after all, the rejection messages they often
receive candidly admit that ‘‘many good submissions had
to be rejected’’. This leads one to ponder to what extent
decisions on papers are, as John Langford mentioned in a
post on the subject [17], arbitrary—or, as some authors even
suggested, a ‘‘crapshoot’’ [7]. This state of things is stoically
tolerated by most authors, due to the persistent belief that
high rejection is a sign of high quality. After all, opinions
to the effect that acceptance rates should be increased [9],
although theymight have some traction, still represent a small
minority.

The field of Computer Science in particular does not
display much introspection regarding the way its members
evaluate each other’s work. Very few publication venues
examine their reviewing process in any rigorous way, and
attempt to measure whether the decisions they take are fair,
systematic and reproducible. The single exception we know
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of is the Conference on Neural Information Processing Sys-
tems (NIPS), which performed an experiment that measured
variability in reviewer decisions by submitting a sample of
its submissions to two different sets of reviewers [18]. The
somewhat cheerless results (the two sets agreed on only
22% of accepted papers) give credence to the arbitrariness
hypothesis, which in turn reveals the need for a principled
study of the peer reviewing process.

This paper makes its contribution to the question by
describing a mathematical model of peer reviewing. It starts
from the simple principle that a paper is evaluated along a
number of numerical dimensions that are valued unevenly
by a set of randomly-picked reviewers, which is explained
in Section II. From this, the action of a reviewer on a paper
can be abstracted into a function involving a random variable
that is given more or less weight in the reviewer’s apprecia-
tion, as will be shown in Section III. This simple principle
is sufficient to exhibit arbitrariness in a committee’s deci-
sions, whose consequences will be discussed in Section IV.
In particular, given appropriate parameters, the model can
reproduce various characteristics of arbitrariness that have
been observed in reality, such as the aforementioned NIPS
experiment. Through computer simulations, Section V stud-
ies the impact of various factors on the tendency of a pro-
gram committee to act as a random variable, and Section VI
explores the relative merits of alternate ways of selecting
papers. Section VIII situates this work with respect to existing
literature on the study of peer reviewing, and Section VII
discusses the limitations of the approach. Finally, Section IX
concludes with a few additional remarks and suggestions for
further study.

II. PAPERS AND REVIEWERS
The high-level reviewing process we consider is illustrated
in Figure 1. A paper is dispatched to a number of reviewers,
who first perform an evaluation of the paper resulting in an
appreciation of the submission. This appreciation is typically
turned in the final review as a position on a discrete scoring
scale. The scores provided by each reviewer of the paper are
then aggregated into a value reflecting its overall appreci-
ation. Finally, the values of all papers are collected, and a
decision (typically accept or reject) is then issued for each
paper, based on its value relative to the value of other papers
evaluated during the same process. In this section and the next
one, we define a simple mathematical model reflecting this
flowchart.

Let C = [−1, 1] be a continuous real-valued scale.
A research paper is a vector Ep in the d-dimensional hypercube
[−1, 1]d . Each component of the vector represents an aspect
of the paper, and the number at the corresponding position
indicates the intrinsic value of the paper along this aspect.
Note that high and low values of the scale do not necessarily
translate as ‘‘good’’ and ‘‘bad’’. For example, one dimen-
sion could determine whether a paper is theoretical (+1) or
applied (−1), with each end of the scale not being preferable
in itself.

A reviewer r is a pair (Ev, γ ), where Ev is another
d-dimensional vector in [−1, 1]d , and γ ∈ [−1, 1] is a
numerical constant. Each component of Ev corresponds to the
same quality aspects as for a paper, and each value represents
the importance or ‘‘weight’’ this reviewer gives to this aspect
when evaluating a paper. Contrary to a paper, in a reviewer’s
vector, +1 means good and −1 means bad. That is, when
a component has a high value (i.e. close to 1), it indicates
that the reviewer gives high importance to this aspect. How-
ever, when a component has a low value (i.e. close to −1),
it indicates that the reviewer has a strong negative opin-
ion of papers that score high on this aspect. For example,
on the applied/theoretical scale given as an example above,
a reviewer that prefers applied papers and strongly dislikes
theoretical papers would have a value close to−1 to represent
this fact. A value close to 0 for a component indicates that the
reviewer gives no importance to this aspect in a paper.

The appreciation of a reviewer for a paper is defined as:

αr (Ep) = τ
(
1
d
Ep · Ev+ γ

)
The dot product Ep · Ev is simply the sum of each paper’s

components, weighted by the importance the reviewer gives
to this component. This product is normalized so that it lies
in the interval [−1, 1]. Again, high values indicate that the
reviewer has a strong positive appreciation of the paper, and
the opposite for low values. This is illustrated in Figure 2.
From this, the match between a paper and a reviewer can be
quantified as the angle θ between their respective vectors; it
is expressed in radians, and can be computed by:

θ = arccos
(
Ep · Ev
|Ep||Ev|

)
The constant γ , specific to each reviewer, shifts the original

score by some amount, either towards a positive appreci-
ation (when γ > 0), or towards a negative one (when
γ < 0). It is present to model the fact that reviewers
may have a globally more positive or more negative attitude
towards the papers they review (but the same for all papers).
We call this constant the reviewer’s grumpiness. Since the
presence of this constant may shift the original score outside
of the interval [−1, 1], we apply the function τ , defined as
τ (x) , min(max(x,−1), 1), which truncates any extreme
values back into the bounds.

In addition to grumpiness, the modulus of Ev is called
the reviewer’s loudness. Intuitively, a ‘‘loud’’ reviewer gives
scores across a wider range, which indicates stronger posi-
tive or negative appreciations of papers. In contrast, a quiet
reviewer is such that |Ev| is close to zero, and has a more or
less equal (and neutral) view of each submission.

It is important to observe that, for a reviewer to give a
meaningful score to a paper, the two must have non-zero
values at matching positions in their respective vectors; when
this is the case, we say that a paper matches a reviewer’s
appreciation vector. Papers that are a poor match have a dot
product close to zero, meaning that the reviewermakes almost
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FIGURE 1. An overview of the paper reviewing process.

FIGURE 2. The assessment of a paper by a reviewer is modeled as the dot
product of their respective quality vectors Ep and Ev (left). A different
reviewer vector Ev ′ results in a different assessment (right).

