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ABSTRACT With the recent increase in the number of earthquakes in Korea, research efforts have been
directed toward the real-time detection of earthquakes and the formulation of evacuation plans. Traditional
seismometers can precisely record earthquakes but are incapable of processing them on-site to initiate an
alert and response mechanism. By contrast, internet of things (IoT) devices equipped with accelerometers
and CPUs can record and detect earthquake signals in real time and send out alert messages to nearby users.
However, the signals recorded on IoT devices are noisy because of two main factors: the urban buildings and
structures these devices are installed in and their cost–quality trade-off. Therefore, in this work, we provide
an effective mechanism to deal with the problem of false alarms in IoT devices. We test our previously
proposed artificial neural network (ANN) with different feature window sizes ranging from 2 seconds to
6 seconds and with various earthquake intensities. We find that setting the size of the feature window to a
certain interval (i.e., 4–5 seconds) can improve model performance. Moreover, an evacuation route guidance
platform that considers user location is proposed. The proposed platform provides and visualizes information
to user devices in real time through the communication between server and user devices. In the event of a
disaster, safe shelters are selected on the basis of the information entered from the server, and pedestrian
paths are provided. As a result, the direct and secondary damages caused by earthquakes can be avoided.

INDEX TERMS Earthquake, artificial neural network, low-cost MEMS sensor, evacuation.

I. INTRODUCTION
As themillions of earthquakes have been observedworldwide
over the past 100 years, the resulting casualities are severe [1].
According to the average annual statistics for earthquake [2],
an average of 27,000 people loses their lives every year and
most injuries or deaths usually result from secondary events,
such as the collapse of buildings and structures during evac-
uation [3]. Therefore, significant efforts have been exerted
to accurately detect earthquakes in real time and provide
appropriate action plans.

To detect earthquakes, a traditional approach calculates
averages of accelerations for short and long time peri-
ods (i.e., STA/LTA) [4] and determines an earthquake if
a sudden change occurs. Given its deterministic behavior
and low computational cost, STA/LTA has been widely
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used in the last several decades. However, because of its
straightforward detection mechanism, it is not suitable in
noisy environments, in which STA/LTA’s accuracy is greatly
reduced because of low-quality data. Hence, recent research
efforts have focused on incorporating machine learning
approaches [5].

Internet of things (IoT) devices equipped with low-cost
accelerometers have recently been proposed as tools for
real-time earthquake detection [6]. MyShake is the first effort
to involve smartphones as a seismic sensor. When a smart-
phone running an application detects an earthquake, the appli-
cation forwards the data to the cloud for further processing to
confirm an earthquake event [7]. In our prior work [8], [9],
we introduced a standalone device that processes acceleration
signals and alerts nearby users when an earthquake occurs.
Citing the success of deep learning technologies, we adopted
a lightweight convolutional neural network with a recurrent
layer before the dense layer [10] to detect earthquakes among
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widely scattered sensors across the country and achieved 99%
accuracy.

In this article, we introduce a newer version of the
earthquake alert device consisting of two main mod-
ules for detecting earthquakes in real time and providing
response services. The detection module detects earthquakes
by using a state-of-the-art machine learning methodology,
so that it can accurately discriminate earthquake data from
non-earthquake data that include noise data that are gener-
ated from artificial or natural sources such as winds, human
activities, etc.

In addition, in the event of an earthquake, people usually
have difficulties in escaping dangerous areas because of the
lack of information about evacuation routes or shelter loca-
tions, and also they have less perception of disaster risk [11].
Given the importance of quick evacuation to safe zones [12],
evacuees need to be provided with the safety information
including road hazards, the level of road and shelter conges-
tion, and the presence of risk factors. Therefore, as soon as the
earthquake alert device detects an earthquake, it broadcasts an
alert through a broadcasting facility and sends out alert mes-
sages to nearby devices via multiple communication channels
including Ethernet, Wi-Fi, and Bluetooh. Then, the nearby
devices provide safety information based on the received alert
message.

