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ABSTRACT Smoothed functional (SF) algorithm estimates the gradient of the stochastic optimization
problem by convolution with a smoothening kernel. This process helps the algorithm to converge to a
global minimum or a point close to it. We study a two-time scale SF based gradient search algorithm
with Nesterov’s acceleration for stochastic optimization problems. The main contribution of our work is
to prove the convergence of this algorithm using the stochastic approximation theory. We propose a novel
Lyapunov function to show the associated second-order ordinary differential equations’ (o.d.e.) stability
for a non-autonomous system. We compare our algorithm with other smoothed functional algorithms
such as Quasi-Newton SF, Gradient SF and Jacobi Variant of Newton SF on two different optimization
problems: first, on a simple stochastic function minimization problem, and second, on the problem of
optimal routing in a queueing network. Additionally, we compared the algorithms on real weather data in
a weather prediction task. Experimental results show that our algorithm performs significantly better than
these baseline algorithms.

INDEX TERMS Multi-Stage queueing networks, Nesterov’s acceleration, simulation, smoothed functional
algorithm, stochastic approximation algorithms, stochastic optimization.

I. INTRODUCTION
Optimization problems deal with minimizing (or maximiz-
ing) the value of an objective function [1]. When parame-
ters of the objective function or the optimization algorithm
have randomness, then the process of optimization is termed
as Stochastic Optimization (SO) [2]. It has applications in
various fields such as machine learning [3], finance, supply
chain [4], network optimization [5] and optimization with
information uncertainty [6], [7]. These algorithms generally
involve the estimation of the gradient of the objective. One
of the most popular algorithm in this regard is Stochastic
Gradient Descent (SGD) [8]. It was evolved from theworks of
Robbins and Monro [9], and it estimates the gradients of the
cost function. If the objective function is represented by J (θ ),
where θ ∈ Rd is a parameter, then SGD utilizes gradient of
objective function (∇θJ (θ )) to update the parameter in oppo-
site direction of the gradient. However, in its vanilla form,
SGD suffers from slower convergence on large data [10].
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An improvement to this basic algorithm is the classical
momentum [11] based algorithm where along with nega-
tive gradient, a decreasing weighted sum of past updates
is also utilized. Due to the inclusion of previous updates,
the latest update tend to move faster if it is in the same
direction. This phenomenon is applicable even if the current
gradient value is small (i.e., when the function’s curvature
is low) [12]. However, this method is not very efficient
when the direction of the gradient oscillates (i.e., when
the function has a ‘‘deep valley’’). Nesterov proposed an
accelerated gradient descent technique to overcome this
problem [13].

In Nesterov’s Accelerated Gradient (NAG), the update is
done in two parts. (1) A partial step is taken in the same
direction as the previous momentum vector. (2) A second
partial step is taken in the current gradient’s direction to
accelerate the gradient search. However, this direction is
reversed if the first partial step overshoots the minima, which
decreases the overall update value. It contrasts with classical
momentum-based methods as they oscillate in such scenarios
[14]. NAG is discussed in detail in Section IV.
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In many scenarios, calculating the gradient is computation-
ally expensive [15]. Thus, calculating the gradient directly
may not always be possible, but it can be estimated from
a simulation. Kiefer and Wolfowitz [16] employed a direct
gradient estimation technique in a general setting. The num-
ber of parameter values that need to be simulated in their
work is at least as large as the search space dimension. Later,
SPSA [17] was proposed, which requires only two func-
tion measurements for estimating the gradient regardless of
the optimization problem’s dimension, thus using much less
computational effort. It is based on gradient estimation using
independent and identically distributed randomly perturbed
parameters.

Another related simultaneous perturbation technique is
smoothed functional (SF) scheme. In this, the objective func-
tion’s gradient is convoluted with a multivariate Gaussian
distribution, resulting in smoothed gradient updates [18].
This convolution step slightly changes the absolute min-
ima, but the smoothed gradient surface [19] compensates
this effect by reducing the total number of local minima
as they get disappeared due to smoothening. In addi-
tion, the number of simulations per iteration in SF algo-
rithms are independent of the dimension of the objective
function. The required samples are collected from the
simulation of the objective function. The one-simulation
method was proposed by [20], where samples from a
single-simulation are enough for each gradient estimate.
However, Bhatnagar et al. [18], and Styblinski et al. [21],
showed that two-simulation methods1 outperforms SF based
single-simulation technique. It requires only two simulations
to compute the gradient irrespective of the dimension, unlike
direct estimation. Thus, the SF method reduces the number
of simulations. Later, the two-simulation SF technique is
combined with a Quasi-Newton update (BFGS) [22] for
both constrained and unconstrained SO. Quasi-Newton is an
improvement over regular Newton algorithms as the former
only approximates the Hessian inverse, unlike the latter,
which computes it.

Thus, it is clear that SF algorithms help in avoiding
many local minima’s by smoothening the objective function’s
gradient. Moreover, a momentum-based descent algorithm
accelerates the gradient vector in the right direction in the
search space, leading to less computational time, and it also
overcomes the oscillation of noisy gradients. To the best
of our knowledge, momentum-based gradient descent algo-
rithms have not been considered with multi-time scale [23]
(recursions involves more than one step size parameters
of different values) smoothed functional techniques. This
motivates us to explore these algorithms. Thus, the novelty
of our work is the use of Nesterov’s Accelerated Gradient
Descent (NAG) with SF technique (NAG-SF algorithm) in

1One-simulation methods require single objective function measurement
per iteration, and two-simulation methods require two measurements of
objective function per iteration.

a multi-time scale fashion to minimize the average cost
objective.

