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ABSTRACT Feature extraction is an essential aspect of electroretinogram (ERG) signal analysis. The
extracted features are beneficial to analyze the signal further and compress the signal for storage or
transmission purposes. Various methods have been widely employed to extract the characteristics of ERG
signals. Methods based on the time-domain, frequency-domain, time-frequency domain and nonlinear and
chaotic feature extraction techniques have been used to extract features that characterize ERG signals. This
paper reviews several feature extraction methods applied to ERG and compares their performance under
different conditions to provide guidance to select the most appropriate feature extraction method based on
the performance.

INDEX TERMS Electroretinogram, feature extraction, frequency-domain analysis, time-domain analysis,
time-frequency domain analysis, nonlinear analysis, retina.

I. INTRODUCTION
Electroretinogram (ERG) is the electrical response of differ-
ent retinal cells to light and darkness. These cells include
rod and cone photoreceptors, internal retinal cells (bipolar
cells and amacrine), ganglion cells, and Müller cells [1]–[4].
The ERG is a short-duration signal that contains information
about the complex nature of the retinal cell function.

Depending on retinal examination, there are different types
of ERG recordings with various unstructured light stimuli
(flashes). Full-field electroretinography (ffERG) is the con-
ventional form of ERG that provides the summed electrical
response of the entire retina evoked by a flashlight from
Ganzfeld stimulus bow scattered in the eye through a dilated
pupil [5]. Multifocal ERG (mfERG) is the best electro-
functional method used to study the retina’s focal function
in a quick and reproducible way [6], [7]. This is mainly used
to diagnose and monitor macular disorders [8]. A specialized
version of the ERG is the pattern ERG (PERG), which is
used to study the function of the innermost retinal layers
(early losses of retinal ganglion cells (RGCs) and fibers).
PERG has shown a correlation with optic nerve integrity
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and can provide information from RGCs, which cannot be
supplied by ffERG [9]. Besides these different types of ERG
recordings, visual evoked potentials (VEP) also allow the
assessment of the visual pathways through the optic nerve and
brain [10].

Biomedical signals such as ERG signals are challenging
to interpret because they are the outputs of the physiological
processes that reflect complex biological system’s activity.
Such signals are often non-stationary and hard to model
because of randomness inherent in the signals varying from
subject to subject. Feature extraction methods often extract
the intrinsic characteristics of these signals. Extracted fea-
tures often be used to develop methods that can provide an
accurate diagnosis of the underlying pathology.

This review presents different ERG processing techniques
and describes various signal processing methods to extract
features from the human ERG signal. In this work, the meth-
ods exclusively applicable to the human ERG signals are
compared and presented as summary tables. Each method’s
advantages and disadvantages will help physicians decide on
feature extraction methods to better understand the retinal
characteristics under normal and diseased conditions, and
therefore help recommend additional clinical investigations
to diagnose the underlying pathologies.
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There is no review article on feature extraction methods
for ERG signal in the literature so far to the best of our
knowledge. Review articles are readily available for ERG
waveforms [11], [12], methods to diagnose retinal diseases
using ERG in animals such as dogs [13], [14]. Also, detailed
articles for specific retinal diseases using ERG [15], [16],
and image processing-based techniques for diagnosing retinal
diseases [17], [18] are available in the literature. However,
no comprehensive review article, except a limited review for
feature extraction for ERG signals using wavelets [19], exists
in the area of feature extraction for the human ERG signals.
This review article fills that gap in the literature.

II. METHODS
A. ERG SIGNAL AND RECORDING PROTOCOL
In this subsection, a brief overview of the ERG components
and ERG recording protocol is presented. Retina approxi-
mately has 100 million rods and about 5-6 million cones.
Thus, the rods are predominant in ERG responses [20]. The
stimuli are used to record the ERG may stimulate different
cells in different layers.

ERG is a short signal with a typical 200 milliseconds
duration, in which the first 80 milliseconds contain most
of the ERG components. One of the most important chal-
lenges in assessing the ERG is the differentiation of various
cell responses. Based on the different responses obtained
from the retina layers, ERG can be composed of multiple
components. The two components that are most often eval-
uated in studies are the a- and b-waves. The a-wave is an
initial negative deflection. The b-wave is a positive wave
that directly follows the a-wave and usually has a significant
positive amplitude [21], [22]. In addition to these two main
components of ERG, there are three more components: the
i-wave, which may originate from the OFF-pathway distal
to retinal ganglion cells (RGCs) [23]; the photopic negative
response (PhNR) that appears as a negative-going wave after
the i-wave, which may be useful as a tool to monitor lon-
gitudinal change in RGCs function [24]; and the oscillatory
potentials (OPs) which seem to be generated by the amacrine
cells in the inner retina. The OPs usually appear after the
b-wave and have more oscillations and less amplitude than
other ERG components [25].

Studies showed that the photopic a- and b-waves could be
found in the range of 20-40 Hz, which are defined as low-
frequency components. The OPs are mostly observed within
the 80-160 Hz range, known as high-frequency components
of ERG [26].

International Society for Clinical Electrophysiology of
Vision (ISCEV) introduced a protocol to standardize world-
wide research on ERG analysis [27]. This protocol has been
improved several times over the years, by adding more
details to its different parts, especially in the stimuli and
flashes related parts [28]–[30]. The standard clinical ERGs
recording includes six responses based on the eye’s dark
and light-adaptation state and the different flash strengths:

1) dark-adapted 0.01 cd.s.m−2 ERG (b-wave: rod-initiated
ON pathways); 2) dark-adapted 3.0 cd.s.m−2 ERG (a-wave:
photoreceptor; b-wave: ON & OFF bipolar cells); 3) dark-
adapted 3.0 cd.s.m−2 oscillatory potentials (ON&OFF path-
ways reflecting middle retinal layers & vascular function);
4) dark-adapted 10.0 cd.s.m−2 ERG (a-wave: photoreceptors;
b-wave: predominantly rod bipolar cells (ON pathways));
5) light-adapted 3.0 cd.s.m−2 ERG (a-wave: cones with
post-receptoral ON & OFF pathways; b-wave: ON & OFF
bipolar cells); and 6) light-adapted 30 Hz flicker ERG (cone
systems with post-receptoral ON & OFF pathways) [27].

B. SIGNAL PROCESSING METHODS
The ERG analysis can generally be divided into four
categories: time-domain, frequency-domain, time-frequency
domain, and nonlinear and chaoticmethods. Figure 1 presents
the block diagram of various analyses for ERG signals based
on the four categories and consolidates the number of papers
available in the literature under each category.

FIGURE 1. The block diagram of ERG studies is based on different
analyses and the number of papers available under each category.

C. TIME-DOMAIN ANALYSIS
Time-domain features are extracted from a raw ERG signal in
the time-domain. ERG analysis in the time-domain involves
measuring two main parameters: the amplitude of each wave
in the ERG signal and their implicit time, which is the time
interval between the onset of the stimulus and each wave’s
peak. Amplitudes and implicit times are used to differentiate
the response of a healthy subject from an unhealthy one or
evaluate the process of retinal changes before and after a
specific medication, surgical, or other treatment. Amplitudes
and implicit times are the main parameters to assess the ERG
changes, as almost all articles on ERG signal processing in the
literature use these two parameters. Often, these parameters
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are considered as benchmarks for comparing different sig-
nal processing methods. Since the number of studies on
ERG analysis based on time-domain techniques is very
high and the features extracted from time-domain analyses
are numerous, we will avoid mentioning them. Although
time-domain analysis is much prevalent in the literature,
the time-domain features are sensitive to noise. Therefore,
using time-domain features along with other domain features
may alleviate issues posed by random noise. A common ERG
is presented in Figure 2 to visualize the standard time-domain
parameters measured from the ERG.

