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ABSTRACT Blood pressure (BP) is an important clinical vital sign that varies from beat-to-beat. Nev-
ertheless, these variations cannot be captured by the conventional cuff-based BP monitors. This study
proposes and evaluates novel cuffless frameworks to continuously estimate the 10-beat averaged systolic
BP (SBP) and diastolic BP (DBP) during dynamic exercise by fusing information from multiple biosensors
using five machine learning algorithms. Over 100 thousand beats of data were collected from 62 subjects
(aged 59± 10 years), each underwent a maximal exercise stress test. The average length of recording for
each subject was 35 minutes. The BP ranges were 75-280 mmHg for SBP and 36-157 mmHg for DBP
respectively. Multiple physiological parameters were measured continuously and used as inputs to five
machine learning algorithms for estimating the 10-beat SBP and DBP averages before, during and after
the cycling exercise. The mean absolute error (MAE) of Gaussian process regression (GPR) model was
4.8 mmHg and 3.4 mmHg for SBP and DBP, respectively. The MAE of multiple linear regression (MLR),
regression tree (RT), ensemble of trees (ETs), and support vector machine (SVM) models varied from
6.1 mmHg to 17.6 mmHg and from 4.0 mmHg to 9.7 mmHg for SBP and DBP, respectively. The GPR
model outperformed the other four models and showed promising results in estimating the 10-beat averages
of both SBP and DBP without a cuff in a general elderly population under dynamic conditions.

INDEX TERMS AI-doscopist, cuffless blood pressure, machine learning, big data analytics, wearable
sensing, sensor network.

I. INTRODUCTION
Hypertension remains one of the leading causes to global
morbidity and mortality for over half a century [1]. Hyper-
tension is treatable by improving awareness of lifestyle and
promoting health behaviors. Diagnosis rate of hypertension
is, however, as low as 46%, and only about a third of those
diagnosed are adequately controlled [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was S. M. Rezaul Hasan .

According to the Systolic Blood Pressure Intervention
Trial (SPRINT) [3], ambulatory blood pressure (BP) moni-
toring will help improve the awareness and management of
hypertension. Nevertheless, existing ambulatory BPmonitors
are mostly developed by the oscillometric approach, which
operates based on the inflation and deflation of a brachial
cuff. These devices can only provide a snapshot of BP.
Although continuous BP can be obtained noninvasively by
tonometry and volume-clampmethods, thesemethods are rel-
atively cumbersome. Tonometry requires frequent calibration
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as well as applanating the artery using a probe which has been
proven difficult; while volume-clampmethods used inflatable
cuffs in the design and are disruptive during ambulatory mon-
itoring, especially during sleeping [4]. A recent study devel-
oped a smartphone-based device based on the oscillometric
technique for cuff-less and calibration-free monitoring of BP,
however, it can hardly be applied to long-term continuous BP
or nighttime BP measurements as it requires human finger
pressing during measurement [5].

Alternatively, pulse transit time (PTT) or its reciprocal –
pulse wave velocity (PWV) has been investigated extensively
as a surrogate of BP for continuous and wearable cuff-less
BP measurement over a decade [6]. PTT is the time delay
for a pressure wave to propagate between two arterial sites
(typically between a proximal site and a distal site). Governed
by the wave propagation theory, PWV is determined by
the arterial elasticity which depends on BP. Thus, PTT is
inversely related to BPmathematically. PTT can be estimated
from different biosensors, e.g. electrical, optical, mechanical,
bioimpedance, magnetic and radar [4]. In practice, one of
the most widely used methods for PTT measurement (i.e.,
pulse arrival time, PAT) is by calculating the time interval
between the R-peak of the electrocardiogram (ECG) and
a characteristic point (i.e. foot or peak) of the peripheral
photoplethysmography (PPG) in the same cardiac cycle. PAT
contains a pre-ejection period (PEP), which is a confounding
factor influencing relationship between PAT and BP [7], [8].
Nevertheless, PAT methods are still commonly used for cuf-
fless BP estimation attributed to its great convenience.