The proposed algorithm aims to speed up the slow con-
vergence of multi-time scale stochastic optimization algo-
rithms. Though multi-time scale algorithms efficiently use
different step-sizes to avoid nested loops, increasing com-
putation speed. However, we consider acceleration methods
together with this to improve the rate of convergence also.
We have proved the convergence of our method by ana-
lyzing the associated ODE. Experimentally our algorithm
is seen to perform better than other variants of SF algo-
rithms. We have tested our algorithm on a routing prob-
lem that mimics a simplified model of the internet. It is
a multi-stage shortest path problem, similar to which are
considered in [22], [24]–[26]. Next, the performance is tested
on a simple stochastic function minimization problem and
compared with non-accelerated versions of smoothed func-
tional algorithms such as Quasi-Newton SF [22], Gradient SF
and Jacobi Variant of Newton SF [18]. Moreover, we tested
the algorithms on a weather classification problem using
real weather data from the National Center for Atmospheric
Research (NCAR) [27] for a period of 365 days between year
2008 and 2009.

The main contribution of our work is:

• Novel SF based Nesterov’s accelerated algorithm for
stochastic convex optimization.

• Analyze the associated second-order o.d.e. of the system
while Bhatnagar’s work [11] uses a first-order o.d.e.

• Introduction of a novel Liapunov function to analyze the
o.d.e.

• Use of stability theorem (Theorem 5) to analyze the
stability of the non-autonomous o.d.e.

Although the proof structure for the convergence of
NAG-SF is similar to Bhatnagar’s work [18], the proof is
indeed different. We introduce a stability theorem for non-
autonomous o.d.e. Experimental analysis suggests that our
work is better than the previous research.

The rest of the paper is organized as follows. Section II
provides the problem definition for the optimization set-
ting. Section III describes the background of the smoothed
functional algorithms in general, two-time scale scheme and
the basic structure of Nesterov’s momentum algorithm. The
proposed NAG-SF algorithm is given in Section IV. A math-
ematical analysis and convergence proof of the proposed
algorithm is discussed in Section V. Section VI provides
the experimental setup and results to compare against other
baselines. Conclusions are drawn in Section VII.

II. PROBLEM SETTING
We let {Xn, n ≥ 1} be an Rd -valued parameterized ergodic
Markov process, that takes values in a non-empty compact
and convex setC ⊂ RK . With n being time step, let, θ (n) ∈ C
be a tunable parameter for the transition kernel of the process
{Xn}. Thus, at a given instant n+ 1, the transition kernel uses
θ (n) and Xn to generate the process Xn+1.
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Let a cost function h : Rd
→ R+ be defined on process

Xn, such that when the process is in state x, then, h(x) be the
single-stage cost incurred. The long-run average cost J (·) of
this cost function h is defined as:

J (θ ) , lim
l→∞

1
l

l−1∑
j=0

h(Xj). (1)

The objective is to minimize this long-run average cost J (·)
for all θ ∈ C . The given limit exists due to the ergodicity of
process Xn for all θ ∈ C . We propose an iterative algorithm
for this optimization problem.

Next, assume that, {θ (n)} be a sequence of random param-
eters obtained using an iterative scheme on which the process
{Xn} depends and let Hn = σ (θ (m),Xm,m ≤ n), n ≥ 1 be
the sequence of associated σ−fields. We refer {θ (n)} to be
non-anticipative, if, for all Borel sets A ⊂ Rd ,

P(Xn+1 ∈ A|Hn) = p(θ (n),Xn,A),

where p(·) denotes the transition kernel. In particu-
lar, the joint process {(Xn, θ(n))} is Markovian under a
non-anticipative {θ (n)}.
We make the following assumptions for the analysis of

NAG-SF algorithm:
Assumption 1: J (θ ) is a twice continuously differentiable

function in θ with bounded third derivatives.
Assumption 2: The single stage cost h(·) is a Lipschitz con-

tinuous function, that is, ∃3 which is a real positive constant,
such that ∀k1, k2 ∈ domain of h, |h(k1)−h(k2)| ≤ 3|k1−k2|.
Assumption 3: There exist ε0 > 0, K ⊂ Rd compact and

V ∈ C(Rd ) such that lim
‖x‖→∞

V (x) = ∞ and under any non-

anticipative {θ (n)},

1) supnE[V (Xn)
2] <∞ and

2) E[V (Xn+1)|Hn] ≤ ε0, whenever Xn /∈ K, n ≥ 0.
Assumption 1 and 2 are standard requirements [28]. In par-

ticular, Assumption 1 ensures that theHessian of the objective
function exists. Assumption 3 is needed for the existence of
a stochastic Lyapunov function. It ensures the stability of the
Rd -valued Markov process under a tunable parameter, as the
cost function in a state variable is taken as Lipschitz contin-
uous. It also ensures that the Markov process has uniformly
bounded finite moments [28].

Assumption 3 is required for the stability of the system
with Rd -valued Markov process. It ensures a stable system
under a tunable parameter since, in the proposed setting,
the cost function h(·) is not bounded. As a consequence of
Assumption 3, all finite moments of the Markov process
remain uniformly bounded. We let ‖·‖ denote the Euclidean
norm. The objective here is to find the local minimum using
an iterative algorithm. Hence, it is required that the Hessian
estimate remains positive definite and symmetric after each
iteration. For this, we project theHessian estimate to the space
of positive definite and symmetric matrices using the operator
P described previously.