FIGURE 3. A plot of x vs. P(Ev · Ep) = dx . The probability is expressed in
percentage.

no distinction between any of them.When viewing papers and
reviewers as vectors, this corresponds to the situation where
Ev and Ep are orthogonal: what the paper is about is completely
different from what the reviewer cares about.

To illustrate the importance of a good match, suppose that
both Ev and Ep are uniformly chosen at random in [−1, 1]d .
Figure 3 shows the probability of obtaining a given dot prod-
uct of these two vectors. One can see (and also demonstrate)
that this product behaves like a random variable that follows
a distribution centered on 0. In other words, if no guarantee
can be made on the match between papers and reviewers,
the resulting appreciations end up being randomly selected
scores. Note that this model does not suppose that reviewers
are ‘‘unreliable’’ or ‘‘inconsistent’’ in any way: each of them,
taken separately, evaluates all papers in a completely deter-
ministic fashion and ranks papers consistently. Randomness
only appears through the odds that a paper be assigned to a
reviewer with a matching vector.

III. PROGRAM COMMITTEES
A program committee (PC) is a pool of reviewers that
has the task of choosing papers to be published from a
set of submissions. In our model, for each paper, the PC

picks N reviewers and asks for their respective appreciations
of the paper, noted a1, . . . , aN . Each appreciation is then
discretized by applying the function δ, which turns each
value in [−1, 1] into a discrete value in the set {−b,−b +
1, . . . , 0, 1, . . . , b}. We hence make the distinction between
the reviewer’s real-valued appreciation, and the resulting
discrete score. The latter corresponds to the input that is asked
from reviewers in most PCs, and that is typically labeled
with names such as strong accept, weak accept, weak reject,
and so on. A possible discretization is to split the interval
[−1, 1] into 2b or 2b + 1 bins of equal width (depending on
whether the discrete scale allows a ‘‘neutral’’ score); this is
the function we shall retain in the remainder of this paper.

Once the discrete scores a′1, . . . , a
′
N of each reviewer are

obtained, the program committee computes their normalized
average, i.e. a =

∑
a′i/bN . Note that this value again lies

in the interval [−1, 1]. The PC then decides whether a paper
is accepted or rejected by checking if the average is above a
fixed and predefined threshold t .

Reviewers in the PC may have arbitrary appreciation vec-
tors. However, we can split the dimensions of a paper into
two sets: those that all reviewers mostly agree on, and the
others where they disagree. From this, we can extract a sim-
plified representation of each reviewer’s appreciation. Let Ev
be a vector made of all the d ′ ≤ d dimensions where the
reviewers in the PC give similar weights. Each paper can
then be assigned a number called its quality, computed as
q(Ep) = 1

d ′ Ev
′
· Ep′, where Ep′ is the projection of Ep on the

d ′ agreed-upon dimensions. Quality is a value between −1
and 1, and represents a synthesis of the dimensions of the
paper that make consensus among all reviewers: each paper
where q is high is seen as good by all reviewers, and each
paper where q is low is seen as bad by all reviewers.
We know from an earlier observation that for the remaining

dimensions, where weights for each reviewer vary, the appre-
ciation of a paper behaves like a random variable (let us arbi-
trarily assume it follows a normal distribution). Therefore,
a reviewer’s appreciation of a paper can be approximated as
a function of its quality:

α̂r (Ep) = τ (λ(ξq(Ep)+ (1− ξ )N (0, σ ))+ γ )

The evaluation is split into three components. The first term
is the part of the appreciation that is based on the paper’s
quality; the second term is the part that behaves like a normal
distribution with standard deviation σ ; the third term is the
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reviewer’s grumpiness. Parameter ξ ∈ [0, 1] indicates the
fraction of the appreciation that correlates with quality —
which, in the context, could be understood as the number
of dimensions that reviewers agree on; a higher value of ξ
indicates a higher correlation between a reviewer’s appre-
ciation and the paper’s quality. Those two terms are scaled
by a factor λ ∈ (0, 1], which symbolizes the reviewer’s
loudness. The reviewer’s grumpiness is then added, and the
whole expression is again limited to the interval [−1, 1] by
function τ . We shall stress again that even though α̂r involves
a random variable, it does not necessarily imply that review-
ers themselves are random. Rather, this is used to represent
disagreement between individually consistent reviewers on
papers of the same quality.

A feature of this model is that it flattens multi-dimensional
objects (papers and reviewers) into functions of a single
dimension, the paper’s quality. Equipped with such a rep-
resentation, we can now explore the behavior of various
program committees by varying some of the parameters.
Consider the evaluation of a paper as a trial, where N PC
members are picked at random, and a decision is made on
the paper. Repeating this trial for the same paper, we can
compute its success rate, which corresponds to the fraction
of times the paper is submitted and accepted by the PC. This
simple model has been implemented as a computer program,
which makes it possible to simulate a reviewing process by
generating a large number of ‘‘fake’’ papers and reviews,
and studying the behavior of the resulting system according
to various combinations of parameters. The source code of
all simulations in this paper is available online [14] in the
form of a LabPal experimental package [13]. A simulated
pool of papers of uniformly distributed quality is given to a
program committee of 100 members with randomly selected
parameters. The process of assigning papers to reviewers and
making an accept/reject decision on each is done 1,000 times.

First, let us model the ‘‘perfect’’ PC, where all reviewers
have zero grumpiness, and all agree on all the dimensions
of a paper –in other words, a paper’s quality encompasses
all its dimensions, and appreciations are entirely based on
quality (i.e. ξ = 1). We can plot the success rate of a
paper as a function of its quality, which results in the purple
line in Figure 4. Unsurprisingly, this PC acts as a discrete
quality gate: all papers below a certain quality threshold qt
are rejected all the time, and all papers whose quality lies
above the threshold are accepted all the time. We argue that
this is the behavior any real-world PC should tend towards,
for reasons that will be discussed later.

However, the presence of disagreement, materialized by
a value of ξ lower than 1, has for effect of turning this
discrete gate into a continuous function, as is shown in the
green line of Figure 4. In this model, papers with very high
quality are still almost always accepted, and papers with very
low quality are still almost always rejected. However, there
exists a middle zone where papers are sometimes accepted,
sometimes rejected by the PC, depending on the reviewer
assignment they are given. This set of papers is somewhat

FIGURE 4. A plot of success rate in function of quality, for various values
of parameter ξ .

similar to what Eric Price, in a blog post about the NIPS
consistency experiment, called the messy middle [21]. In the
center of this zone, success rate is around 50%, meaning that
decisions on such papers amount to a coin flip. On either side
of this ‘‘danger zone’’ are papers that are accepted or rejected
with a higher proportion, but whose decision is still subject to
a non-negligible amount of noise. Decreasing ξ even further
results in the blue line of Figure 4, which is almost linear.
At the very end of the quality spectrum, papers of extremely
high quality only have a probability of about 3/5 of being
accepted.