FIGURE 2. A normal ERG. Implicit time reflects the time between the
initiation of the light stimulation and the peak of a- and b-waves.
However, these parameters could be measured for other waves such as
i-wave and PhNR. The a-wave amplitude is defined from baseline to the
a-wave, while the b-wave amplitude is defined from the a-wave trough to
the b-wave peak. These parameters are shown with appropriate
variables, including t1: a-wave implicit time; t2: b-wave implicit time,
t3: i-wave implicit time; t4: PhNR implicit time; A1: a-wave amplitude,
and A2: b-wave amplitude.

D. FREQUENCY-DOMAIN ANALYSIS
A few studies have been performed to analyze the ERG in the
frequency domain. Frequency analysis can recognize specific
frequency changes in the ERG components [31]. Some of the
frequency-domain-based techniques include the fast Fourier
transform (FFT), power spectral density (PSD), and spectral
estimation or linear prediction (LP).

1) FOURIER TRANSFORM
The Fourier analysis (FA) is a purely frequency-domain
approach, which decomposes the signal or the given time
series into its overall frequency components that build up that
signal. The Fourier transform provides the weight that each
frequency contributes to the original time-domain signal [32].
For the frequency-domain analysis, the signal is first con-
verted from the time domain into the frequency-domain as
follows:

F (ω) =
∫
+∞

−∞

f (t) e−jωtdt; f (t) =
1
2π

∫
+∞

−∞

F(ω)ejωtdω

(1)

where, f (t) is the time-domain signal, and F(ω) is the
Fourier transform (spectrum) of f (t). As seen in equation (1),

the original signal can be recovered under certain conditions
by the inverse Fourier transform.Moreover, discrete-time ver-
sions of both direct and inverse forms of the Fourier transform
can be used. The Fourier transform in the discrete domain
is achieved through the well-known fast Fourier transform
(FFT) algorithm.

2) POWER SPECTRAL DENSITY
Characteristics of the ERG signal are obtained using the
power spectral density (PSD) of the ERG samples [33]. The
PSD is calculated by applying the Fourier transform of the
estimated autocorrelation sequence [34]. The given data, x (n)
is divided into L smaller sequences, each of length M sam-
ples.

xi = [x (n+iD) , x (n+1+iD) , . . . , x (n+M − 1+ iD)] ,

n = 0, 1, 2, . . . ,M − 1; i = 0, 1, 2, . . . .,L − 1 (2)

where, iD is the point of the start of the ith sequence. The
modified periodograms are given in equation (3).

P≈(i)xx (f ) =
1
MU

∣∣∣∣∑M−1

n=0
xi (n)w(n)e−j2π fn

∣∣∣∣2 . (3)

Here, in the window function, U indicates the normaliza-
tion factor of the power and is selected such that:

U =
1
M

∑M−1

n=0
w2 (n) , (4)

where w(n) is the window function. The average modified
periodograms give Welch’s power spectrum [33]:

PWxx (f ) =
1
L

∑L−1

i=0
P≈(i)xx (f ). (5)

The Welch periodogram provides the strength of the vari-
ous frequency components in the ERG signal.

The non-parametric power spectrum estimation methods
are relatively easy to compute using the FFT algorithm. One
inherent assumption while using these methods is that the
data record is long enough to obtain the needed frequency
resolution. Also, these methods suffer from spectral leakage
effects due to finite-length data records and may mask the
weak signal components present in the signal. Furthermore,
signals are assumed to be periodic, and the autocorrelation
estimates are assumed to be zero after certain lags. ERG sig-
nals are short responses, and therefore many of the assump-
tions used in non-parametric estimation methods may not
hold.

3) LINEAR PREDICTION
LP is a time series analysis method with different signal
processing applications, such as modeling and feature extrac-
tion [35]. LP is a parametric spectral estimation technique,
unlike PSD or the Fourier technique. LP is preferred when
samples are not large enough to provide all the information
needed for analyzing the ERG signal. If the series is ade-
quately long, the FFT method can estimate the number of
poles. LP optimally determines the dominant frequencies in
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TABLE 1. Compilation of all frequency-domain studies applied on any ERG responses.

the signals with short time-series, thus enabling simultaneous
detection of frequency changes and data compression [36].

4) COMPARISON OF FREQUENCY-DOMAIN-BASED STUDIES
Table 1 represents a review of the human ERG evaluation
based on frequency-domain analysis.

Bresli and Parker [37] recorded corneal and non-corneal
ERG from healthy subjects. The signals were compared based
on time- and frequency-domain analyses. The power spec-
tra of both signals were evaluated using the FFT and LP
methods. Except for amplitude differences, the two signals
had identical a- and b-waves latencies and dominant power
spectrum peaks. The authors reported that non-corneal ERG
does not differ significantly from corneal ERG in time and
frequency-domains.

Gur and Gath [38] analyzed the normal corneal ERG in
the frequency domain using the FFT and LP methods. The
authors identified four dominant frequencies (18, 79, 126,
and 159 Hz) in dark-adapted stimuli of their analysis. They
reported that low-frequency shifted to the higher frequency,
and also the mid- and the two high-frequency components
shifted to lower frequencies in light-adapt stimuli.

Gur and Zeevi [39] studied the OPs in diabetic retinopa-
thy. To improve the accuracy of measuring the time-domain
parameters, the ERG was first filtered with a finite impulse
response (FIR) filter, followed by the FFT to separate the
OPs from the a-wave. No more information about the filter
was available. The dominant frequency determined the OPs
powers in the FFT analysis. The results showed that even
under pathological circumstances, a quantitative expression
of the OPs is possible in diabetic retinopathy.

Van der Torren et al. [40] evaluated the dark- and
light-adapted ERG for normal subjects utilizing the

Fourier spectrum. They compared the coefficient of varia-
tion (CV), dominant power, and the OPs and time-domain
parameters’ dominant frequency. The CV is a criterion that
is used as a ‘‘measure’’ for the dispersion of the frequency
distribution. The higher the CV, the greater is the level of
dispersion around the mean. The CV of these parameters
was smaller in the light-adapted ERG compared to the dark-
adapted ERG.

Li and Yuan et al. [41] studied the flicker ERGs of
patients with retinal degeneration. They extracted in real-time
six harmonic components using the discrete Fourier trans-
form (DFT). Their primary purpose was to eliminate noise
and large-amplitude artifacts. They used an analog-to-digital
(A-D) digitizing board with eight switchable A-D inputs,
which provides both eyes’ recording simultaneously. A digi-
tal input-output line is pulsed at a 32-Hz rate by an on-board
programmable clock to synchronize the flash stimulus pre-
cisely. Gaussian noise and artifact transients can be identified
and removed through post-processing of the acquired data.
If photoelectric artifacts were to occur from bright flashes
striking themetal electrode, thesewould occur synchronously
with the flash. It appears at the beginning of each response.
If desired, the initial trace points could be nulled to zero to
discard these initial A-D points for the measured duration
of the artifact while saving the remainder of each response.
The standard deviation of sequential intervals on a timeline
of the sine component is generally used to identify quiet
periods. This minimizes small-amplitude noise and improves
the measurement consistency.

Karimi et al. [31] used frequency-domain analysis to study
retinitis pigmentosa (RP) within affected subjects, especially
to understand oscillatory and flicker responses. Their study
used Welch’s power spectral density estimation of the ERG
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responses of RP and normal subjects. The peak frequency of
the oscillatory and flicker response in RP subjects was higher
compared to the normal subjects.

Sieving et al. [42] determined the frequency range of a-
b-wave in the dark- and light-adapted normal ffERG. The
time-domain parameters of a- and b-wave were estimated to
determine the frequency range of a-b wave complex. Major
frequency components were identified from power spectra
using FFT. The frequency range of the dark-adapted a-b wave
complex was significantly less than the light-adapted a-b
wave complex. As the frequency of a-b waves was lower than
that of Ops, a simple lowpass or bandpass digital filtering of
the human ERG can separate a- and b-waves from the Ops.