III. BACKGROUND
In 1951, Robbins and Monro [9] proposed a scheme for
solving a non-linear equation h(θ) = 0 given noisy measure-
ments of the function. Considering {Z} to be noise sequence,
the iteration given by them is:

θ (n+ 1) = θ (n) + a(n)[h(θ(n))+ Z(n)] (2)

where a(n) is the step size. Now, to theoretically analyze these
type of stochastic approximation algorithms, one popular
approach is to view the iteration as a noisy discretization
of a limiting o.d.e. Thus, from the standard ’Euler scheme’,
the corresponding o.d.e. for (2) would be

θ̇ (t) = h(θ (t)) (3)

For formal analysis of the stochastic approximation
scheme, the following assumptions need to be made:
Assumption 4: Step sizes {a(n)} are positive scalars satis-

fying
∑

n a(n) = ∞;
∑

n a(n)
2 <∞

Assumption 5: {Z(n)} is a martingale difference sequence
with respect to the increasing family of σ -fields.

F(n) , σ (θ (m),Z(m),m ≤ n) , n ≥ 0
Assumption 4 is a standard requirement for the step sizes and
Assumption 5 is to define the added noise in the update. Now,
a closed setA ⊂ Rd is referred to as invariant set for the o.d.e.
(3) if any trajectory θ (n),−∞ < n < ∞ of (3) remains in
set A, ie., it satisfies θ (n) ∈ A ∀ n ∈ R. Furthermore, if for
any θ, y ∈ A and any ε > 0,T > 0, there exist n ≥ 1
and points θ (0) = θ, θ(1), . . . , θ (n − 1), θ(n) = y in A
such that the trajectory of (3) initiated at θ (i) meets with the
ε-neighbourhood of θ (i+ 1) for 0 ≤ i < n after a time ≥ T ,
then it is referred to as internally chain transitive.

Under the mentioned assumptions, Benaim [29] gave a
convergence result for the update rule mentioned in (2).
Theorem 1: Almost surely, the sequence θ (n) generated by

(2) converges to a (possibly sample path-dependent) compact
connected internally chain transitive invariant set of (3).
Thus, the iterative scheme given by [9] converge to a

compact set. Next, several variations might be present to
analyze the stability criteria for the stochastic approximation
algorithms, which might be applicable under specific restric-
tions. These variations might additionally be customized to
suit some specific applications. One such variation as given
by [30] is as follows: For the o.d.e. described earlier, at any
time step Tn, the iterate has to be restricted to a unit ball inRd

for the trajectory to remain meaningful. Therefore, the iterate
is re-scaled back over the time segment [Tn,Tn+1) when it
drifts away. If the original trajectory drifts towards infinity,
then there is a corresponding sequence of re-scaled segments.
These segments asymptotically track a limiting o.d.e. and
are obtained as a scaling limit of ’basic o.d.e.’. The stability
condition is met when these segments start drifting towards
the origin, which happens when the scaling limit is globally
asymptotically stable to the origin. Formally
Assumption 6: The functions hu(θ ) , h(uθ )/u, u ≥ 1,

θ ∈ Rd , satisfy hu(θ ) → h∞(θ ) as u → ∞, uniformly
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on compacts for some h∞ ∈ C(Rd ). Furthermore, the o.d.e.
θ̇ (t) = h∞(θ (t)) has the origin as its unique globally asymp-
totically stable equilibrium.

Here, the o.d.e. mentioned in assumption (6) is the scaling
limit. So now we can state the result from [23].
Theorem 2: Under assumptions (2-6), supn|θ (n)| < ∞

a.s.
Thus, the parameter θ remains stable.
Many stochastic approximation algorithm uses multiple

time scale approach corresponding to different components
of the iteration which induces different time scales into the
algorithm. We consider the case of two time scales follow-
ing [31]. Consider the following iterations

θ (n+ 1) = θ(n)+ b(n)[h(θ(n), y(n))+ Z (1)(n+ 1)], (4)

y(n+ 1) = y(n)+ a(n)[g(θ(n), y(n))+ Z (2)(n+ 1)], (5)

where h : Rd+k
→ Rd , g : Rd+k

→ Rk are Lipschitz
and {Z (1)(n + 1)},Z (2)(n+ 1) are martingale difference
sequences w.r.t. the increasing σ -fields

F(n) = σ (θ (m), y(m),Z (1)(m),Z (2)(m),m ≤ n), n ≥ 0 (6)

satisfying

E[‖Z (i)(n+ 1)‖2|F(n)]≤K (1+ |θ (n)|2+|y(n)|2), i=1, 2

(7)

for n ≥ 0. Step sizes {a(n)}, {b(n)} are positive scalars
satisfying
Assumption 7:∑
n

a(n) =
∑
n

b(n) = ∞;
∑
n

a(n)2,
∑
n

b(n)2 <∞, (8)

a(n) = O(b(n)). (9)
The rate of decay is different for different step sizes.

If a step size parameter goes to zero faster than the other,
the corresponding recursions tend to converge slower. Here,
a(n) approaches zero faster than b(n), thus recursions cor-
responding to a(n) converge slower, though more smoothly
than recursions corresponding to step size b(n). Therefore,
the time scale governed by a(n) is the slower time scale, and
that governed by b(n) is a faster time scale [23].
Considering ε → 0 in limit, the iterations in equation (4)

and (5) can be compared with the following o.d.e.

θ̇ = h(θ (t), y(t))/ε (10)

ẏ = g(θ (t), y(t)) (11)

Thus θ (·) is a fast transient and y(·) the slow component.
It then makes sense to think of y(·) as quasi-static (i.e.,
‘almost a constant’) while analyzing the behaviour of θ(·).
This suggests looking at the o.d.e.