The BP-PTT relationship depends on the mechanical
property of the arterial wall comprising elastin, collagen
fibers and smooth muscle cells (SMCs). Innervated by the
autonomic nervous system (ANS) and regulated by the
neuro-humoral factors, SMCs can actively contract/dilate to
alter the elasticity of arterial wall and the BP-PTT relation-
ship. Therefore, vascular tone which represents the activation
level of SMCs, is another essentially important factor that
influences PTT-based BP estimation in addition to PEP. Our
previous study showed that PTT can be used to estimate
24-hour ambulatory blood pressure [9], but clearly demon-
strated a hysteresis phenomenon against SBP during dynamic
exercise [10]. It was recently suggested that this is partly
because the derivations based on the Moens–Korteweg (MK)
and Hughes equations relied on assumptions that do not
hold for human arteries and that the artery hyperelastic
model should be used to describe the relationship between
BP and PWV [11]. Moreover, as peripheral arteries contain
more smooth muscles than central arteries, these influences
become even more prominent when using peripheral pulses
to calculate PTT or PAT [4].

Although biophysical models were important to under-
stand the basic underlying mechanism, these models often
felt short in describing the system under a complex situation
when the parameters of different submodules were inter-
related and the relationship between different submodules
were not completely known. On the other hand, a recent

direction is to incorporate machine learning (ML) techniques
and pulse wave analysis for BP estimation [12]. In particular,
since the waveform of a peripheral pulse obtained by PPG
depend on multiple factors of the cardiovascular system, such
as BP, contractile force of the heart, and elasticity of the
arterial wall [13], PPG waveform features have been often
used together with PTT for estimating BP using ML tech-
niques. Various ML regression techniques have been inves-
tigated [14]–[17], nevertheless, most of these studies were
conducted in static conditions, while studies on estimating
BP in dynamic conditions, e.g. during exercise when BP of
each subject varied greatly, were quite limited.

In this study, we aim to evaluate novel frameworks to
estimate beats-to-beats SBP and DBP by fusing information
from multiple biosensors using five ML techniques: multiple
linear regression (MLR), regression tree (RT), ensemble of
trees (ETs), support vector machine (SVM) and Gaussian
process regression (GPR). Specifically, we focused on the
complex relationship between BP and features fromwearable
sensors (i.e. PTT and PPG waveform features) on elderly
subjects during maximal exercise stress test. The physio-
logical conditions was chosen based on the fact that abnor-
mal BP responses during and after exercise are associated
with heightened cardiovascular risk that may be unnoticed
by conventional resting BP screening methods. In addi-
tion to its prognostic value, continuous monitoring of BP
during exercise is also desirable as it can be important exter-
nal trigger of cardiovascular events, especially in elderlies
whose arteries are often stiffer and less able to absorb BP
surges [18].

II. METHODOLOGY
A. SUBJECTS
Sixty-two subjects (aged 59± 10 years) participated in the
experiment. Amongst them, 22 were healthy, 16 were with
different cardiovascular risk factors (i.e., hypertension), and
24 were diagnosed with different CVDs, demonstrating
large differences in CVD status in the population. Figure 1
shows the clinical characteristics of these subjects. The
study was approved by the Joint Chinese University of
Hong Kong – New Territories East Cluster Clinical Research
Ethics Committee. Each subject signed the informed consent
before participating in the experiment.

FIGURE 1. Clinical characteristics of the subjects participated in this
study.
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B. EXPERIMENT PROTOCOL
The experiment was conducted at least 1 hour after meal
in a standard patient room with temperature kept at 25 ◦C.
Specifically, each subject underwent a maximal stress test
in supine posture in a bed with his/her feet putting on a
bicycle ergometer. A mercury sphygmomanometer was con-
nected to an automatic auscultative BP meter (GE Case 8000,
Germany) by a Y-tube. The cuff BP was taken by a reg-
istered nurse every 2 minutes on the right arm of the
subject. Continuous ECG and cardiac output (CO) were
obtained by an impedance cardiographic device (Physio Flow
PF-05, Macheren, France) from the subject’s chest. Con-
tinuous BP was measured by Finometer (Finapres Medical
System, Netherlands) from the left arm. Continuous PPG
was acquired from the left index finger by using an in-house
made acquisition device. Details of the specifications of the
in-house system can be found in [19]. All data during the
whole experiment were sampled at 1 kHz by a data acquisi-
tion system (DI220, DATAQ Instruments WinDaq, USA) and
stored for further analysis.