Chen et al. [43] focused on analyzing focal cone ERG
in early age-related macular degeneration. The ERG was
recorded from patients with early age-related macular degen-
eration and healthy subjects as the control group. Conven-
tional time-domain parameters and the frequency-domain
power spectrum of the ERG were obtained for both groups.
Time-domain parameters and power spectrum at 25 and
30Hz frequency indicated significant differences between the
two groups. The results confirmed the diagnostic potentials of
both conventional times- and frequency-domain parameters.
The low amplitude signals, such as focal ERG, could better
be evaluated by frequency-domain parameters.

Wood et al. [44] evaluated the nature of changes in light-
adapted flicker ERG’s fundamental and harmonic compo-
nents. The ffERG of visually normal subjects were studied
using frequency analysis to obtain the amplitude and the three
harmonic response components. Light adaptation affected
the three harmonic components of flicker ERG differently,
indicating ERG waveform changes during light adaptation.

McAnany et al. [45] studied the ON (b-wave)- and OFF
(d-wave)- responses of the ffERG recorded from healthy
subjects. They estimated time-domain parameters and used
FFT to determine the dominant power and frequency. Four
separated OPs were consistently phase-locked to the ON
response (ON-OPs). The power of the ON-OPs peaked at
shorter duration stimuli (<20ms). The dominant frequency
(140 Hz) remained approximately constant for all durations.
This study implied that OPs represent a mixed contribution
from both the ON andOFF retinal responses in short-duration
stimuli.

Gotzmann et al. [46] studied flicker ERG responses in nor-
mal subjects based on time- and frequency-domain analysis.
They used the ISCEV standard protocol for ERG responses.
Results showed that the determined frequencies related to
flicker responses correlate with retinal functions and can
potentially serve as a physiological indicator.

Pahl et al. [47] analyzed the signs of retinal pathologies
using frequency response of photopic ERG and transient
PERG in healthy subjects and patients with stages I and II
primary open-angle glaucoma. They evaluated both sig-
nals based on the Fourier series and the spectra of differ-
ent individuals. They used the coefficients of polynomials
to smooth the resulted frequency response as a proposed

feature for diagnosis. Each frequency response was divided
into two frequency ranges, and an algebraic smoothing
polynomial was applied to each of the responses in the
frequency ranges. They used this modeling to identify
the characteristics of retinal responses to the flicker- and
pattern-stimulation.

Some other works focused on the ERG of animals with dif-
ferent stimuli based on the frequency-domain analysis and are
as follows: Zueva et al. [48], Poppele and Maffei [49], Bach
and Meigen [50], Bui et al. [51], Hancock and Kraft [52],
Racine et al. [53], Rangaswamy et al. [54], Akula et al. [55],
Dai et al. [56], Rocha et al. [57], Quintana et al. [58], and
Dai et al. [59].

E. TIME-FREQUENCY ANALYSIS
The non-stationary and multi-frequency characteristics of
biomedical signals confirm the need for a time-frequency
domain method for analysis. The time-frequency analy-
sis provides simultaneous interpretations in both time and
frequency domains enabling explanation, presentation, and
interpretation of ERG signals [60].

A review of the studies performed on a human ERG eval-
uation based on time-frequency-domain analysis is presented
in Table 2.

1) SHORT-TIME FOURIER TRANSFORM (STFT)
STFT or the windowed Fourier transform is an essential
technique for the time-frequency analysis, which obtains the
Fourier transform of short segments of signals obtained by
applying a window of a fixed length of time. Each short
time segment can be assessed individually, and the frequency
content of each segment can be displayed under the corre-
sponding time segment.

The frequency resolution of the STFT depends on the
length of the segment. Shorter segments in time will have
a lower frequency resolution, and conversely for the longer
duration segments [61]. The definition of the STFT is defined
in equation (6).

STFT (w)x (τ, f ) =
∫
+∞

−∞

[
x (t) .w(t − τ )e−j2π ftdt

]
(6)

where, x (t) is the signal, and w(t) is the window function.
The length and choice of the window dictate the content of the
STFT. Windows minimize the effects of Gibb’s phenomenon
that leads to the creation of extraneous components in the
spectrum of the signal studied. Gibb’s phenomenon is due
to the sudden truncation of the signal’s frequency transfor-
mation. Different windows filter the extraneous components
differently, which is generally referred to as side-lobe sup-
pression. The length of the window dictates the frequency and
time resolution of the STFT.

The STFT is usually displayed in two dimensions as the
time axis x and the frequency axis y. As shown in Figure 3,
the selected long window STFT (left figure) provides poor
time resolution with a high-frequency resolution; however,
a better time resolution (right figure) can be obtained with
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TABLE 2. Compilation of all time-frequency-domain studies applied on any ERG responses.

FIGURE 3. Time and frequency resolution of STFT.

reduced frequency resolution by choosing shorter windows.
The signal amplitude is also displayed as a color indica-
tor that distinguishes between high and low amplitude val-
ues. The main problem with STFT is the trade-off between
time and frequency resolution and cannot be used for sig-
nals with non-constant sampling rates or when samples are

missing [62], [63]. Figure 4 shows the STFT obtained for a
healthy eye sample (top) and an eye with central retinal vein
occlusion (bottom). The x-axis displays the time (ms), and
the y-axis represents the frequency (Hz).

A comparison between the top and bottom figures shows
that the normal subject had more low-frequency components
before 100 ms. However, the CRVO patient’s STFT had a
shift toward high-frequency components.

2) WAVELET ANALYSIS (WA)
The wavelet transform is one of the time-frequency rep-
resentation methods that has been widely used for analyz-
ing ERG signals. Unlike STFT, WA does not have a fixed
time and frequency resolution once the window length is
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FIGURE 4. STFT was obtained for the healthy eye (top) and the eye with
central retinal vein occlusion related to a sample patient (bottom).

selected. Wavelet transforms provide better frequency res-
olution at lower frequencies and good time resolution at
higher frequencies. Unlike STFT, the time-frequency reso-
lution of wavelet transform is generally logarithmic. WA is
thus naturally suited for non-stationary signals such as ERG.
WA includes two types of transforms, a continuous wavelet
transform (CWT) and a discrete wavelet transform (DWT).
Both CWT and DWT are used to analyze and display the
timescale representation of a signal. Also, they decompose
the signal into its multi-frequency (i.e., scale) components.

The CWT provides the correlation between the given sig-
nal x (t) and a function referred to as wavelets. Wavelets are
similar to windows in STFT, except that they either shrink or
expand in length (often referred to as dilation or expansion,
respectively). This is achieved through the parameter called
‘‘scale.’’ The coefficients of the CWT are plotted against the
scales of the transform. The wavelet coefficient equation is
defined by the following equation [61]:

Cw (a, b) =
∫
+∞

−∞

x (t) ψ∗a,bdt

=
1
√
a

∫
+∞

−∞

x (t) ψ∗
(
t − b
a

)
dt (7)

where,ψ∗(t) is the complex conjugate of the chosen wavelet,
Cw(a, b) are the wavelet coefficients, a is the scale parameter,
b is the time localization parameter, and 1

√
a is the energy

normalization factor [64].
ERG signals can be decomposed using DWT. In DWT,

the signal is convolved with discrete filters to achieve signal
decomposition. The DWT can be realized as a filter bank
of high pass and low pass filters along with up-sampling
and down-sampling operations. The signal is divided into the
low-band and high-band using a low pass and a high pass
filter in the time domain. The convolution operation produces

half the number of time samples as output. Generally, the low-
band portion contains richer information about the signal. The
procedure of producing low and high bands is repeated in
the subsequent steps. The coefficient equation of the DWT
is given by the following equation [61]:

DWT (j, k) =
1
√
2j

∫
+∞

−∞

x (t) ψ
(
t − 2jk

2j

)
dt. (8)

Equation (8) is obtained from the equation (7) by replacing
a and with 2j and b with 2jk [65]. The schematic diagram
of the decomposition of a signal using DWT is presented
in Figure 5. As can be seen, DWT uses two filters, a low
pass filter, and a high pass filter, to decompose the signal into
different frequency scales.