θ̇(t) = h(θ (t), y) (12)

where y is held fixed as a constant parameter.
Assumption 8: Equation (12) has a globally asymptot-

ically stable equilibrium λ(y) (uniformly in y), where
λ : Rk

→ Rd is a Lipschitz map.

Then for sufficiently small values of ε we expect θ (n) to
closely track λ(y(n)) for n > 0. In turn this suggests looking
at the o.d.e.

ẏ(t) = g(λ(y(t)), y(t)), (13)

which should capture the behaviour of y(·) in equation (11)
to a good approximation. Suppose that:
Assumption 9: The o.d.e. (13) has a globally asymptoti-

cally stable equilibrium y∗

Then we expect (θ (n), y(n)) in (10)–(11) to approximately
converge to (i.e., converge to a small neighbourhood of) the
point (λ(y∗), y∗).
The motivation for analyzing this setup comes from the

subsequent considerations. Suppose that an iterative algo-
rithm requires a selected iterative procedure in every iteration.
Additionally, that procedure itself is any other iterative algo-
rithm. The conventional approach could be to apply the pro-
cedure’s output when running it till near-convergence, during
every iterate of the outer loop. This is a time-consuming
step. However, the aforementioned indicates that we can get
a similar impact by running both the inner and outer loops
concurrently, albeit on different time scales. Then the inner
’fast’ loop sees the outer ’slow’ loop as quasi-static, and the
latter sees the previous as almost equilibrated. Consider the
following stability assumption:
Assumption 10: supn(‖θn‖ + |yn|) <∞, a.s.
For the two-time scale approach, the formal convergence

analysis is discussed in detail in [19]. For the sake of com-
pleteness, the results are as follows:
Lemma 1: Considering assumptions 10, (xn, yn) →

{(λ(y), y : y ∈ Rk )} a.s.
Using this lemma and Assumption 10, the following result

can be obtained [23]:
Theorem 3: (xn, yn)→ (λ(y∗), y∗) a.s.
Thus, this same approach can be used for more time

scales. However, it turns out that increasing the time
scale has a detrimental effect on the performance of the
algorithm [28].

A. SMOOTHED FUNCTIONAL ALGORITHM FOR
ESTIMATING STOCHASTIC GRADIENT
Optimizing a general problem can be difficult when many
local minima are present. SF algorithms solve this issue by
convoluting the objective function’s gradient with an oper-
ator known as the smoothening kernel (such as Gaussian).
Katkovnik and Kulchitsky first proposed this method in [20]
where they used a single estimate to approximate the gradient
of the objective function with the use of multivariate Gaus-
sian distribution. Later, Bhatnagar et al. in [32] presented
a two-time scale version (i.e. recursions involving two dif-
ferent step-size schedules) of the one-simulation smoothed
functional algorithm. We consider the SF method developed
by Bhatnagar in [18], where, a K dimensional multivariate
Gaussian density function Gβ (θ − η) (joint p.d.f. of K inde-
pendentN (0, β2)-distributed random variables) convolute the
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gradient of the objective function J (.), and is given by:

Dβ,1J (θ ) =
∫
Gβ (θ − η)∇ηJ (η)dη (14)

where β > 0 is a scalar parameter which controls the
smoothness and θ, η ∈ RK with θ , (θ1, . . . , θK )T and
η , (η1, . . . , ηK )T . If the objective function J (θ ) is not
well behaved (has fluctuating character), then, the convoluted
objective function Dβ,1J (θ ) obtained by the smoothening
becomes better behaved, and thus optimization algorithms
can provide improved results.

The Gaussian density function Gβ (θ − η) is defined as:

Gβ (θ − η) =
1

(2π)K/2βK
exp

(
−

1
2

K∑
i=1

(θi − ηi)2

β2

)
, (15)

Now, solving equation (14) with equation (15) using inte-
gration by parts we get (refer [18])

Dβ,1J (θ ) = E
[
1
β
η̄J (θ + βη̄|θ )

]
(16)

where η̄ = −
η
β
, and the expectation is w.r.t. another

K -dimensional multivariate Gaussian p.d.f. G(η̄). SF algo-
rithms uses function measurements from simultaneous
perturbed parameters which updates the gradient in all com-
ponent directions. Thus, these algorithms belong to the
same class of simultaneous perturbations algorithms like
SPSA [17]. The gradient estimator for J (θ (n) is inspired from
Bhatnagar et al. [18] and is given by:

∇J (θ (n)) = lim
β→0

lim
L→∞

1
β

1
L

L∑
n=1

η̄(n)J (θ (n) + βη̄(n)) (17)

In a similar fashion, the gradient update for two-simulation
gradient estimator can be obtained by:

∇J (θ (n)) = lim
β→0

lim
L→∞

1
2β

1
L

L∑
n=1

η̄(n)
[
J
(
θ (n) + βη̄(n)

)
−J
(
θ (n)− βη̄(n)

)]
(18)

where η̄(n) = (η̄1(n), . . . , η̄K (n))T , n ≥ 0 are assumed to
be vectors of independent N (0, 1) random variables. Equa-
tion (18) can be approximated for a large enough L and small
β > 0 to:

∇J (θ (n)) ≈
1
2β

1
L

L∑
n=1

η̄(n)[J
(
θ(n) + βη̄(n)

)
− J

(
θ (n)− βη̄(n)

)
] (19)

It has been shown in [21], [33] and [18] that two-simulation
gradient estimator perform better than one-simulation.We are
using a different two-simulation estimator that was used
in [22] which is:

∇J (θ (n))≈
1
β

1
L

L∑
n=1

η̄(n) [J (θ(n) +βη̄(n))−J (θ (n))] (20)

where the convolution is given by:

Dβ,2J (θ ) = E
[
η̄

2β
(J (θ + βη̄)− J (θ − βη̄))

]
(21)

Note that, 2 in subscript of operator D indicates that it
corresponds to two-simulation estimation.