After a 10-min rest, the bed was tilted towards the left-hand
side of the subject by 20◦–30◦ in order to avoid potential
hypotension due to compression of the inferior vena cava. The
subject was asked to start riding the bicycle at workload that
began at 25W and increased by 25W every 2 minutes until it
reached the tolerant limit of the subject. The workload was
then kept at the tolerant limit until the subject reached his/her
target heart rate (HR) [85% × (220 - Age)] or exhaustion.
Then, the subject stopped riding and lie still on the bed to
recover. The recovery phase lasted until CO returned to the
baseline or at most for 15 min. The experimental protocol is
presented in Figure 2.

The detailed protocol has been reported in [10]. Nonethe-
less, the subject pool included in this study was slightly
different since subjects with Finapres BP failure or subjects
whose PPG features cannot be extracted were excluded in the
following analysis.

FIGURE 2. An overview of the experimental protocol.

C. SIGNAL PROCESSING
Continuous ECG, PPG and Finapres BP were used in this
study. To remove noise and artifacts, the acquired ECG were
filtered by a zero-phase low-pass filter with cutoff frequency
at 30 Hz. PPG and Finapres BP were processed by the same

FIGURE 3. An illustration of the detection of the characteristics points on
the physiological signal.

type of low-pass filter at 16 Hz. The raw and filtered signals
were presented in Figure 3. The 1st and 2nd derivatives of
PPG were obtained by applying a finite impulse filter (FIR)
differentiator on the PPG and 1st PPG derivative, respectively.
Beat-to-beat SBP andDBPwere extracted from the peaks and
foots of Finapres BP respectively.

D. FEATURE EXTRACTION & SELECTION
The subjects were required to perform a lower body cycling
exercise whilst signals were acquired from their chest
and fingers simultaneously. The signal quality was gener-
ally good, but occasionally affected by motion. Therefore,
the noisy episodes were manually removed after visual
inspection. Outliers of each feature were also removed by
thresholds. Around 72% of data were used in this study.

As shown in Figure 3 and 4, characteristic points of the
waveforms of ECG, PPG, as well as the 1st & 2nd derivatives
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FIGURE 4. Definitions of the features extracted from electrocardiogram
(ECG), photoplethysmogram (PPG) and the derivatives of PPG.

of PPGwere identified, fromwhich a set of features were cal-
culated. The peaks of the 2nd derivative of PPGwere extracted
based on the definition in [20]. Peaks a and b were defined
as the first peak and first valley of 2nd PPG derivative, and
peak e was identified as the highest peak after peak b in the
same cardiac circle. Peaks c and d, which were defined as
the first peak and valley following peak b respectively [20],
were unobvious in this dataset and hence were not used in this
study.

SBP, DBP and all extracted features were averaged for
every 10 non-overlapping beats of data. An additional
feature – RRIV were calculated by the standard devia-
tion (SD) of RRI of the 10 beats. To test the significance of
features relating to BP, correlation analysis was performed
between each extracted feature and SBP, DBP respectively.
Features that had correlation with BP lower than 0.1 were
discarded and were not used in further analysis. Five personal
demographic parameters including age, weight, height, body
mass index (BMI) and gender of subject were added in the
feature set. As gender is a categorical parameter, it is defined
as 1 for male and −1 for female. All selected features were
then standardized to have zero mean and unit standard devi-
ation before the next stage of analysis.

E. MACHINE LEARNING MODELS
Five ML regression methods were under investigation.
Selected features served as inputs, while BP was considered
as the targets. All algorithmswere implemented inMATLAB.

• Multiple linear regression (MLR): MLR attempts to
model the relationship between two or more variables
and a response variable by fitting a linear equation

to observed data. It has the advantage of displaying a
weight for each feature showing its contribution [21].