One may ponder to what extent such a situation occurs
in reality. Very few conferences that we know of collate
(let alone divulge) statistics about their reviewing process,
apart from acceptance rate. We may however turn to the
famed NIPS experiment for some basis for comparison.
Assuming a normal distribution of paper quality centered on
q = 0 and standard deviation 1/2, and after some parameter
fiddling,1 it is possible to come up with a mock PC com-
mittee which, through computer simulations, accepts 31% of
submissions. This corresponds to an acceptance rate typical
of many conferences in Computer Science (including NIPS),
give or take a few percentage points.

The resulting PC has a success ratio that behaves exactly
as the green line of Figure 4. We can measure that 21%
of all submitted papers have a success rate in the interval
[1/3, 2/3]. The simulation also shares another similarity with
the NIPS experiment, in that 24% of all submitted papers get a
different decision if reviewed a second time (this was 22% in
the NIPS experiment); we call this measure disagreement.2

Finally, we observe that 38% of accepted papers receive a
rejection decision when they are evaluated a second time; this
is what a post by John Langford has called arbitrariness [17].
Arbitrariness was even higher at NIPS 2014, with a reported
figure of 60%. Therefore, from the scant data that is available
to us, it seems that the simple hypotheses we put forward in
this paper have the potential to simulate a PC whose behavior
is similar to what has been observed in practice. As a matter
of fact, the same S-curve has been obtained through statistical

1For the plot in Figure 4, t = 1/5, ξ = 1/2, σ = 1/2, N = 3, and b = 3.
2An author of one of the papers submitted to the NIPS experiment com-

mented on his experience: his paper was clearly rejected by one committee
and cheerfully accepted by the other [11].
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analysis of acceptance rate based on average reviewer score
in an actual journal [29].

Note that arbitrariness is mostly unrelated to a program
committee’s ‘‘prestige’’: it is simply a statistical indicator of
its tendency to act as a random process. Therefore, confer-
ences and journals with very low acceptance rates (sometimes
viewed as ‘‘selective’’ and therefore higher ranked) are no
less immune to arbitrariness than any other. Arbitrariness
is indeed lower for venues with extremely low acceptance
rates, for the simple reason that rejection becomes the default
and firm decision for almost all papers (a reverse reasoning
applies to high acceptance rates).

IV. CONSEQUENCES OF ARBITRARINESS
The presence of arbitrariness in a program committee, for
whatever reasons, has several negative consequences for the
reviewing process. First, it introduces inconsistency: papers
that ‘‘should’’ be accepted are sometimes rejected despite the
paper’s perceived quality. From a strictly human standpoint,
this obviously results in frustration and decreased confidence
in the reviewing process from the part of authors. Case in
point, in the instance of our model that produces data con-
sistent with the NIPS experiment, the value of ξ is 1/2. This
means that only half of a reviewer’s score is based on the
paper’s quality, while the largest part of that score comes from
a process which, from the submitter’s point of view, behaves
at random.

However, it should be noted that this phenomenon also
has quantitative impacts, the first being reduced quality. One
way of seeing the effect of arbitrariness is that it swaps
papers across the quality threshold line: rejected papers of
higher quality are being replaced by accepted papers of lower
quality. It follows that the selection of papers that are to be
published is, on average, increasingly lower as the arbitrari-
ness of the PC increases.

There is another consequence of arbitrariness that has been
less studied, which is the phenomenon of paper bouncing.
If a paper is rejected by a perfect PC, the only possible way
for the authors to get it accepted is to increase its quality.
With an arbitrary PC, a second course of action is possible:
merely re-submitting (i.e. ‘‘bouncing’’) it, either as is or with
trivial modifications.3 Indeed, a paper whose quality lies in
the ‘‘danger zone’’ is decided more or less on a coin flip;
it therefore seems reasonable to simply flip the coin again
in hopes of receiving a more favorable reviewer assignment.
This second course of action becomes increasingly appealing
as the S-shape of Figure 4 widens.

As an example, Figure 5 superimposes on the same plot
the probability that a paper gets accepted after one trial, and
the probability that a paper gets accepted when allowed to
be submitted one more time if rejected. One can see that
bouncing has a positive effect on success rate equivalent to
an increase in the paper’s quality. In our example, a paper
with a quality of q(Ep) = 0.1, when resubmitted, increases

3This point of view is also discussed in a post by Tim Vines [29].

FIGURE 5. A plot of success rate in function of quality, after one (right)
and two submissions (left).

its odds of being accepted in the same way as if its quality
were 0.3. Additional bouncing increases this probability with
diminishing returns, yet one can see that the quality level at
which papers get accepted steadily decreases: if the number
of re-submissions tends to infinity, every paper ultimately
gets accepted. In other words, paper bouncing can be viewed
as a mechanism that progressively turns an arbitrary PC into
a process that accepts everything given enough time.

Paper bouncing in itself is detrimental to the reviewing
process in many ways. First, it obviously increases the load
on reviewers, since the same paper gets submitted multiple
times. At some point, either it gets accepted, in which case the
previous rounds of reviewing that resulted in rejection have
been a waste of time; or the authors give up, in which case
all the rounds of reviewing have been useless since the paper
might as well not have been submitted at all. Second, it also
delays publication of results, by imposing on some papers
with a reasonable quality a few unfortunate rejections before
finally allowing them to be published as is. Third, the global
quality of published papers is also impacted negatively. Our
previous observation showed that re-submitting a paper has
an effect on its success rate similar to an increase in quality.
However, one should not forget that the paper itself is left
unchanged —and so is its quality.