B. NESTEROV’S ACCELERATION - MOMENTUM BASED
METHODS
One of the most popular first-order iterative optimization
algorithms is Stochastic Gradient Descent. The update rule
for the algorithm is given by:

θ(n+ 1) = θ (n) − a(n)∇J (θ (n)) (22)

where a(n) is the step size.
As can be inferred from equation (22), the update is

directly dependent on the gradient. Hence, when the slope
is too flat or noisy, it can take a long time to converge.
The momentum-based gradient descent method is used to
overcome these problems. This algorithmwas first introduced
by Polyak [11]. In the momentum-based technique, when the
gradients of consecutive iterations are in the same direction,
the algorithm takes giant steps. Hence, it gains leverage of the
gradients of previous iterations in the update rule to accelerate
gradient descent. Polyak’s momentum update is given by:

θ (n+ 1)=θ (n) −a(n)∇J (θ (n))+ζ (θ (n)− θ (n− 1)) (23)

where ζ is a hyperparameter, which scales down the previ-
ous step. However, this method struggles when the function
to optimize is highly convex [34] as the update overshoots
desired minimum again and again. Nesterov’s accelerated
gradient descent [13] algorithm solves this problem by mod-
ifying the update in following way:

θ (n+ 1) = θ (n) + ζ (θ (n)− θ (n− 1))

− a(n)∇J (θ (n) + ζ (θ (n)− θ (n− 1))) (24)

It is clear from the Nesterov’s update rule that momen-
tum is applied before gradient evaluation unlike Polyak’s
momentum method. This look ahead move in the gradi-
ent of Nesterov’s update avoids overshoots by reducing the
momentum when overshoot happens. We use the version of
Nesterov’s update as mentioned in [35]:

θ (n) = y(n− 1)− a(n− 1)∇J (y(n− 1)),

y(n) = θ (n)+
n− 1
n+ 2

(
θ (n)− θ (n− 1)

)
.

where θ (0) is chosen randomly and y(0) = θ(0). Consider
n = n+ 1 in the above equation:

θ (n+ 1) = y(n)− a(n)∇J (y(n)), (25)

y(n+ 1) = θ (n+ 1)+
n

n+ 3

(
θ (n+ 1)− θ (n)

)
. (26)
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IV. SF WITH NESTEROV’S ACCELERATION
In this section we give the SF algorithm with Nesterov’s
acceleration. Let η = (η1, . . . , ηK )> with each element, say
ηj be an independent random variable taking values in ±1
with probability 1/2. Let β > 0 be a small constant.

Algorithm 1 NAG-SF Algorithm
1: Initialize Zl(0) = 0, θl(0) = 0, l = 1, . . . ,K .

Fix (large) integer L and set n = 0.
2: while n < L do
3: Generate Xn and X ′n independently as different simu-

lation samples from parameters y(n) and y(n)+βη(n).
Then ∀ l = 1, . . . ,K , update

Zl(n+ 1) = Zl(n)+ b(n)
(
ηl(n)
β

(
h
(
X ′n
)

−h
(
Xn
))
− Zl(n)

)
, (27)

θl(n+ 1) = 0 (yl(n)− a(n)Z (n)) , (28)

yl(n+ 1) = θl(n+ 1)+
n

n+ 3

(
θl(n+ 1)

− θl(n)
)
. (29)

4: Set n := n+ 1
5: end while
6: Output θ (n) = (θ1(n), . . . , θd (n))T and terminate.

There are two recursions defined in the algorithm. One is in
equation (27) and other in equation (29)) which are driven by
step size parameter a(n) and b(n) respectively. The assump-
tion of preventing premature convergence of step sizes is stan-
dard in stochastic approximation algorithms, along with the
assumption of asymptotic decrease as given in equation (8).

Let θ = (θ1, . . . , θK )T denote the parameter vector. 0 =
(01, . . . , 0K )T is mapping that projects θ onto the compact
and convex set C i.e. 0 : RK

→ C ⊂ RK . This type of
projection is generally considered to be a non-trivial task,
however, in certain problems, such as queue routing prob-
lem as in Section VI, the projection set C is taken to be

a hyper rectangle of the form C =
K∏
i=1

[Li,min,Li,max]. Here,

the interval [Li,min,Li,max] is the projection space to which θi
(the ith component of θ ) is projected. In other words 0i(θi)
= min(Li,max, max(θi,Li,min)).