FIGURE 5. Signal decomposition using DWT.

The output coefficients of the low pass filter are called
approximations (cA), while the output coefficients of the high
pass filter are called details (cD). The approximation coeffi-
cients are related to low-frequency components of the signal.
The detail coefficients are associated with the high-frequency
components of the signal [61], [65].

3) MATCHING PURSUIT (MP)
Matching pursuit is an iterative algorithm that provides a
promising time-frequency resolution for all frequencies. [66].
MP is more versatile thanWA or STFT asMP adapts the win-
dow length to the time series’ local features [67]. Therefore,
the time-frequency resolution of MP is high and has been
applied on different signals, such as Electroencephalogram
(EEG), Electrocardiogram (ECG) [68]–[71]. Unfortunately,
the application of MP for ERG signals is still in an incipient
stage.

By performing an iterative procedure, MP finds a signal
representation in a dictionary of functions, usually comprised
of symmetric functions from the sine modulated Gaussian
functions, such as Gabor. Using a time-frequency dictio-
nary of Gabor functions, MP decomposes a 1D signal into
a set of wavelet atoms adaptively. Based on the choice of
time-frequency atoms like Gabor, the decomposition might
have different properties. These waveforms are automatically
selected to best match the signal structures. Assuming a
set of functions (dictionary) as D = {g1, g2, . . . , gn} with
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‖gi‖ = 1. Note that ‖.‖ will denote norm -2 in this paper
unless specified otherwise. An optimal approximation for
the signal can be obtained by minimizing the energy in
the residual error ε which is obtained as the energy of the
error between signal f (t) and its representation obtained as a
weighted sum of M waveforms, gγ (t). The residual error is
defined as [68]:

ε =

∥∥∥∥f (t)−∑M

i=1
wigγi (t)

∥∥∥∥ (9)

where, wi represents the weights.
The discrete Gabor dictionary can be defined as follows:

gγ (t) = K (γ )e
−π

(
t−M
s

)2
sin(2π

ω

N
(t − u)+ ϕ) (10)

where, N is the length of the signal for which the dictionary
is constructed, K (γ ) is such that

∥∥gγ ∥∥ = 1, γ = {u, ω, s, ϕ}
denotes the parameters of the dictionary’s functions (time-
frequency atoms), as time position, frequency position, scale,
and phase, respectively.

4) COMPARISON OF TIME-FREQUENCY
ANALYSIS-BASED STUDIES
Durka et al. [72] applied DWT in ERG signal processing.
They studied Duchenne muscular dystrophy (DMD) patients
based on DWT with Daubechies (db4) mother wavelet. They
evaluated scotopic ffERG waveform using Mallat’s multires-
olution decomposition [73] to display the time-domain recon-
struction of the wavelet coefficients obtained from seven
different frequency bands of two groups as unhealthy (abnor-
mal) and healthy (normal) subjects. The decomposition
enabled the authors to differentiate unhealthy and healthy
subjects at all frequency bands. It was concluded that the
reconstructed DWT coefficients could represent physiolog-
ical processes.

Mallat [74] applied the DWT with Daubechies mother
wavelet to compare PERG responses of healthy and
unhealthy subjects. The DWT features revealed more abil-
ity in differentiating normal and pathological PERG wave-
forms compared to the time-domain parameters. This can be
attributed to extra information provided by the joint domain
processing. The misclassification rate of time-domain param-
eters ranged between 55-60%, while 34-36% with the DWT.

Rogala and Brykalski [75] attempted to derive reliable
features based on CWT to distinguish normal and abnormal
PERG, as well as PVEP in some retinal and optic nerve
diseases, including macular dystrophies–mainly Stargardt’s
disease glaucoma, ischemic optic neuropathies, and pitu-
itary tumors. This study concluded that CWT is an efficient
method to assess the latencies of the PERGwaveforms. CWT
provided good discrimination between normal and abnormal
waveforms and enabled better features for the classification
task.

Penkala [76] used the MP method to characterize OPs
in the mfERG. They used the Gabor function to model the
macular region of the retina. As a result, OPs were identified

in frequency bands, including a high-frequency band around
150 Hz (that contributed to early Ops) and a low-frequency
band peaking at approximately 80Hz (that contributed to both
early and late Ops).

Zhou et al. [77] showed the possibility to approximate
the time-domain parameters for a-wave, b-wave, and also
approximated at least one OP using the inverse DWT of
scoptic ERG by reconstructing the signal using the wavelet
coefficients. Daubechies mother wavelet was used in their
study.

Varadharajan et al. [78] compared the results of time-
domain analysis and CWT in determining the PERG param-
eters. The CWT method had more accuracy than the
time-domain method and confirmed that it could differentiate
normal and abnormal PERG, especially in the early detection
of glaucoma.

Penkala et al. [79] focused on extracting information
about the time-frequency characteristics of the human
a- and b-wave, using WA. They choose Mexican Hat as the
mother wavelet. According to their results, low-frequency
components were e predominant (both in a- and b-waves),
and their time distribution depended on luminance.

Barraco et al. [80] used WA to extract characteristics of
the a-wave. Their work focused on the discrimination of
two pathologies, achromatopsia and congenital stationary
night blindness (CSNB), from healthy traces. Their results
revealed that the number of dominant frequencies and their
occurrence time in both studied diseases could represent
retinal photoreceptors’ status. Comparing selected patholog-
ical cases (achromatopsia and CSNB) with a normal con-
trol group showed that both disease’s frequency components
move toward lower values. The occurrence times of dominant
frequencies had changed.

Barraco et al. [81] and Miguel-Jimenez et al. [82] and [83]
conducted their research on analyzing mfERG based on
DWT for normal subjects and glaucoma patients. They com-
pared the results with traditional time-domain methods. Their
results showed that DWT with Biorthogonal 3.3 (Bior3.3)
mother wavelets are superior approaches to the traditional
time-domain methods to detect glaucoma progression in
patients.

Miguel-Jiménez et al. [84] continued their studies on
a-wave to reveal this component’s hidden characteristics and
anomalies. They evaluated the time-frequency features of
the a-wave, which were extracted from normal subjects and
patients affected by achromatopsia. The patients with achro-
matopsia lose a part or total of their color vision. The results
confirmed the existence of two or three frequencies that,
in the pathological case, shift toward lower values and change
their times of occurrence.

Barraco et al. [85] identified the stable time-frequency
components of the a-wave, based on six representative values
of luminance. The results showed three frequencies within
the range of 20–200 Hz in the scotopic a-wave of normal
ERG, in which the lowest frequencywas attributed to the pho-
toreceptors’ accumulated activities. Other frequencies were
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related to the response of the rods and the cones. This finding
suggested that the CWT could be beneficial in the diagnosis
of photoreceptor diseases.

Barraco et al. [86] compared the efficiency of three sig-
nal processing techniques: FA, principal component anal-
ysis (PCA), and WA, to discriminate subjects with retinal
pathologies (such as achromatopsia and CSNB from healthy
subjects). They reported that both PCA and FA techniques
do not add clinically useful information to diagnose retinal
pathologies. However, WA provided great potential for rou-
tine clinical examinations of patients.