Case in point, we ran a simulation where our pool of papers
was submitted to two scenarios. In the first, papers are submit-
ted to an arbitrary PC (ξ = 1/2), and are repeatedly bounced
when rejected. In the second scenario, papers are submitted
to a less arbitrary PC (ξ = 4/5), which creates a strong
incentive for authors to increase a paper’s quality before
resubmitting: the quality of each paper is raised by a constant
k = 1/5 after each rejection. In both scenarios, papers are
allowed to be bounced three times. The end result confirms
our arguments: average time to publication decreases from
2.72 to 2.46 rounds of reviews, average quality of published
papers increases from 0.3 to 0.38, publication rate increases
from 56% to 80%, and the total number of reviews performed
by the committee decreases by 9%.

However, even attempts at improving a paper’s quality may
end up having the same effect as bouncing. We recall that in
our model, quality is based on a paper’s dimensions whose
appreciation makes consensus across reviewers; however,
which of all the dimensions these actually are is not nec-
essarily known, neither by the authors nor by the reviewers
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FIGURE 6. The impact of grumpiness on success rate in function of
quality.

themselves. Consider a paper that is rejected by a first set
of reviewers R whose definition of quality is based on a set
of dimensions D. Suppose that the paper is modified by the
authors and re-submitted to a new set of reviewers R′, whose
notion of quality is based on another set of consensual dimen-
sions D′. It is possible that the modifications on the paper
affect its score over dimensions in D \D′: this corresponds to
aspects of quality valued by members of R, but that members
of R′ don’t care about (i.e. over dimensions they weigh close
to zero). Hence, what is a net quality improvement for R is
indistinguishable from bouncing for members of R′.4

V. REDUCING ARBITRARINESS
We now turn our attention to means by which arbitrariness
can be reduced in program committees, by studying the
impact of various parameters and modifications to our origi-
nal model. Obviously, one can trace the core of arbitrariness
to the presence of the term (1 − ξ )N (x, σ ) in the equation
stating the appreciation of each reviewer for a paper. As we
explained, this term models the reviewers’ disagreement over
the dimensions of a paper that should be valued (and whether
these elements should be valued positively or negatively).
Reducing the impact of this disagreement (i.e. increasing the
value of ξ ) is obviously a key factor that helps a PC tend
towards a perfect quality gate. However, we shall see in the
following that arbitrariness, and the S-shape that comes from
it, can arise for other factors.

A. REVIEWER-SPECIFIC PARAMETERS
Let us start with reviewer grumpiness, which is the constant
bias given to the appreciation of a paper by each reviewer.
Figure 6 shows the impact on the quality gate for a com-
mittee where reviewers have zero grumpiness, and for com-
mittees where reviewer grumpiness is uniformly distributed
in a small ([−1/4, 1/4]) and a large interval ([−1/2, 1/2]). All
reviewers are identical except for this parameter; in particular,
the amount of randomness in their decision is null. One
can see that increasing grumpiness results in an increasingly
wider S-shape.

4Our model also makes possible a situation where work is made on
dimensions that R and R′ value in opposite directions. The authors improving
the paper based on R’s feedback will then receive even worse reviews when
submitting it to R′. This is another consequence of re-submission: one always
makes changes for the last PC, not the next one.

FIGURE 7. The impact of loudness on success rate in function of quality.

It is worthy of mention that, in this scenario, all reviewers
rank the papers in exactly the same way. That is, they all
precisely agree on which paper is better than which.5 The
only difference is in their appreciation of where the accept-
able threshold for acceptance lies. Therefore, even when all
reviewers value the same elements in a paper in the same way,
the mere uneven location of their ‘‘quality bar’’ suffices for
a perfect PC to turn into an arbitrary one. Indeed, although
grumpiness is a constant for each reviewer, its variability
across reviewers makes it act as a random variable when the
paper is submitted to a program committee.

Another distinguishing parameter of reviewers is their
loudness; we recall that loudness is the modulus of a
reviewer’s appreciation vector, which translates in our sim-
plified model as a multiplicative constant λ that has for effect
of expanding or compressing the appreciation range. Figure 7
shows what happens to a perfect PC when the reviewers’
loudness is allowed to vary, where λ is uniformly picked in
the interval [1/2, 3/2]. This represents a situation where some
reviewers are quieter than they should, while some others are
louder than they should. As one can see, variation in loudness
also introduces arbitrariness, although of a different shape as
for grumpiness. Again, variation in loudness has no effect on
the relative ordering of papers made by each reviewer —that
is, all reviewers still rank all papers in the same order.

B. COMMITTEE-SPECIFIC PARAMETERS
The parameters we studied so far were concerned with vari-
ability between reviewers. Other parameters determine how
a program committee collects and synthesizes appreciations
from reviewers, and makes a decision on acceptance or
rejection.

One first obvious parameter is the number N of reviewers
that are asked to give their appreciation. All simulations up
to this point have been run with N = 3, which is the typical
number of reviews that most papers receive in conferences
and journals. Figure 8 shows the impact on arbitrariness that
a higher or lower number of reviews for each paper may
have. As expected, an increase in the number of reviews
brings the function closer to its perfect square shape, while
a decrease in the number of reviews has the opposite effect;

5With the exception of reviewers whose appreciation vector is the null
vector, which we assume never happens.
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FIGURE 8. The impact of number of reviewers on success rate in function
of quality.

at N = 1, the function is close to linear for a large part
of the quality spectrum. The positive impact of an increase
in number of reviews can be seen as a manifestation of the
‘‘wisdom of crowds’’ [27], which, in this case, is such that
individual reviewer variations on each paper’s appreciation
progressively cancel out to reveal the paper’s intrinsic quality.
Note however that increasing the number of reviewers pro-
duces diminishing returns: we can measure that arbitrariness
is at 60% with a single review, 45% with three reviews, 40%
with four, and 30% with ten.

Another interesting question is whether decisions on
papers become more precise when reviewers are allowed a
wider range of scores. Although intuition may hint that the
answer is positive, it is nevertheless interesting to examine
how a change in the scoring scale can alter the global deci-
sions of a PC. Let us first examine the impact of scoring
granularity for perfect reviewers (ξ = 1, λ = 1, γ = 1
for everybody). Figure 9a shows the success function in such
a scenario, for 2 up to 100 scoring levels. With two levels,
reviewers are only allowed to register a pass/fail verdict;
with 100 levels, the scale is getting closer to the continuous
appreciation function from which the score is extracted.