• Regression tree (RT): RT is interpreted by building a tree
structure. It sub-divides or partitions the space into small
regions to deal with nonlinear and complex datasets. The
problem is that they may create over-complex structures
that do not generalize well 14].

• Ensemble of Trees (ETs): it is a model consisting of
a weighted combination of multiple regression trees
which aims to create a strong leaner by pulling together
a set of weaker learners. Boosted and bagged methods
were considered in this study.

• Support vector machine (SVM): SVM is one of the most
powerful ML algorithms for its capability of creating
strong models with reasonable training effort and high
noise tolerance [14]. Different kernels including linear,
quadratic, cubic and Gaussian functions were tested to
obtain optimal performance.

• Gaussian Process Regression model (GPR): GPR is
nonparametric kernel-based probabilistic model and
has recently been evaluated in cuffless BP estimation
task [15]. In this study, 4 kernel functions: rational
quadratic, squared exponential, Matern 5/2 and expo-
nential functions were investigated in the study.

Five-fold cross validation was used to test the performance
of the above regression models. Specifically, all data points
were randomly divided into 5 equal folds. For each regression
method, a model was built on 4-folds of data and tested in
the remaining 1-fold of data. The process was iterated for
5 times and the averaged results were reported. To avoid
possibly overfitting the training data in each fold, a heuristic
procedure was adopted to determine the hyperparameters
of each model [22]. Figure 5 shows the workflow of the
study.

Unpaired student’s t-test was employed to test the sig-
nificance of differences in physical parameters between the
two groups in Table 1. The mean absolute error (MAE),
mean error (ME), standard deviation (SD), as well as
squared correlations (r2) between reference and estimated
BP were used as metrics for evaluating the different
models.

FIGURE 5. A block diagram of the workflow of the study.
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TABLE 1. Demographic description of all subjects.

III. RESULTS
Table 1 summarizes the demographic characteristics of the
sub-groups of subjects. There were no significant differences
in age, height, weight and resting SBP & DBP between the
three subject groups while BMI was significantly larger in the
CVD patients than in the healthy subjects.

The average length of recording for each subject was
35 minutes. Average time taken for reaching target HR
since the start of exercise was 16.5 minutes, and average
duration of recovery was 13.8 minutes. The BP ranges
were 75-280 mmHg for SBP and 36-157 mmHg for DBP
respectively. Totally 101,270 beats of data were collected

FIGURE 6. Data distribution for SBP and DBP.

from all subjects. The distributions of the 10-beat averaged
SBP and DBP were shown in Figure 6. Details of the features
and correlation between each feature and SBP and DBP
were listed in Table 2. Two features (e_aR and ea_Lag)
were discarded for the estimation of SBP and three features
(DC_Amp, fp_Lag and ba_Lag) were discarded for the esti-
mation of DBP due to their low correlations with SBP and
DBP respectively. Therefore, 20 and 19 features were used
for SBP and DBP regression respectively.

Table 3 compares the performance of the 5 models in esti-
mating SBP with the criteria set out by the AAMI standard.
‘‘Gaussian’’ and ‘‘rational quadratic’’ kernel worked best

TABLE 2. Description of features extracted from ECG, PPG and 1st & 2nd derivatives.

VOLUME 9, 2021 115659



Q. Liu et al.: Beats-to-Beats Estimation of BP During Supine Cycling Exercise

TABLE 3. Performance of the 5 models in estimating SBP and DBP.

for SVM and GPR model respectively. ‘‘Bagged’’ method
showed better results than ‘‘Boosted’’ method for the ETs
model. The MAE, ME, and SD of the estimation differences,
as well as the squared correlations between the estimated and
reference BPwere presented. GPRmodel achieved the lowest
MAE and SD, as well as the highest correlation between the
estimated and reference values for both SBP and DBP.

Bland-Altman plots and scatter plots for GPR model were
shown in Figure 7. Figure 8 shows the evaluation of the GPR
model under the IEEE standard for wearable cuffless blood
pressure measuring devices (IEEE Standard P1708) [23].
Absolute mean differences vs. standard deviation of differ-
ences between the reference and estimated BP were shown
for each subject. Figure 9 shows the best case and the
worst case scenarios for the estimation of SBP by the GPR
model.