Barraco et al. [87] studied OPs to determine whether age
impacts rod- and cone-driven inner retina function. Dark-
and light-adapted ERGs were recorded from healthy sub-
jects. The time-frequency domain analysis was performed
with the Morlet mother wavelet. In dark adaptation record-
ings, the decrease in the amplitude of OPs was confirmed
with the selected method. The implicit times showed delay
by the age of 40 years. WA defined the main frequencies
in 150-155 Hz, which were unaffected by age. Most OPs
created in light-adapted status showed delay by the age below
40 years. Two frequency bands, high frequency (135± 6 Hz)
and low frequency (82 ± 7 Hz) were identified for Ops
created by light-adapted ERG. By 60 years, there was a power
reduction in the low-frequency band.

Dimopoulos et al. [88] attempted to automate the reti-
nal disease diagnosis based on WA. The subjects from four
different classes, namely healthy controls, CSNB, cone-rod
dystrophy (CRD), and central retinal vein occlusion (CRVO),
were assessed. The values of wavelet coefficients differed in
the a-wave and b-wave amplitude of normal and pathological
signals. Moreover, they applied the DWT with Haar wavelet
to decompose the mfERG into three levels. They extracted
the maximal wavelet coefficient from the full-field scotopic/
photopic ERG and flicker mfERG. The results showed signif-
icant differences between the maximal approximation coeffi-
cient of the control and patient group. They concluded that
DWT exposed subtle changes that were more sensitive than
the traditional time-domain parameter. Therefore, significant
diagnostic improvements were observed.

Nair and Joseph [89] compared the time-domain parame-
ters of the photopic ERG using the frequency-domain (FA)
and time-frequency domain (CWT and DWT). They evalu-
ated the implicit time and amplitude measurements of the
a- and b-waves, and the extracted features from FA, CWT,
and DWT for normal ERGs. This study’s results revealed
the superiority of DWT features in recognizing the retinal
diseases’ decline over time. Changes in the ERG that were
missed out in the time-domain analysis were captured by
DWT features.

Gauvin et al. [90] investigated the application of WA in
mfERG signals to diagnose glaucoma. The mother wavelet
was Morlet. A group of patients was diagnosed with chronic
open-angle glaucoma, and healthy subjects as a control group
were considered. The glaucomatous regions were detected

with high sensitivity (0.894). The specificity value (0.844)
confirmed the accuracy in the healthy region detections.

Miguel-Jiménez [91] aimed to develop an approach to
determine the frequency components and time range in the
DWT that correspond to the PhNR of the ffERG. PhNR
was evaluated as an index of RGCs function in idiopathic
intracranial hypertension (IIH) patients. It was reported that
the PhNR component of the DWT was reduced significantly
in the patients with IIH compared to the subjects with visually
normal controls. A good correlation was also seen between
the PhNR assessed by DWT and that determined by conven-
tional time-domain analysis.

Kundra [92] used DWT descriptors to study normal
human photopic ERG evoked in response to a broad
range of luminance intensities. Using the DWT descriptors,
luminance-response curves were generated, revealing distinct
luminance-dependence patterns. The various time-frequency
components of the ERG were modulated differently by
the stimulus luminance. Moreover, the ERG of patients
affected with anomalies in the ON or OFF retinal pathway
was assessed. The results indicated that well-defined time-
frequency descriptors could be associated with the ON and
OFF cone pathway functions.

Gauvin et al. [93] worked on photopic ERGs to inves-
tigate the possibility that the ERG signal is mostly com-
posed of OPs. DWT analyzed the ERG of normal subjects
and retinopathy patients. They reported that patients might
present a wide range of OPs amplitudes. They confirmed
the hypothesis that, in certain conditions, the photopic ERG
could be comprised of high-frequency components.

Gauvin et al. [94] evaluated the photopic ERG signal using
STFT, CWT, and DWT. The DWT-based evaluation provided
more details regarding the frequency components in the ERG
signal.

Alaql [95] studied the PhNR responses of ffERG in both
time and time-frequency domains. The responses elicited by a
long-wavelength pulse (3 cd.s.m−2) were presented against a
short-wavelength adapting field (12.5 cd.s.m−2). Three to ten
waveforms of each subject were analyzed using time-domain
analyses and DWT to extract corresponding components of
the PhNR. Three different measures of the PhNR include
1) amplitude at the PhNR trough; 2) amplitude at 72 ms
following stimulus onset; and 3) energy in the 11 Hz, which
corresponds to the PhNR were assessed. The results revealed
that all selected metrics provide similar estimates of the
PhNR.

Kundra et al. [96], in his doctoral thesis, tried to determine
if advanced analytical approaches could extract additional
useful physiological information from the photopic ERG and
examinedmore than ten novels reproducible ERG descriptors
derived from the DWT. Gauvin concluded that these descrip-
tors were physiologically meaningful. The DWT approach
described in this thesis can improve the ERG sensitivity and
specificity of retinal disease diagnosis based on the charac-
teristics of photopic ERGs for a given disease.

VOLUME 9, 2021 116887



S. Behbahani et al.: Feature Extraction Methods for ERG Signal Analysis: A Review

Gauvin [97] worked to improve the evaluation of
two flashes mfERG in open-angle glaucoma using DWT
with Daubechies mother wavelet. The results indicated an
improvement in mfERG glaucoma diagnosis based on WA,
especially when combined with ganglion cell–inner plexi-
form layer.

Brandao et al. [98] used the DWT and descriptors of PERG
waveforms to determine early primary open-angle diagnosis
glaucoma characteristics. They used the Daubechies filter as
the mother wavelet and showed that DWT could quantify
PERG responses accurately.

Karimi et al. [99] determined the effect of CRVO on PhNR
and RGCs performances based on CWT. The PhNR of ffERG
of patients was compared to the fellow normal eyes. Addi-
tionally, the standard time-domain analyses of the PhNRwas
conducted. The main frequencies and their occurrence time
were obtained using CWT. All a-wave, b-wave, and PhNR
amplitudes of CRVO eyes showed a significant reduction
compared to those of the fellow eyes. CWT was successful
in quantifications of PhNR responses.

Ahmadieh et al. [100] compared time and time-frequency
domain characteristics of ERG in nonproliferative diabetic
retinopathy patients. The implicit times of b-waves in the
dark-adapted 10.0 and light-adapted 3.0 were significantly
increased in the patient group. The amplitudes of a- and
b-waves had a decreased value in dark-adapted 10.0 and light-
adapted 3.0 ERG of the non-proliferative group consider-
ably. The results confirmed that the time and time-frequency
parameters of photopic and scotopic ERGs could be good
indicators for diabetic retinopathy.

Ahmadieh et al. [101] used WA to reveal the dynamics
of rat OPs. Table 2 describes all the time-frequency domain
studies applied to ERG responses.

F. NONLINEAR METHODS
One of the essential characteristics of natural systems is their
nonlinearity and the ability to produce complex behaviors.
Complexity is due to the interactions that each natural system
has with its surroundings and other systems. In addition to the
time-domain, frequency-domain, and time-frequency domain
analysis of the ERG, some features have been used in a
limited number of articles related to ERG signal process-
ing. These parameters include approximate entropy (ApEn),
largest Lyapunov exponent (LLE), Hurst exponent (HE),
Higuchi fractal dimension (HFD), and Recurrence plot.