V. CONVERGENCE ANALYSIS
Let a sequence of σ -fields be defined as F(k) =

σ (θi(n),Xn,X ′n, n ≤ k, ηi(n), n < k, i = 1, . . . ,K ), k ≥ 1.
For a fixed β > 0 the estimated gradient (cf. (27)) in NAG-SF
algorithm is assumed to be defined as Z (n) = (Zl(n),∀l =
1, . . . ,K )T . Next, Ql(n) is defined as:

Ql(n) =
n∑

m=1

b(m)
(
ηl(m)
β

(
h(X ′m)− h(Xm)

)

−E(
ηl(m)
β

(h(X ′m)− h(Xm))|F(m− 1))
)
, (30)

where l = 1, . . . ,K , n ≥ 1.
Lemma 2: Sequences {Ql(n),F(n)}, l = 1, . . . ,K are

almost surely convergent martingales.
Consider the following system of ordinary differential

equations (ODEs):

θ̇ (t) = 0, (31)

Ż (t) = Dβ,2J (θ (t))− Z (t), (32)

where Dβ,2 operator is defined in equation (19).
For τ > 0, µ > 0, we call y(·) a (τ, µ)-perturbation

of the o.d.e. ẋ(t) = F(x(t)) (with G as an asymptotically
stable attracting set). If there exists an increasing sequence
{τi, i ≥ 0} of real numbers with τ0 = 0 and ∀ i, τi+1−τi ≥ τ ,
such that, on each interval [τi, τi+1], there exists a solution
x i(·) of the above o.d.e. such that

sup
t∈[τi,τi+1]

|x i(t)− y(t)| < µ.

Let Gε denote the ε-neighbourhood of a set G, i.e., Gε =
{x|∃ x ′ ∈ G such that ||x − x ′|| < ε}. We now recall a result
from Hirsch [36] stated as the next Lemma. (Theorem 1,
pp. 339).
Lemma 3: Given ε > 0, τ > 0, there exists a µ̄ > 0 such

that, for all µ ∈ [0, µ̄], any (τ, µ) -perturbation of ẋ(t) =
F(x(t)) converges to Gε .
Lemma 4: The sequence of updates {Z (p)} is uniformly

bounded with probability one.
The proof for Lemma 2-4, we refer the readers to the

Appendix of [22]. These lemmas are required to show that
the noise term is bounded.

Assume that r(n) =
∑n−1

i=0 b(i), n ≥ 1. Consider the
function Ẑ (t) defined according to Ẑ (r(n)) = Z (n) with maps
t → Ẑ (t) corresponding to continuous linear interpola-
tions on the intervals [r(n), r(n + 1)]. Given T > 0,
define {Tn} as follows: T0 = 0 and for n ≥ 1, Tn =
min r(m)|r(m) ≥ Tn−1 + T . Let In = [Tn,Tn+1). Note that,
there exists some integer mn > 0 such that Tn = r(mn).
Define also functions Zn(t), t ∈ In, n ≥ 0, that are obtained
as trajectories of the o.d.e.

Żn(t) = Dβ,2J (θ )− Zn(t), (33)

with Zn(Tn) = Ẑ (r(mn)) = Z (mn). Now, note that one can
rewrite equation (28) as follows:

θ (n+ 1) = 0(θ (n)+ b(n)ε1(n)) (34)

where ε1(n) = −
a(n)
b(n)M (n)Z (n) → 0 as n → ∞ almost

surely. Let θ (t) be defined as: θ (r(n)) = θ (n), n ≥ 0,
and θ (t) , for t ∈ [r(n), r(n + 1)] is a continuous linear
interpolation between θ (n) and θ (n + 1). Now, for γ > 0,
θ (r(n) + ·) can be seen to be a bounded (T , γ )-perturbation
of the o.d.e. θ̇ (t) = 0 for a sufficiently large n. In other words,
θ can be assumed to be fixed (i.e., θ(t) = θ ∀t) when viewed
from the time scale of {b(n)} or that the parameter update
recursion is quasi-static.
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Using a standard argument based on Gronwall’s inequality,
it can now be shown that:
Lemma 5:

lim
n→∞

sup
t∈In
||Zn(t)− Ẑ (t)|| = 0 w.p. 1.

Proof: The proof requires the results from lemma 2
and 4. For details we refer the readers to lemma 1,
chapter 2 of [23]. �

Next, we have the following result.
Lemma 6: Given T , γ > 0,

(
(θ (r(n)+·), Z (r(n)+·)

)
, is a

bounded (T , γ )-perturbation of equation (31) and equation
(32) for a sufficiently large n.

Proof: Since the parameter recursion can be written as
in equation (34), the claim follows from Lemma 5. �
Lemma 7:

||Z (n)− Dβ,2J (θ (n))|| → 0 w.p. 1 as n→∞.
Proof: The claim follows by applying Lemma 3 on

o.d.e. (32) for every ε > 0. �
The following result shows that the gradient estimates are

unbiased in the limit as β → 0.
Lemma 8: limβ→0 limn→∞ ||Dβ,2J (θ (n))−∇J (θ (n))||= 0

w.p. 1.
Proof: Refer Proposition A.14 of [18]. �

Proposition 1: limβ→0 limn→∞ ||Z (n) − ∇J (θ (n))|| = 0
w.p. 1.

Proof: The claim follows from Lemmas 7 and 8 using
the triangle inequality. �
Next, consider the slower time scale recursion. Define

t(n) =
∑n−1

i=0 a(i), n ≥ 1. Consider the function M̂ (t)
defined according to M̂ (t(n)) = M (n) with maps t → M̂ (t)
corresponding to continuous linear interpolations on intervals
[t(n), t(n+ 1)). Now consider the o.d.e.