One can see that, in the absence of other sources of noise,
each PC still acts as a hard quality gate: they only differ
in the quality cutoff threshold between certain acceptance
and certain rejection. A somewhat more surprising element
is how each scale applies a systematic positive or negative
bias to papers lying in a specific quality interval. For example,
the quality cutoff for the scales with 2 and 4 levels lies exactly
at q = 0, which means that papers rejected as per the perfect
quality threshold (1/5) are actually accepted by the ‘‘coarse-
grained’’ PC. The reverse effect can be observed for the
scale with 3 levels: this time, some accepted papers in the
perfect PC become rejections in the coarse-grained one. This
trend goes against the notion that what could be viewed as
quantization noise cancels out across all reviewers.
This systematic bias globally lessens as the number of

levels increase, although not steadily. This is explained by the
fact that this bias is caused by a mismatch between the PC’s
quality cutoff threshold, and the locations of the discrete score
jumps across the continuous appreciation interval. Case in
point, the scoring scale with 5 levels has a category boundary
at q = 1/5, andwe can see from the plot that it makes decisions
on papers with the same precision as the scale with 100 levels.

FIGURE 9. The impact of scoring granularity on success rate in function of
quality.

From this observation, one can conclude that the use of a
finer-grained scoring scale is not desirable per se, but only
because a scale with more levels lessens the probability that
the PC’s cutoff threshold lies far from a discrete category
boundary.

Therefore, scoring granularity is one parameter of a pro-
gram committee that does not appear to influence its arbitrari-
ness, but only its effective acceptance threshold t , shifting it
higher or lower depending on the scale and the value of t .
An additional example can be seen in Figure 9b, where γ ,
λ and ξ are restored to their original distributions. It can be
observed that the S-shape of the success function is identical
for all scales, and is merely shifted left or right on the quality
axis. This tends to indicate that a single pass/fail verdict from
each reviewer could be sufficient, provided that it is corrected
for bias. One possibility is adding more reviewers; Figure 9c
shows the same scales, but where each paper is reviewed by
10 people instead of 3.

Finally, one may ask whether the threshold on average
score could be replaced by another method for selecting
papers. It is often argued that the median is a central trend
measure that is more robust to the presence of extreme values.
Figure 10a shows the impact of evaluating a threshold on the
median score given by reviewers, instead of the average score.
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FIGURE 10. The impact of selection mode on success rate in function of
quality.

Surprisingly, there is no discernible difference; the situation
remains the same even when increasing the granularity of
the scoring scale to 100 levels, as is shown in Figure 10b.
In fact, the use of the median does reduce variability, but in
the range of scores that each trial of the same paper receives;
however, the probability that this score lies over or under the
cutoff line remains unchanged. In other words, the interval of
scores received by each paper is compressed, but not is shifted
left or right with respect to the committee’s quality threshold.
Therefore, it looks like replacing the average by the median
is equivalent, in terms of the committee’s arbitrariness on the
long run.

VI. ALTERNATE COMMITTEES
The proposed computational model makes it possible to sim-
ulate and study other, more drastic changes to the way papers
are being selected by a committee. We describe a few such
models in the following.

A. RANKING COMMITTEE
In this alternate committee, each reviewer is given a pool of
papers to review. The appreciation for each paper is done in
the same fashion as before, by applying the equation given
in Section III on each paper, according to the reviewer’s
specific parameters –that is, this appreciation is still subject to
loudness, grumpiness and arbitrariness. However, instead of
turning these continuous appreciation values into a location
on the discrete scoring scale, reviewers are merely asked
to provide the ordering of the papers, from the one they
consider best down to the paper they consider worst. This
technique, called ordinal rating, has been advocated in other
fields as ameans to avoid various biases and calibration issues

FIGURE 11. Comparison between a scoring and a ranking committee.

that otherwise arise in the traditional scoring system (called
cardinal rating) [15], [20].

A numerical value is still associated to each reviewed
paper, this time by taking the fraction of papers in the
reviewer’s pool it ranks above (excluding itself). Thus,
the first paper in the list is given a score of 1, while the last
is given 0. Thus, every paper evaluated by a single reviewer
is assigned a normalized value in the interval [0, 1]. This
direct translation of cardinal scores into ordinal ones can
be supported by the empirical measurement, in real-world
program committees, of a high level of agreement of the
ordinal rankings with the cardinal scores when both are asked
of the reviewers [25].

The rest of the operation proceeds in the same way as
before: scores for each paper are aggregated (for example,
by taking the average), and papers above a predetermined
threshold are accepted. The intuition behind this model is
that, as observed in Section III, part of a committee’s arbitrari-
ness results in the presence of parameters λ and γ –yet, these
two parameters have no effect on the way each reviewer ranks
the papers relative to each other. Asking reviewers to merely
rank the papers, without requiring them to locate them on an
absolute scoring scale, should therefore cancel the effects of
λ and γ , leaving ξ as the sole source of randomness from a
reviewer’s standpoint.

Figure 11 compares the behavior of two committees with
the same reviewers: the first operates using a discrete scoring
scale, while the second uses the ranking method described
above. The [0, 1] threshold for the ranking committee is
adjusted so that it accepts the same number of papers as the
corresponding scoring committee, so their acceptance rate
is identical. The plots show that they behave in a strikingly
similar manner, which seems to contradict the aforemen-
tioned claims that ordinal ranking avoids various forms of
bias and miscalibration. However, although the ranking com-
mittee lessens the impact of grumpiness and loudness on the
reviewer’s decisions, in counterpart, it is more sensitive to the
assignment of papers to reviewers. After all, a reviewer that
is given an exceptionally good (or bad) patch of papers to
evaluate has no way of making them stand out by giving all
of them high or low scores. It seems, from the results of these
simulations, that these two effects balance each other more or
less. Miscalibration bias would indeed vanish, but only if all
reviewers were assigned all papers.
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B. VARIABLE-PRECISION COMMITTEE
The previous committee resulted in the same number of
reviews per paper as for the classical scoring committee, and
hence corresponds to a consumption of the same amount of
‘‘reviewer effort’’. Yet, we have seen in Figure 8 that putting
more reviewer effort does sharpen a committee’s verdicts, but
requires an impractical increase to show noticeable benefits.
This is in part due to the fact that every paper is given
the same heightened scrutiny. A smarter management of the
limited reviewing resources would, in contrast, do away with
submissions that reach a clear positive or negative consensus,
and direct more effort towards submissions lying in the messy
middle.