1) APPROXIMATE ENTROPY
ApEn is a nonlinear parameter that exhibits the complexity
of a time series. The more complex the time series, the
higher the Forte [102]. ApEn is a measure of irregularity
in time-series, which is derived by comparing the similarity
patterns of template vectors. It measures the unpredictability
of fluctuation patterns. Therefore, the more repetitive the pat-
terns are, the more predictable the time series are. Assuming
a time-series of data as u(1), u(2), . . . , u(N), based on the
measurements that are equally spaced in time, a sequence of

vectors can be formed as x(1), x(2), . . . , x(N − m + 1), and
in Rm defined by x (i) = [u (i) , u (i+ 1) , . . . , u(i+m− 1)].
Next, for each i, 1 ≤ i ≤ N−m+ 1 t he self-similarity of the
template vector u [i] with a tolerance r, can be defined as:

Cmi (r) =
1

N − m+ 1

∑N−m

j=0
2(r − ‖u [i]− u[j]‖∞) (11)

where, 2(x) is the Heaviside step function, i.e., 2(x) is one
when x ≥ 0, and zero otherwise. When x is mostly self-
similar, then u [i] and u[j] sequences are very close and thus
Ci is high. The ApEn is defined in equation (12) [103]:

ApEn (X,m, r) =
1

N − m+ 1

∑N−m

j=0
log Cmi (r)

−
1

N − m

∑N−m−1

j=0
log Cm+1i (r). (12)

2) HURST EXPONENT
HE is an index of long-range dependency, which indicates a
degree of time-series tendency. A time series of X as a signal
with a full length of N is divided into D numbers of shorter
time series with length n, where D is an integral divisor
of N. For each of the subseries Xm,m = 1, 2, 3, . . . ,D,
the following steps are performed [104]:

Step 1: Find the mean, µm and the standard deviation, σm.
Step 2: Remove the mean from the series and form the

mean adjusted series, X ′m. Let the elements of this series be
denoted by x ′i,m.
Step 3: Form the cumulative time series, Yi,m, given by,

Yi,m =
∑i

j=1 x
′
j,m,, i = 1, 2, . . . , n.

Step 4: Find the range Rm of the cumulative series, that is

Rm = max(Y1,,m,Y2,m,Y3,m) . . . . . .Yn,m)}

−min(Y1,,m,Y2,m,Y3,m) . . . . . .Yn,m). (13)

Step 5. Rescale the range by dividing it by the standard
deviation, σm that is found (R/S)m = Rm/σm.
Once all the rescaled ranges are calculated for all the D

series of length n, calculate the mean value of the rescaled
ranges for the series of length n as follows:

(R/S)n =
1
D

∑D

m=1
(R/S)m. (14)

The HE is estimated as the slope of the best fit line for the
plot of log

(
(R/S)n)

)
as a function of n.

3) LARGEST LYAPUNOV EXPONENT
Nonlinear dynamic systems are highly sensitive to the initial
conditions. The smallest change in system state variables
at one point will cause substantial changes in the system’s
future behavior. Lyapunov exponent, λ, is an index to eval-
uate the chaos of a nonlinear dynamical system. It measures
the rate at which the trajectories separate from each other.
It gives dynamic information about attractors. LLE measures
provide the average rate of convergence or divergence of
nearby trajectories in phase space. A pair of nearest neighbors
[x (i) , x (j)], starting close to one another in a chaotic system,
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diverges approximately at a rate given by the LLE λ [105].
To obtain LLE, consider:

dj(i) ≈ dj0e(i1t) (15)

where, dj(i) is the Euclidean distance after i time steps. The
sampling rate of the time series and the initial pair separation
are 1t and dj0, respectively. Solving the equation (15) by
taking the logarithm of both sides, the LLE can be calculated
as follows:

λ ≈
1
i1t

ln
(
dj (i)
dj0

)
. (16)

A positive Lyapunov exponent is a good indicator of the
chaotic nature of a system.

4) HIGUCHI’s FRACTAL DIMENSION
HFD is considered a nonlinear measure of waveform com-
plexity in the time domain. Discretized signals could be
analyzed as time sequences x(1), x(2),. . . , x(N). Starting with
a time sequence, a new self-similar time series xmk can be
calculated as given in equation (17) [106]:

xmk = x (m) , x (m+ k) , x (m+ 2k) , . . . , x

×

(
m+ int

[
N− k
k

]
k
)
, for m = 1, 2, . . . , k (17)

where, m is the initial time; k is the time interval,
k = 1, . . . ,kmax; kmax is a free criterion, and int(r) is the
integer part of the real number r . HFD is highly dependent on
the value of kmax; therefore, kmax plays a crucial role in HFD
estimation. ‘‘The length’’ of the curve Lm(k) is determined
for each of the k time series xmk as follows:

Lm

k

 = 1
k

[(∑int
[
N−k
k

]
i=1

|x (m+ ik)

−x(m+ (i− 1) k)|

 N− 1

int
[
N−k
k

]
K

 (18)

where, N is the length of the main time-series X and
N−1{

int
[
N−k
k

]
K
} is a normalization factor. The mean value of the

curve length L (k) for each k = 1, . . . ,kmax can be defined by
averaging Lm (k) for all m as:

L (k) =

∑k
m=1 Lm (k)

k
. (19)

An array of mean values L (k) is thus obtained, and the
HFD is estimated as the slope of the least-squares linear best-
fitting procedure, which includes a plot of ln(L (k)) versus
ln(1/k):

HFD = ln (L (k)) /ln(1/k). (20)

5) RECURRENCE PLOT
A recurrence plot is a two-dimensional plot that enables the
visualization of higher-dimensional phase spaces and is used
to characterize the underlying dynamics. In a recurrence plot
at coordinates (i, j), black dots are plotted when recurrence
events (Ri,j ≡ 1) occur, and white dots are plotted for
nonevents (Ri,j ≡ 0) [107].

Ri,j =

{
1 :

∥∥Exi − Exj∥∥ < ε

0 : otherwise.
(21)

To construct the recurrence plot, a symmetrical
N × N array, called recurrence matrix R is computed as
follows [107], [108]:

Ri,j (ε) = 2(ε −
∥∥Exi − Exj∥∥) (22)

where, Ex contains the N intended states,2(x) is the Heaviside
function, ε is the threshold distance, and ‖.‖ is a norm.

6) ANGLE CRITERION
ERG is assumed as a time series, which represented by X , and
a map is constructed using the relation between each of the
points in the time series with a meantime series, X̄ :

mean (X) = X̄ =
1
n

∑n

i=1
Xi. (23)

So, mapping consists of all below pairs:(
Xi,
(
X̄ − Xi

)2)
, i = 1, 2, 3, . . . , n (24)

where, n is the total number of samples in time-series such as
ERG.

By evaluating the distribution of points in this new arrange-
ment, a second-degree polynomial equation in the form of
Y = αx2 + βx + γ is obtained from this map, which Y =(
X̄ − Xi

)2. The three principal parameters of the parabolic
curve, α, β, and γ are estimated.
The pairs of

(
Xi,
(
X̄ − Xi

)2) form a new arrangement
of the points. The ERG comprises positive and negative
amplitudes. Therefore, based on equation (24), some parts
of the signal will accumulate on the parabola’s left or right
sides [109].

A criterion for showing the arrangement of points on the
parabola’s right or left side is the angles made by drawing
a line from the beginning to endpoints distributed on the
parabolic and horizontal axis. For the angles of less than
90 degrees, the accumulation of points on the right side is
more. In other words, there are more positive waves with
higher amplitudes. For the angles below 90 degrees (negative
values), the accumulation is drawn to the left side of the
parabola, which indicates the appearance of the negative
amplitude waves [109]. The angles close to zero confirm the
balance distribution based on positive and negative waves.
Figure 6 represents the mapping, distribution of points on the
curve, and the angle θ . The angle θ is calculated based on
equation (25).

θ = arctang
opposite(a or b)

adjacent
(25)
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TABLE 3. Comparison of all nonlinear studies applied on any ERG responses.

FIGURE 6. Angle Index in the parabolic map, (LEFT) the accumulation of
points on the right sides (positive θ), (RIGHT) collection of points on the
left sides (negative θ) [109].

7) COMPARISONS OF STUDIES IN NONLINEAR METHODS
Sefandarmaz et al. [110] studied human visual systems’
disorders using periodic flashes of light and identified
that ERG exhibits a periodic doubling behavior. From the
nonlinear dynamical system theory, it is understood that
periodic-doubling indicates the onset of chaos. This study
confirms the existence of chaotic behavior in flicker ERG.