FIGURE 7. (a) Bland-Altman plot and (b) Scatter plot for the estimation of
SBP by the GPR model. (b) Bland-Altman plot and (b) Scatter plot for the
estimation of DBP by the GPR model.

FIGURE 8. The mean differences vs. standard deviation of differences
between BP estimated by the GPR model and the reference BP of each
subject. The graphical representation is one way of plotting the
measurement differences according to the IEEE Standard on cuffless
wearable blood pressure measuring devices (P1708).

IV. DISCUSSION
Continuous and ubiquitous BP measurement has been a pop-
ular research topic for the last two decades. PTT/PWV based
approaches enable cuff-less and wearable measurement of
BP. Most of the previous studies focused on deriving the

FIGURE 9. Typical time series examples of SBP estimations from different
models. (a) subject of smallest MAE with GPR model; (b) subject of
largest MAE with GPR model.
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mathematical models between PTT and BP, and estimating
BP mainly from PTT.

Nevertheless, the PTT-BP relationship exhibits high non-
linearity and complexity [10]. Influences of confounding
factors such as PEP and vascular tone must be taken
into account in order to ensure accurate measurement in
dynamic situations. Under these situations, the traditional
mechanism-based models are insufficient to describe the
complex system and realize reliable BP estimation. Due to the
increasingly powerful computational resources, data-driven
cuff-less BP measurement based on ML techniques as pre-
sented in this study is achievable nowadays. Beats-to-beats
estimation of BP without a cuff is possible.

A. ML BASED CUFFLESS BP ESTIMATION
DURING EXERCISE
Different ML techniques have been studied for estimat-
ing cuffless BP from ECG and/or PPG sensor features,
including regularized linear regression [14], decision tree
regression [14], and adaptive boosting [14], ridge linear
regression [16], multilayer perceptron neural network [16],
SVM [14], [16], random forest [14], ]16], Deep Belief Net-
work [24], and artificial neural network (ANN) [17]. These
studies attempted to estimate BP using data collected either
from subjects under relatively stable conditions in caring
centers of hospitals [16], [24] or from a public physiological
database (i.e. MIMIC II) [14], [17].

Measuring BP during exercise is challenging but impor-
tant, as exercise can be an important trigger of cardiovascular
events. Moreover, accurate and continuous tracking of BP
in dynamic conditions can provide novel opportunities for
research and clinical assessment [25]. Studies that exam-
ined ML-based continuous BP estimation during exercise
were few. One study [26] examined cuffless BP estimation
before and after rope skipping exercise usingMLR and SVM;
however, the accuracywas low during follow-up experiments.
Another study [21] estimated cuffless SBP by MLR during
physical exercise, using PPG and ECG sensor features col-
lected at rest for calibration. Both studies were conducted
on healthy young subjects with exercise intensities that were
much smaller than our study. To our best knowledge, ourwork
is the first study to investigate ML-based approaches for the
continuous beats-to-beats estimation of cuffless BP during
physical exercise on a general elderly population. These sub-
jects were more susceptible to develop cardiovascular events
than the healthy, young subjects when their cardiovascular
system were stressed.

B. CHALLENGES IN THE EXTRACTION OF PPG FEATURES
PPG contour analysis provides valuable information about
the cardiovascular system. For example, time interval and
amplitude ratio between the first and second PPG peaks are
related to arterial properties and vasomotor tone [13], [27].
PPG AC amplitude is determined by the cardiac synchronous
changes in the blood volume with each heartbeat, while
its DC amplitude is influenced by respiration, sympathetic

nervous system activity and thermoregulation. Both param-
eters were able to partly reflect the regulation of the
cardiovascular system during exercise. On the other hand,
the PPG waveform is also affected by temperature and
sensor-contact force [28]. In this study, PPG signal was col-
lected from the subjects’ finger which was kept still during
the experiment in order to minimize the influence of contact
force. Finger temperature reflected thermoregulation, which
is weakly related to SBP [29] and confirmed in the correlation
analysis shown in Table 2.