θ̇(t) = 0̃(−M̂ (t)∇J (θ (t))), (35)

where for any y ∈ RN and a bounded, continuous function
v(·) : RN

→ RN ,

0̃(v(y)) = lim
η→0

(0(y+ ηv(y))− 0(y))
η

. (36)

Also consider that for y ∈ C0, whereC0 denote the interior
of C, 0̃(v(y)) = v(y). Also, for y ∈ ∂C , the boundary of C,
such that y+ηv(y) /∈ C for any η > 0, 0̃(v(y)) is the projection
of v(y) to C . Note also that the limit in equation (36) is well
defined because C is assumed to be a compact and convex
set. In case the limit is not well defined, one may replace it
with the set of all limit points there. The corresponding o.d.e.
in (35) will then become a differential inclusion.
Assumption 11: TheMarkov chain {Xn} under any station-

ary randomized policy π is irreducible.
Assumption 12: The basis functions {f (k), k = 1, . . . , d1}

are linearly independent. Further, d1 ≤ |S| and 8 has full
rank.
Theorem 4: Let Assumptions 11-12 hold. Then given ε >

0, ∃β0 > 0 such that for all β ∈ (0, β0), θ (n), n > 0 obtained

according to the equations (28), (29) satisfy θ (n) → K ε as
n→∞ with probability one.

Proof: Along the slower time scale of b(n), we can
rewrite the θ -recursion as

θl(n+ 1) = 0
(
yl(n)− b(n)

(
a(n)
b(n)
OJ (θ )+ ε1(n)

))
where ε1(n)→ 0 as n→∞.
Next we have for θ ∈ C0 the o.d.e. for Nesterov’s

scheme i.e., equations (28) and (29) (see equations (1) and
(3) from [35]) as

θ̈ +
3
t
θ̇ + Dβ,2J (θ ) = 0. (37)

Consider

θ̈ +
3
t
θ̇ + OJ (θ ) = 0. (38)

As, β → 0, trajectories of the o.d.e. in equation (38)
converge to those of equation (37) uniformly on compacts
when starting in the same initial conditions for both (see proof
of Theorem 2 in [37]).

Now, equation (38) can be converted to a first order o.d.e.
by taking θ̇ = ς . We have ς̇ + 3

t ς + OJ (θ ) = 0. with

X =
[
θ

ς

]
, we have

Ẋ =
[
θ̇

ς̇

]
=

[
ς

−
3
t ς − OJ (θ )

]
.

We start the system at t = t0. Define a Lyapunov function
Z (·) according to

Z t (X ) =
(
1
2
ς2 + J (θ )

)(
1+

1
t

)
It can be seen that Z t (X ) > 0. Then corresponding to the

o.d.e. (38), we have

dZ t (X )
dt

=
(
ς · ς̇+OJ (θ )θ̇

) (
1+

1
t

)
+

(
1
2
ς2 + J (θ )

)
−1
t2

=

(
ς ·

(
−
3
t
ς − OJ (θ )

)
+ ςOJ (θ )

)(
1+

1
t

)
−

(
1
2
ς2 + J (θ )

)
1
t2

=
−3
t
ς2
(
1+

1
t

)
−

(
1
2
ς2 + J (θ )

)
1
t2
< 0

(39)

As J (θ ) was assumed to be in R+. �
Consider a non-autonomous system

ẋ = Q(t, x) (40)

where Q : [0,∞) × D → Rd is piece-wise continuous in
t and locally Lipschitz in x on [0,∞) × D and D ⊂ Rd .
For this system, the equilibrium point x = 0 is uniformly
asymptotically stable if:
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• for each ε > 0, ∃ a constant δ dependent on only ε and
δ(ε) > 0 such that

||x(t0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ t0 ≥ 0 (41)

• there exist a scalar c > 0, independent of t0, such that
∀||x(t0)|| < c, x(t)→ 0 as t →∞, uniformly in t0; that
is, for each α > 0 there is T = Tα > 0 such that

||x(t)|| < α, ∀t ≥ t0 + Tα, ∀||x(t0)|| < c (42)

Theorem 5 (Theorem 4.9 of [38]): Let x = 0 be an equi-
librium point for ẋ = f (t, x) and D ⊂ Rn be a domain
containing x = 0. Let W1(x), W2(x) and W3(x) be continuous
positive definite functions on D. Also let V : [0,∞)→ R be
a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (43)
∂V
∂t
+
∂V
∂x

f (t, x) ≤ −W3(x) (44)

for all t ≥ 0 and ∀x > D. Then x = 0 is uniformly
asymptotically stable.

Proof:
In our case the Lyapunov function is V (t, x) = Z t (X ). The

first condition in equation (43) is satisfied with W2(X ) =
( 12ς

2
+ vθ

>

V )(1 + 1/t0) and W1(X ) = ( 12ς
2
+ vθ

>

V ).
The second condition in equation (44) can be seen from
equation (39). Thus the system is uniformly asymptotically
stable. The claim follows from Theorem 1, pp. 339 of [36].
The proof of this theorem uses the boundedness of the system
(see the 0(·) operator from equation (28)) to show that the
perturbed trajectory is also bounded. Though this theorem
in [36] is for autonomous o.d.e., the same proof goes through
for non-autonomous o.d.e. also.

The asymptotically stable equilibria of o.d.e. Ẋ = 0 is the
set where ς = 0 and 3

t ς + Dβ,2J (θ ) = 0 which corresponds
to the set K within the set C . These can be seen to correspond
to the local minima of the function Dβ,2J (θ ). �

This establishes the convergence of theNAG-SF algorithm.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
To test the performance of NAG-SF, we compare it
with three different algorithms, namely: Quasi-Newton SF
(QN-SF) [22], Gradient SF (G-SF) and Jacobi Variant of
Newton SF (JN-SF) [18] on three different problems.