Crevier and Meister [111] determined the potential of
chaotic behavior in normal and glaucoma subjects based on
ffERG patterns. Ten normal subjects and ten patients with
glaucoma were evaluated. The HE trended lower in glau-
comatous patients (median = 1.8) compared to the normal
patients (1.9) (p= 0.15). The results indicated that the ffERG
of glaucomatous patients appeared to exhibit less chaotic
behavior, which corresponds with the hypothesis that healthy
subjects aremore complex systemswithmore chaotic dynam-
ics; however, the difference was not statistically significant.

Etter et al. [112] studied the ERG signal’s chaotic aspect in
the retinal disease, including CSNB, RP, CRD, and a control
group. Nonlinear parameters like HE, LLE, HFD, ApEn, and
recurrence plots were analyzed for these four groups. The
results revealed that HE and ApEn are higher for controls

than for the retinal disease groups. However, LLE showed no
different variations for the three groups of retinal diseases.
The recurrence and phase-space plots showed change among
all three analyzed groups. It was concluded that ERG com-
plexity in control groups was higher than retinal diseases with
p < 0.05.
Nair and Joseph [113] worked on flash frequency and

contrast as effective parameters in the ERG recordings.
They reported that these parameters significantly impact the
recorded signals and lead to bifurcations, indicating chaotic
behavior.

Molaie et al. [114] explored subtle timing changes in
the ERG of glaucoma patients based on the entropy fea-
tures. They calculated the entropy of ERG signals within a
sliding window and then used Kolmogorov–Zurbenko adap-
tive (KZA) filter to detect the peaks and the timing of entropy
changes. The results indicated an earlier rise in entropy in
glaucoma patients, confirming this approach’s potential to
diagnose glaucoma.

Heunis et al. [109] introduced a nonlinear criterion to
evaluate the ERG in patients with CRVO. Also, some other
nonlinear features such as HE and ApEn were extracted
from the control and CRVO group. The parabolic map and
proposed criterion (θ angle) provided successful results in
differentiating the groups.

Table 3 describes all the nonlinear studies applied to ERG
responses.

III. DISCUSSION
The ERG signal involves recording retinal cells’ electrical
activity after stimulation, which is widely used to detect
different retinal layers’ functions. The ERG signal is a short
signal that contains many components working at the same
time. The short length of ERG and its complex nature and
nonlinear dynamics make it challenging to select an appro-
priate analysis method. A review of articles written in ERG
signal processing shows that the standard criterion for evalu-
ating retinal cells’ function in various layers is assessing the
amplitude and implicit time of known waves in this signal.
Almost all articles on the analysis of ERG have reported
processing in the time domain.
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ERG was also analyzed using a frequency-domain
approach. Of course, the number of articles written in non-
time-domain analysis of the ERG is far less than other vital
signals, such as ECG and EEG signals. Simply twelve articles
on human research and ten articles in animal research are
based on the ERG frequency-domain analysis in the liter-
ature. The human-related papers that analyzed ERG in the
frequency domain used the FFT, PSD [31], [37]–[47], and two
of them utilized LP [37], [38]. It is hard to compare studies
because of the variations in the ERG components from differ-
ent cells and retinal layers and various retinal diseases. Only
two articles [85], [89] in the ERG literature have conducted
studies under the same stimulation and considered the same
disease, and compared the findings. Research articles show a
great deal of diffusion between researchmethods and subjects
in the field of retinal diseases, and non-time-domain methods
have not been standardized and generalized. However, these
methods have either improved or confirmed the same results
in any research that has used time-domain analysis.

The frequency-domain-based approaches reduce or elim-
inate noise from the ERG signal [32], [35]. ERG is highly
susceptible to noise, which can affect the results of the
time-domain parameters. By removing noise effects, esti-
mating parameters containing significant features becomes
more robust, and better classification performance can be
achieved. There is a great deal of variation in ERG-based
research that has used the frequency domain approach, and
various retinal diseases have been studied under different
conditions. However, the research focused on the frequency
domain had a common strategy: most of them focused on
the OPs component [31], [40], [41], [43], [46]. A reason for
choosing OPs is that they have shorter amplitudes than all
other ERG components [25]. Therefore, it is challenging to
distinguish OPs in terms of time-domain parameters.

FFT is a helpful tool to analyze stationary, infinite dura-
tion, and periodic signals. However, most of the biologi-
cal signals, including the ERG, are non-stationary. FFT is
more appropriate for narrowband signals, while ERG is not a
narrowband signal. If research is concerned with examining
specific waves or components of the ERG, then the ERG’s
high and low frequencies must be separated. The narrower
the frequency range considered, the higher the chance of
success is. In the case of a- and b-waves, the frequency range
is determined based on the FFT method. These two waves
were located in a narrowband range between 15-40 Hz, and
as expected, the results showed a correlation with retinal
functions [43].

Although the short amplitude of OPs results in better
frequency-domain analysis than the time-domain method,
such analysis brings a severe challenge due to the required
preprocessing. The OPs should be extracted using a bandpass
filtering technique to remove the low-frequency components
of the ERG. On the other hand, bandpass filteringmight intro-
duce distortions such as phase lag, ringing artifacts, or attenu-
ation ofOPs amplitude. These distortions can go as far as even
creating artificial OPs [29, 89]. Since the FFT determines all

frequency components’ power in a signal, these distortions
can potentially lead to misinterpretations [89], [91].

Another problem with FFT is the lack of time localiza-
tion, which means that the power spectrum cannot provide
information about specific signal frequencies. STFT was
proposed to analyze small sections of the signal by win-
dowing [115], [116]. STFT provided the basis for time-
frequency domain analysis. Although the STFT can add
some temporal resolution to the FFT and reveal the sig-
nal’s time and frequency information, it has low temporal
resolution if the selected analysis window’s length is long.
Therefore, the biggest challenge of STFT is the requirement
to adjust the length of the windows case-by-case to avoid
resolution problems. The STFT cannot simultaneously cap-
ture both short-duration-high-frequency and long-duration-
low-frequency information [96].Smaller window size leads
to better time-resolution and decreases the number of dis-
crete frequencies represented in the frequency domain [110].
Gauvin [94] compared the results of the STFT with other
time-frequency methods and found out that WA provides the
full potential of differentiating the ERG components.

The main challenge in the papers that used WA is the
selection of the mother wavelet. The related articles still seem
not to agree on the best mother wavelet to match the ERG
signal. The mother wavelets reported in the literature include
‘‘Daubechies’’ wavelets [71], [76], [92], [97], the ‘‘Haar’’
wavelet [87], [88], and the ‘‘Mexican hat’’ [84]–[86].Miguel-
Jimenez et al. [83] have successfully applied DWT to the
global flash mfERG response in advanced glaucoma but
did not specify mother wavelets. Finally, they found that
the Biorthogonal 3.1 (Bior3.1) mother wavelet had the best
performance in visual comparison. CWT using the Morlet
wavelet provided acceptable results in [89]. Variations in the
selection of mother wavelets can somehow be one of the WA
method’s benefits as some may more suitably describe the
features of the signal than others. This benefit contrasts with
FA expressed as a sum of sines and cosines [96].

The use of WA has advantages over other frequency-
domain methods. It has a varying window size, being broad
at low frequencies and narrow at high frequencies. Moreover,
WA is better suited for the analysis of sudden and transient
signal changes. It could be an excellent method to analyze
irregular data patterns, such as impulses existing at different
time instances [35].