To this end, we study an alternate committee model that
operates in n stages. Papers are rated by reviewers using
the same discrete scoring scale as before, and a predefined
threshold score t is used as a guideline for acceptance or
rejection; however, each stage of the reviewing process is
also associated with an interval width w. In the first stage,
each paper is assigned to a single reviewer; any paper whose
discrete score lies above t + w1 is immediately accepted,
while any paper whose score lies below t−w1 is immediately
rejected. Papers in the interval [t−w1, t+w1] are deemed not
to be decisively assessed, and move on to the second stage.

This second stage operates in the same way as the first:
submissions are assigned a second reviewer, and the aggre-
gate score (e.g. average) of both the first and the second
review is considered. The interval width is decreased to a
valuew2 < w1; any papers outside the interval [t−w2, t+w2]
are either accepted or rejected, and the remaining ones move
to the next stage, with yet one more reviewer and a smaller
interval. Once the last stage is over, multiple courses of action
are possible for the papers that have still not been decided.
They can all be accepted, rejected, picked as in a classical
scoring committee based on whether their final aggregate
score lies over the threshold t , or even be chosen on a
coin flip.

A particular feature of this model is that it spends the
most reviewing resources on papers that consistently straddle
the threshold line, while papers that converge more rapidly
towards a decision are expelled from the process; thus each
paper is given a variable amount of attention. Figure 12 shows
the results of such a committee, with the same pool of review-
ers and papers, compared with variants of the multi-stage
committee. For this particular experiment, b = 3, w1 = 2,
and the interval width is reduced at each stage by setting
wi+1 = wi · 3/4. Figure 12a plots the multi-stage commit-
tees against a scoring committee with a fixed number of 3
reviews per paper, and Figure 12b with 10 reviews per paper.
As for the ranking committee, the threshold value t of the
multi-stage committee has been set so that it produces an
acceptance rate similar to that of the single-pass committee.6

6The only effect of altering t in both models is the lateral translation of
each function; it has no effect on the shape of the curve, which is the point
of the discussion.

FIGURE 12. Comparison between single- and multi-pass scoring
committees.

The results show that multi-stage committees achieve
a steeper quality-success function than the classical
single-stage scoring committee. With n = 8, the multi-stage
committee produces a curve similar to what a single-stage
committee achieves with 10 reviews per paper. However,
the latter does so at the cost of a total of more than 2 million
reviews, while the multi-stage approach requires less than
half that number (about 840,000). This shows the potential of
such a committee to automatically tune the precision required
for each paper.

Also worthy of mention is the fact that the fate reserved
to papers that make it to the final stage is more or less
irrelevant in terms of arbitrariness. Case in point, Figure 13
shows a plot for multi-stage committees that vary only in
that final step, for each of the four alternatives discussed
above. Each curve is shifted left or right, indicating a slight
tendency towards acceptance or rejection; however, the shape
of each function shows no noticeable difference. In particular,
the coin-flip decision is no more arbitrary than a decision
based on the paper’s aggregate score. This relatively surpris-
ing result indicates that the committee is ultimately left with a
set of papers whose quality cannot be meaningfully assessed
by its reviewers.

Some criticism can be addressed towards such a committee
model. First, it requires time: since each stage depends on
the results of the previous one, none can be executed in
parallel and every reviewer evaluates a single paper at a
time. This makes it ill-suited to fixed-deadline venues such as
conferences, but could prove less of an issue for continuous
reviewing processes such as journals. Second, although the
good faith of each participant is taken for granted, a single
malicious reviewer could decide on a paper by giving an
artificially high or low score at the first stage of the process.
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FIGURE 13. The impact of multi-pass selection mode on success rate in
function of quality.

The feasibility of such an attack decreases as the stages pass.
Finally, the model makes it difficult to adjust its parameters
once they have been set: modifying the value of t , w1, or the
recurrence relation between wi and wi+1 cannot realistically
be done without restarting the process from the beginning.
This is a departure from existing, single-phase scoring com-
mittees where thresholds can be decided once all reviews
have been received. Whether this is a benefit or a drawback
of the model is left to discussion.

C. JOURNAL-STYLE COMMITTEE
Our original model is geared towards a conference-style pro-
gram committee, where papers are submitted all at once, and
a decision is made on all of them at once after a single round
of review. Journals typically work in a drastically different
way, as they accept papers continuously, and allow multiple
reviewing cycles. It can be seen as the exact opposite of
the bouncing strategy: while bouncing sends a paper with-
out modification to a different set of reviewers, the journal
process has the same reviewers re-assess the paper after
mandatory modifications have been made to it.

As for a conference model, we assume that a re-submission
with corrections increases the paper’s intrinsic quality. How-
ever, the journal model introduces a second effect. Since
the reviewers assessing the revised version are generally the
same as the original submission, one can expect that the
revision of the paper, conducted based on reviewers’ com-
ments, increases the paper’s quality for the dimensions that
are valued by the reviewer. Expressed in terms of papers and
reviewers as vectors, a revision in the journal model therefore
increases the modulus of the paper’s vector, but also reduces
the angle between this vector and that of the reviewer, as is
shown in Figure 14. In our simplified unidimensional model,
this amounts to an increase of both parameters q and ξ when
the paper is reviewed a second time. Of all models studied
so far, this is the only one whose hypotheses contribute to a
direct increase on parameter ξ .
It may therefore be relevant to measure whether the journal

workflow improves the arbitrariness of a program commit-
tee. The effect can be visualized by a simulation illustrated
in Figure 15. It compares the acceptance rate in function
of quality between a (scoring) conference-style committee,

FIGURE 14. When a paper Ep is revised and re-assessed by the same
reviewer Ev , one expects that θ ′ < θ .

and a journal-style committee as discussed above, with the
same parameters (see footnote 1). In both cases, papers can
be submitted up to five times. Each time a paper is rejected,
its quality q is increased by 1/5. In the case of the confer-
ence committee, the paper is then re-submitted to a new
randomly selected set of reviewers, and re-evaluated. In the
case of the journal committee, the paper is re-submitted to
the same set of reviewers who evaluated it the first time.
To account for the fact that paper revisions, in this case, tend
to decrease the angle θ between the paper and the reviewer’s
vectors, the value of ξ is also increased by a small amount
(here 1/20).

As one can see, even a modest realignment of a sub-
mission towards quality dimensions valued by the reviewers
can produce a sharp reduction of the arbitrariness, all other
things considered equal. In other words, the ‘‘moving tar-
get’’ phenomenon induced by the memoryless succession of
program committees can be seen as a contributing factor for
arbitrariness. Note that this is not achieved at the expense of
increased reviewer effort, since the total number of reviews
in both simulations remains within a margin of 3%.