A. QUADRATIC LOSS MINIMIZATION
First is the minimization of a very simple quadratic loss
function L(θ ) considered by Zhu and Spall [39] which is
given by

L(θ ) =
1
2
θTHθ (45)

We have used the stochastic version of this function: y(θ ) =
L(θ ) + Y where Y is Gaussian Noise N (0, σ 2). We set c1 =
0.1291 and c2 = 1.1311 to define HessianH which is a 4×4
matrix as:

Hij = c1 exp[−(i− j)2/c22] (46)

FIGURE 1. Multi-stage queuing network.

FIGURE 2. Simulation results for quadratic loss function.

At θ∗ = 0, L(θ∗) = 0, which is the minimum for this
function.

B. ROUTING PROBLEM IN QUEUING NETWORKS
To demonstrate the efficiency of the proposed setup in a
real-world example, we show the problem of finding optimal
routing probabilities in a multi-stage queuing network. This
network is considered to replicate a simplified model of the
internet [22], [24], as shown in figure 1.

The network consists of Z servers, one source s, and one
sink d . Here, packets arriving at the source s are immediately
routed to reach the sink d through intermediate servers.When
a server is serving a packet, then that arrived packet is pushed
in a queue if another packet arrives. Packet waits till the server
becomes free to execute it. There is an exponential queuing
delay (service time) at each node (server), and the arrival
time is Poisson distributed. Therefore, the queue length forms
a Markov Process. It is assumed that there is no delay in
transmission; thus, a packet immediately arrives at the next
node after being routed by the previous node. The routing
probability vector for nth update is denoted by parameter
θ (n). The objective is to minimize the long-run average end-
to-end delay of each packet J (θ ). Here, the cost function
h denotes the total end-to-end delay. These Z servers are
arranged in stages, where each stage has N servers, and there
are M stages between source and sink. Each server in stage i
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TABLE 1. Expected delay over 500 iterations for various combinations of λ and µ with single stage.

TABLE 2. Expected delay over 500 iterations for various combinations of λ and µ with three stages.

TABLE 3. Expected delay over 500 iterations for various combinations of λ and µ with five stages.

TABLE 4. Expected delay over 500 iterations for various combinations of λ and µ with seven stages.

is connected to all the servers in the previous stage i− 1 and
next stage i + 1 (except for servers of first and last stage as
they are connected to source s and sink d respectively). The
total number of servers is fixed in each stage.

There is no delay from the source to servers of the first
stage. A packet is routed from one stage to another follow-
ing routing probabilities. The algorithm calculates optimal
routing probabilities θ (n) for minimizing queuing delay. Our
goal is to optimize J (θ ) which is the long-run average cost,
by obtaining θ∗ ∈ C s.t. θ∗ = argmin J (θ )|θ ∈ C .

C. CLIMATE PREDICTION
We use the SF algorithms as the optimization algorithm
along with a sigmoid function to create a modified version
of logistic regression, and then apply it to a climate predic-
tion problem. The flowchart for the classification algorithm
is in figure 3. We use l2-regularized logistic loss as loss

function h(X ). The predicted value ŷ is calculated by using
a sigmoid function and is given by:

ŷ =
1

1+ exp−(θ0+θ1 s1+...+θK sk )

for which the loss function h(θ ) is defined as:

h(θ ) =
∑
−y log(ŷ)− (1− y) log(1− ŷ)+ re

∑
(θ )

where y denotes the true value of the label which is either
0 or 1 and the regularization rate re is set to 5. The dataset
is taken from NCAR [27] for one year (2008 − 2009) or
365 days collected from 2500 stations of which 1250 stations
corresponds to tropical climate and rest to polar climate. The
total data samples are 912, 500. The train test split is done
in a ratio of 80:20. The training data is further split in a
ratio of 80:20 for validation. We use climate classification by
Koppen-Geiger [40] to classify the dataset into two classes:
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FIGURE 3. Flowchart of SF based classification algorithm.

TABLE 5. Performance of SF algorithms on weather data.

tropical climate and polar climate. Thus it is a two-class
classification problem on real data with the following features
considered against each record: average humidity, average
temperature and precipitation.

D. RESULTS
For all the experiments NAG-SF outperformed SF without
acceleration. In the quadratic loss function minimization,
parameters used are L = 100000, β = 0.9, a(n) =
(n+ 1)−1, b(n) = (n+ 1)−0.10. In figure 2, it can be seen
that theNAG-SF approaches desired solution faster than other
SF algorithms. In routing problem, the parameters for the
algorithm are L = 500, β = 0.9, a(n) = (n+ 1)−1, b(n) =
(n + 1)−0.95. We have calculated the performance of algo-
rithms by varying the number of stages to one, three, five and
seven with 4 nodes at each stage and the results are shown
in Table 1-4. We also added another step of normalization of
θ after the update to bound the routing probability matrix.
Similar performance was observed in classification problem
onweather dataset. The parameters for NAG-SF are β = 0.95
and a(n) = (n+ 1)−1, b(n) = (n+ 1)−0.85, but the step-sizes
are changed per 100 steps and the number of epochs are 300.
The experimental results are shown in Table 5 which shows
that NAG-SF performed better than other baselines.

VII. CONCLUSION
In this paper, we proposed a smoothed functional algorithm
with Nesterov’s acceleration for unconstrained minimization
problems. We then presented the proof for convergence of
the algorithm and experimental results for (a) quadratic loss
function minimization, (b) optimal routing in a multi-stage
queuing network problem and (c) climate prediction.

Numerical results verified that our proposed framework per-
formed better than other smoothed functional algorithms.

One possible future work for the analysis of NAG-SF
could be to provide a result for the convergence rate of this
algorithm, which we may take as our next endeavour.
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