Unlike STFT, which uses a fixed window, CWT uses a
varying window approach. To analyze the low-frequency
spectral components in the signal, it uses the longer win-
dow and shorter windows to analyze the high-frequency
spectral components in the signal. This makes the CWT a
better approach to analyze ERG signals. Most biological
signals have low-frequency components that spread over
long durations and high-frequency components that spread
over short durations [94]. The literature review showed
that some articles had taken advantage of CWT. Most of
these papers have examined the PERG signal, which is
a low-frequency signal [114] and determines the function
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TABLE 4. Advantages and disadvantages of ERG analysis methods.

of RGCs [75], [78], [82], and have reported good results.
Barraco et al. worked on ERG based on CWT in five papers
and mainly studied the a-wave, a low-frequency compo-
nent [79], [81], [84]–[86].

The remaining time-frequency domain papers available in
the literature were based on DWT. Both CWT and DWT
methods have their advantages and disadvantages. CWT is
more reliable than DWT, as it can extract all information
without down-sampling. However, CWT needs more compu-
tation, which leads to a slower process compared to DWT.

Moreover, CWT is highly redundant, which is beneficial
from one perspective and a curse from another perspective.
As it is redundant, no information gets lost, unlike DWT.
In DWT, there is a possibility to lose some information if the
right level of decomposition is not chosen. Two significant
factors in WA analysis that should be considered are the type
of wavelet and the decomposition [115].

Heisenberg’s uncertainty principle dictates that it is impos-
sible to determine an oscillatory component’s exact frequency
and position in the same representation of a concise portion
of the signal. Therefore, a signal has a high localization in
time or frequency, but not both [116], [117]. The OPsas high-
frequency components are associated with a signal over an
acceptable time scale, which allows the information extrac-
tion regarding their timing to be preserved at the cost of
a lower spectral resolution. The low-frequency components

such as a- and b-waves are associated with a coarse time
scale, which leads to imprecise temporal resolution. The exact
timing of the oscillation remains uncertain.

For the evaluation of small bandwidth changes, a high
spectral resolution is required. However, the detection of
large bandwidth changes requires less frequency resolution.
The bandwidth of a- and b-waves comprises the frequency
range between 15-40 Hz, i.e., a 25 Hz bandwidth. The OPs
frequency band covers 75-200 Hz, which means the band-
width is approximately 125 Hz. Therefore, a- and b-waves
have smaller bandwidths compared to OPs. Analysis using
the DWT could provide the necessary high spectral resolu-
tion for a- and b-waves and less spectral resolution of the
OPs [96]. ERG’s low-frequency components (including a-
wave, b-wave, and PhNR) were studied using DWT in dif-
ferent retinal diseases [88], [89], [91], [95]. The results of
all research were satisfactory compared to the time-domain
analysis.

Only one work [76] had an analysis based on the MP
method among the ERG articles. MP method has high
time-frequency resolution and a structure with local self-
adapting capability. This paper was successful in finding the
OPs components, high and low-frequencyOPs.MPmethod is
not affected by noise, and therefore, higher quality character-
istics can be obtained. Both of these advantages are crucial for
ERG analysis. Moreover,MP can overcome the shortcomings
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of FA, STFT, and WA by decomposing the signal so that
waveforms can better match the signal structure [118].

Physiological signals exhibit complex behavior that
reflects the nonlinear dynamic properties of biological
systems. Nonlinear feature extraction methods and chaos
theory have many applications in evaluating vital sig-
nals [105], [119]–[121]. Although linear methods are mostly
used in analyzing ERG signals, nonlinear features also
show aspects that cannot be investigated using linear meth-
ods. However, published works in this field are still defi-
cient [109]–[113]. Using nonlinear tools to represent chaotic
behaviors can be a good choice for discovering the ERG
signal’s nature.

The nonlinear and chaotic methods used to analyze ERG
signals have good potential to extract useful features. These
features can show the underlying dynamics within the reti-
nal system well. All linear methods reviewed in this paper
required windowing. Windowing had its issues as differ-
ent windows with window length impacted the time and
frequency resolutions. Nonlinear methods do not require
windowing and therefore are devoid of such limitations. How-
ever, the computational requirements of nonlinear methods
may be higher than the linear methods such as WA, or FA
Lyapunov exponent requires all the states to evolve to obtain
the divergence of the trajectories and, therefore, may need
time to execute. The short length of the ERG signal can be a
challenge in such computations. In this case, the Lyapunov
exponent can be used as an index to confirm or reject the
significant changes in different states.

One of the critical points observed in the ERG process-
ing methods is the lack of geometric analysis and different
mappings, such as angle criterion [114]. The angle criterion s
based on the parabolic curve has the potential to differentiate
CRVO patients from normal. This method can be further
investigated for other types of retinal diseases. Due to the
short length of ERG and the overlap of the different layer’s
functions, the methods that extract the information of signals
based on point arrangements in time series can better evaluate
ERG changes.

As a general summary of the methods used to analyze this
signal, Table 4 summarizes each method’s advantages and
disadvantages for ERG analysis. The items presented in this
Table are centered on the ERG signal and may not necessarily
be considered as an advantage or a disadvantage for other
biological signals. Moreover, the expression of merit and
demerit in this Table is not based on comparing each method.
Each method is judged separately from the perspective of its
ability to analyze the ERG signal.

Considering the current review and the selection of dif-
ferent approaches in published articles, it seems that each
method has some ability to extract information from the ERG
signal.

Given the nature of the ERG signal, with a good under-
standing of the potential of the various methods described in
this review, an appropriate choice of feature extraction may
be possible when the type of retinal disease is known a priori.

IV. CONCLUSION
In this article, we have reviewed the methods used to process
and extract features of the ERG signal. We have categorized
most of the ERG signal processingmethods that identifymost
information from the retina in normal subjects and subjects
with different retinal diseases.

Although the time-domain parameterization approach has
been well-known as a standard method in all the reviewed
articles, it has drawbacks. Therefore, alternative methods
have been proposed to overcome the drawbacks of time-
domain approaches. Most papers showed the superiority
of frequency-domain and time-frequency methods over the
time-domain parameters used for ERG analysis. Interestingly,
despite ERG being a short-duration signal, parametric spec-
tral estimation methods have not been widely used.

Given the complex characteristics of ERG signals, the non-
linear and chaotic methods that illustrate the system’s
complexity are suitable for thoroughly analyzing and distin-
guishing between retinal layer performances. Due to diversity
in the retinal layers and differences in the cell’s function,
a single universal feature extraction approach may not be
possible. In some cases, a combination of methods might be
a better choice.

V. ABBREVIATIONS
ApEn: Approximate Entropy; CRD: Cone-Rod Dystrophy;
CRVO: Central Retinal Vein Occlusion; CSNB: Congenital
Stationary Night Blindness; CV: Coefficient of Variation;
CWT: Continuous Wavelet Transform; DMD: Duchenne
Muscular Dystrophy; DWT: Discrete Wavelet Transform;
ECG: Electrocardiogram; EEG: Electroencephalogram;
EMG: Electromyogram; ERG: Electroretinogram; FA:
Fourier analysis; ffERG: full-field Electroretinogram; FFT:
fast Fourier Transfor; FIR: Finite Impulse Response;
GCIPL: Ganglion Cell–Inner Plexiform Layer; HE: Hurst
Exponent; HFD: Higuchi Fractal Dimension; IIH: Idio-
pathic Intracranial Hypertension; ISCEV: International
Society for Clinical Electrophysiology of Vision; LLE:
Largest Lyapunov Exponent; LP: Linear Prediction; KZA:
Kolmogorov–Zurbenko Adaptive;mfERG:multi focal Elec-
troretinogram; MP: Matching Pursuit; NA: Not Available;
OPs: Oscillatory Potentials; PCA: Principal Component
Analysis; PERG: Pattern Electroretinogram; RGCs: Retinal
Ganglion Cells; PhNR: Photopic Negative Response; PSD:
Power Spectral Density;RP: Retinitis Pigmentosa;SD: Stan-
dard Deviation; STFT: Short-Time Fourier Transform;VEP:
Visual Evoked Potentials;WA:Wavelet analysis.
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