VII. LIMITATIONS AND THREATS TO VALIDITY
The proposed model and the theoretical reflections that
ensued should be taken for what they are: an obvious simplifi-
cation of reality that necessarily cuts a few corners. We men-
tion a few such corners in the following.

Our model of a program committee supposes that every
paper with the same discrete scores receives the same
accept/reject verdict —that is, selection is based solely on
quality assessment and is independent of the quality of other
papers submitted to the same committee. Yet, many PCs oper-
ate under different constraints, such as a maximum number
of papers to accept, or a target acceptance rate not to exceed
regardless of the submissions’ global merit. Even though
quality is involved in the process (for example, by ranking
papers in order of appreciation based on reviewer feedback),
further arbitrariness can be introduced by the need to draw a
line through a patch of papers that look all alike, quality-wise.
Reviewers themselves may apply the same kind of reasoning,
by downgrading (or upgrading) the score of a paper relative
to the quality of other submissions they are asked to review
in the same committee. Such a selection model could also be
studied by starting from the same principles.

Each dimension of a paper’s appreciation is also assumed
to be evaluated in an independent and systematic way by a
reviewer. This eschews known psychological factors that are
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FIGURE 15. Comparison of a conference-style (scoring) committee, with a
journal-style committee.

involved in reviewing; for example, a badly-written paper will
often score less on technical merit than a well-written one,
despite being of an equivalent technical value. That is, good
or bad quality on a dimension can create ‘‘crosstalk’’ over
other dimensions of the paper —a form of confirmation bias.
In addition, our model dismisses any interaction between
reviewers that could make some of them change their score,
and possible rebuttals by authors that could have the same
effect (although the effect of rebuttals has been discussed
earlier and appears to be marginal).

Our empirical measurements have also assumed a uniform
distribution in the intrinsic quality of papers. This parameter
could be challenged in its own right; for example, other
studies have rather used a skewed distribution of quality
to run simulations [28]. A non-uniform distribution with a
higher proportion of papers in the ‘‘messy middle’’ would
amplify the effects of arbitrariness observed in the empirical
measurements conducted in this paper.

Finally, any doubts that can be raised regarding the realism
of our proposed model can be deflected towards the broader
issue of the scarcity of hard data about peer reviewing. As we
already mentioned, the only reliable source of information
that can be extracted from conferences and journals is their
acceptance rate, which paints an arguably very fragmentary
portrait of the state of a program committee. Submitting a
paper to a specific venue is the result of a choice by the
authors, based on a number of conscious and unconscious
criteria. It would be reasonable that one such criterion be
the odds that a given venue evaluates the submission in a
systematic and reproducible fashion, instead of deciding its
fate on what amounts to a biased coin flip. One could even
argue that a strong indicator of a paper’s value should be
how decisive is its acceptance by a program committee across
multiple trials —something that is hinted by a venue’s low
arbitrariness, not its one-shot acceptance rate, as low as it
may be.

VIII. RELATED WORK
Most works that studied the peer reviewing process have
concentrated on an empirical analysis of trends observed in
actual publication venues. In the field of Computer Science,
an important large-scale study by Ragone et al. has involved

the compilation of statistics for more than 9,000 reviews
of 2,800 submitted contributions [22]. The paper formally
defines the concept of peer review validity, which is the
capability of a process to identify submissions that are sci-
entifically correct, and which are likely to have an impact or
be of interest to the publication venue’s audience.

Some elements of the study are not addressed by our simple
mathematical model, such as the correlation between review-
ing scores and eventual impact in terms of citations (which the
authors empiricallymeasured as beingweak). However, some
other observations find an echo in the notions we discussed
in the last few pages. For instance, the authors empirically
observed the presence of reviewers that ‘‘consistently give
higher (or lower) marks than the others independently from
the quality of the specific contribution they have to assess’’;
this is precisely accounted for in our proposed model by
the grumpiness parameter γ , which they call rating bias.
Similarly, the study observes reviewers giving ‘‘marks that
are always very close to the threshold for a given criteria’’
(such as 3 on a scale from 1 to 5); this time, this directly
corresponds to the loudness parameter λ, which Ragone et al.
call threshold bias.

The paper also observed greater agreement between
reviewers for papers at both extremes of the scale (very
good and very bad): this also matches the behavior of
program committees simulated by our model. Therefore,
it seems that our proposed model reproduces features that
are indeed observed empirically. Finally, the paper proposes
mechanisms to improve the reviewing process in order to
decrease reviewing effort. One of them is amulti-phasemodel
similar to the variable-precision committee simulated in
Section VI-B. Here again, observations from our simulations
coincide with the conclusions of the paper.

Schultz [24] conducted an empirical study assessing the
impact on the number of reviewers in journal submissions,
by analyzing the fate of 500manuscripts submitted to a single
journal. It observed that rejection rates were not significantly
different whether two or three reviewers were used. It should
be noted, however, that rejection rate is a different concept
from arbitrariness, which is the focus of the present paper.

Among other works on the empirical evaluation of existing
processes, we already cited the well-known NIPS experiment
[17], [21], from which stems the idea of studying program
committees in terms of their arbitrariness. The 2016 edi-
tion of the conference performed a post hoc analysis of its
reviewing process [25], and observed, among other findings,
‘‘significant miscalibration with respect to the rating scale’’.
An empirical study of comparative peer reviewing (similar
to the ranking committee simulated in Section VI-A) yielded
positive results in that reviewers produced comments that
were both longer, and better-rated by an external group of
experts [6]. Note however that this study does not measure the
arbitrariness of the committee, and moreover was not focused
on the reviewing of scientific research papers.

It shall be noted that our proposed formal model does not
incorporate features present in many program committees,
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such as the possibility for authors of responding to reviews.
However, it can be argued that such features have little impact
on the simulation. For example, in the field of Natural Lan-
guage Processing, Gao et al. studied the impact that rebuttals
have on the final decision given to a paper [12]. They revealed
that marginal (and statistically significant) influence on the
final scores (especially for borderline papers), but that a
reviewers’ decision is largely determined by their initial score
and the distance to the other reviewers’ initial scores. Results
from NIPS 2016 also observed little impact of these rebuttals
on paper scores [25].