Features related to the second peak of PPG were not
included in this study in spite of their physiological meaning.
We observed that the PPG morphology evolved along with
the progression of graded exercise. The PPG waveforms of
the same subject have either one significant peak, multiple
peaks or no obvious peak at diastole during different phases
of exercise. In fact, it is well accepted that PPG includes
three elements, i.e., main forwarding wave and two reflection
waves, i.e. a tidal wave and a dicrotic wave. The observation
may due to the unnoticeable first reflection wave and high-
lighted second reflection wave, and reduced PWV caused by
muscle vasodilation and decreasedmuscle vascular resistance
during exercise in response to increased demand of oxygen
and other nutrients for muscle. Meanwhile, motion artifacts
may also contribute to the phenomenon. Therefore, only fea-
tures from PPG and its derivatives that were relatively stable
and robust during the whole process were used.

Around 28% of data were discarded due to waveform
distortions caused by motion in one of the signals, reveal-
ing challenges of feature extraction in such a condition.
To address this question, sensor design and other features that
represent the waveform, such as PPG spectral characteristics,
can be investigated in the future. Other methods such as a
genetic algorithm-based feature selection method can also
help in identifying the most appropriate features for cuffless
BP estimation [26].

C. POTENTIAL OF THE PROBABILISTIC
NONPARAMETRIC MODEL
Five ML regression models were investigated in this work.
The performance of MLR, RT and ETs were unsatisfac-
tory, indicating that the relationship between BP and the
wearable sensor features were non-linear. The differences
between the reference and estimated DBP using RT, ETs,
SVM were within 5± 8 mmHg; however, the estimation
differences were above 5± 8 mmHg for the estimation of
SBP using these models. On the other hand, the probabilistic
nonparametric GPR model fully complied with the AAMI
standard in terms of both ME and SD and also outperformed
the other four models in terms of MAE for the estimation
of both SBP and DBP. In fact, GPR can be interpreted as a
Bayesian version of SVM. It is therefore not surprising that
SVMwith Gaussian kernel obtained the second best results in
this study. Specifically, being a probabilistic nonparametric
ML approach, GPR did not attempt to fit the data by using
a fixed class of function. GPR can avoid errors induced by
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the inappropriate assumption on the underlying functions
used by the parametric methods like MLR or SVM with
linear kernels. Instead, GPR considers an infinite number of
functions by assuming a prior over them. As practical prob-
lems normally ask only for properties of functions at a finite
number of data points, GPR is computationally tractable.
Moreover, GPR presents great flexibility in the functions
when additional observation arrives [30].

D. FUTURE WORK
Five-fold cross validation method was used in this study.
In the future, the leave-one-subject-out cross validation can
be tested when the subject pool is increased and personalized
calibrationmethods are employed.Moreover, follow-up stud-
ies are required to confirm whether personalized calibration
will further reduce the estimation differences and whether
these training weights can hold valid for a longer period than
previous studies [19].

The results of this study showed that the probabilistic
nonparametric GPR model can better described the inherent
complex relationship between BP and the selected wearable
sensor features. The GPRmodel has great potential for devel-
oping future cuffless BP estimation systems.

V. CONCLUSION
The main objective of this study is to evaluate five ML
techniques in modeling the complex relationship of BP and
wearable sensor features during supine cycling exercise in
a cohort of elderly subjects. The results suggested that the
probabilistic nonparametric GPR method has the potential to
describe this relationship and achieve an estimation differ-
ence that is acceptable by both the AAMI and IEEE Standard
for BP measuring devices. The estimation differences (MAE,
ME±SD) for the GPR models were (4.8, 0.0 ± 6.9 mmHg)
and (3.4, 0.0± 4.9 mmHg) for the 10-beat SBP and DBP
averages, respectively. None of the other four methods can
model the estimation of SBP to an estimation difference that
is acceptable by the AAMI or IEEE Standard. The work
is fundamental for the future development of cuffless BP
estimation systems, particularly in selecting the optimal esti-
mation models for these devices.
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