Fewer studies have attempted to define and simulate
models of peer reviewing. Among these, Bentley defines a
model of peer reviewing for grant proposals using genetic
algorithms [2], where a proposal is modeled as a gene,
with reviewers assessing the quality of a proposal across
five dimensions. Day also uses simulations to study the
effect of bias on the attribution of grant among between a
‘‘preferred class’’ and a ‘‘non-preferred class’’ of principal
investigator [10].

On his side, Allesina uses an agent-based model of review-
ers in a journal-style process [1]. Each paper is modeled as a
three-dimensional vector Ep ∈ [0, 1]3, with the three dimen-
sions respectively representing the paper’s fit with respect
to the journal’s topic (T ), its technical quality (Q), and its
novelty (N ). This model differs from the one proposed here
in that it takes into account the assignment of reviewers to
papers based on their expertise with respect to the submission.
Each reviewer of a paper is asked to produce an estimate of its
true three vector parameters, which carries an error inversely
proportional to the familiarity of the reviewer with the topic
of the manuscript. The editor aggregates these estimates and
computes the product of the cumulative distribution functions
for all three parameters. This distribution is used to derive a
probability pa; the manuscript is accepted based on a biased
coin flip with probability pa of being accepted. The author
uses this model to explore the consequences of an alternate
model where the editor is allowed to reject without review
papers that will realistically result in rejection.

Tan et al. also provide a simulation model of peer review-
ing, with a focus on the measurement of perceived quality
decrease in journal standards [28]. Of particular interest is
the fact that this work also studies the impact of paper resub-
missions on overall quality, and results in similar conclusions
regarding the practice of paper bouncing (although not named
as such).

Finally, Kovanis et al. also use an agent-based model of
peer reviewing, in order to study a model where past reviews
of a paper are shared when this paper is re-submitted [16];
this goes in line with our assessment of Section VI-C, which
tends to favor a system where papers are re-submitted to the
same reviewers (thus providing a stateful reviewing process).
As with our current model, the proposed one also models
a paper by an intrinsic quality score, which is represented
as the flattening of multiple quality dimensions. Evalua-
tion of a paper by a reviewer is subject to a scoring error

assuming a given probability distribution. However, this work
differs from our proposed contribution in two respects. First,
it focuses on the total effort and time to publication, and not
on the arbitrariness of the decisions made by a program com-
mittee. Second, the presence of randomness in a reviewer’s
decision is taken as a design hypothesis, whereas in our
proposed model, it is merely a consequence of the mismatch
between a paper and a reviewer’s vectors. As a matter of fact,
to the best of our knowledge, the model presented in this
paper is the first where randomness is not taken for granted,
and is rather explained from higher principles.

IX. CONCLUSION
In this paper, we developed a mathematical model of the
scientific peer reviewing process. This model is grounded on
the simple principle that a research paper can be modeled as
a numerical vector representing multiple independent dimen-
sions of its intrinsic quality. Reviewers are also modeled
as vectors, where each dimension corresponds to the value
they assign to each quality dimension. The assessment of
a paper by a reviewer becomes nothing but the dot prod-
uct of their respective vectors. This model is sufficient to
explain the presence of arbitrariness in the reviewing pro-
cess, which occurs when the same paper receives inconsistent
accept/reject decisions depending on the set of reviewers it is
assigned to.

In this context, arbitrariness occurs in the presence of a
mismatch between non-null entries of the paper’s quality
components, and the reviewers’ value given to each com-
ponent. We have shown how a greater mismatch makes the
decision on a paper behave increasingly like a random pro-
cess, leaving an ever-smaller fraction of the total ‘‘score’’
corresponding to an actual assessment of the paper’s qual-
ity. An important take-home point is the observation that
the appearance of randomness from the author’s standpoint
does not imply that reviewers themselves are random. As we
stressed earlier, it is possible for all reviewers to rank all
papers in the same order, and still end up with a reviewing
process that produces arbitrariness.

Based on these principles, a simplified equation represent-
ing a paper’s assessment was derived, which contains two
main terms: the fraction ξ of the paper’s score dependent on
its quality q, and the fraction 1 − ξ of the score behaving at
random. This function can then be scaled by a constant fac-
tor λ and shifted by another constant γ , whichwe respectively
called the ‘‘loudness’’ and ‘‘grumpiness’’ of a given reviewer.

An interest of this model is its relative simplicity, which
makes it easy to run a large number of fake reviewing com-
mittees on a population of papers of randomly-generated
quality. This made it possible to study the impact of various
parameters on the perceived arbitrariness of a committee.
To this end, we presented the results of computer experiments
varying the values of variables λ, γ and ξ mentioned earlier,
and also explored the effect of other elements of the reviewing
process, such as the number of reviewers and the granularity
of the scale by which continuous scores are discretized.
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Despite the various negative consequences that arbitrari-
ness can bring, our numerical simulations have shown that
the options to reduce it are few and far between. In par-
ticular, decreasing variance in reviewer loudness, changing
the scoring granularity or replacing average threshold by
median threshold all have little to no impact on a committee’s
arbitrariness. Even increasing the number of evaluations per
paper would require an impractical amount of reviews to iron
out inter-reviewer variability and restore the perfect quality
gate that would be expected of a PC. In our proposed model,
the only two parameters that have any meaningful impact on
the S-shape of a committee’s success function are ξ and γ .
That is, the surest way to decrease arbitrariness is not only
to make reviewers agree on the largest possible number of
dimensions of a paper (ξ is close to 1), but also ensure they
have equal severity (γ is close to 0, or at least similar for all
reviewers).

This is at the same time obvious, and also easier said than
done, but recent initiatives have been started to reverse this
trend. Worthy of mention are the ACM SIGSOFT Empirical
Standards, which stem from the observation that ‘‘constant
rejection is rooted in dissensus within scientific communities
regarding how research should be conducted’’ [23]. By striv-
ing to provide a systematic and agreed-upon set of evalua-
tion criteria for empirical papers in Software Engineering,
this standard has the potential to contribute to reducing the
part of a paper’s appreciation left to a reviewer’s personal
taste —which, in our proposed model, translates into a
decrease of parameter ξ . Some scholars have argued that
upcoming scientific revolutions may occur because of a
change in the way publications are evaluated [5]. It is to be
hoped that similar endeavors in other fields of Computer Sci-
ence will, in time, help reinstate predictability and confidence
in the peer reviewing process.
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