The contributions of this work are as follows:

• We developed an earthquake alert device that uses
a low-cost accelerometer to monitor shakings and
provides appropriate response services in case of
earthquakes. To accurately detect an earthquake,
we improved the machine-learning approach that we
introduced in our prior work [9],

• We improved the earthquake detectionmodel introduced
in our prior work work [9] to reduce false alarms by
increasing the size of a feature window.We first assessed
how different sizes of the data input window affect
the performances of multiple machine-learning based
approaches which have recently been employed for
earthquake detection using low-cost accelerometers [7],
[9], [10]. As a result, the improved model achieved the
accuracy from 94% to 97%.

• We implemented an evacuation guidance application
that suggests nearby shelters based on a user’s location
in the event of an earthquake. The application provides
real-time warnings about an earthquake event and infor-
mation about evacuation routes to help users quickly
evacuate to the nearest shelter.

This article is structured as follows. Section II describes
the research efforts related to the preceding background
technologies, and Section III describes the developed earth-
quake alert device and its software system. Section IV
describes the evacuation guidance application. In Section V,
we evaluate the developed earthquake alert device and its
detection algorithm. Section VI presents the summary of
this work.

II. RELATED WORK
The idea of earthquake early warning (EEW) was initiated
in [13], in which they installed seismic sensors in California
and once an earthquake is detected, they send a signal to
nearby cities through telegraph. In the past few decades, EEW
had been actively adopted in several countries [14]–[16] suf-
fering from earthquakes and showed its usefulness and effec-
tiveness. However, such systems are regional and use conven-
tional high-quality seismometers. Moreover, the monitoring
is performed by state-of-the-art conventional algorithms.

Conventional seismic methods involve computations and
statistical observations to detect earthquakes in a wave-
form [17]. Many algorithms were proposed in the field of
seismology but they are rarely used and only a few of them
are applicable in real-time network’s [18]–[20]. However,
the precision of these methods is average and in a noisy
environment it cannot be used as the main detection method.

Alternative approaches to traditional EEW have recently
been developed on the basis of IoT devices equipped with
low-cost accelerometers [8], [21]. These devices are installed
in urban areas that can generate noise data because of not
only sensor quality but also human involvement. Apart from
such standalone approach, some systems leverage the increas-
ing application of smartphones, e.g., MyShake [7]. In such
approaches, traditional methods of thresholding are not suffi-
cient to discriminate noise data from earthquake data; hence,
machine learning approaches have attracted increasing atten-
tion because of their intelligent probabilistic behavior [22].

Recently, researchers cast earthquake detection as a super-
vised machine learning problem and proposed a variety of
machine learning models. They take the advantage of deep
learning methodology which has been successfully used in
different domains [23], [24]. Deep convolutional models have
been proposed to detect earthquake, location, P-wave, and
determine the first motion polarity of an earthquake [25],
[26]. In CRED [27], the authors proposed a 2D convolu-
tional model where the deep layers contain bidirectional
long short-term memory units to extract an earthquake seg-
ment from a 2D spectrogram of a 30-seconds earthquake
waveform. Similarly, PhaseNet and EQTransformers [28],
[29] have utilized the U-Net [30] architecture to segment
P and S-wave from a raw waveform of a 30-seconds and
60-seconds respectively. These methods achieved very high
performances, however, these are proposed for the offline
earthquake detection problems and their applications in the
IoT devices with constraint resources and time (the length of
input window) are not possible. Moreover, these methods are
designed for seismometer data of good quality, and devices
are installed at secure sites with minimal human noise. In our
prior work [10], we proposed the first lightweight convolu-
tional recurrent neural network (CRNN) that operates on only
a 2-second input waveform.

To realize earthquake detection by using low-cost MEMS
sensors, in our prior work [9], we used a simple machine
learning technique that takes the characteristics of earth-
quakes as a feature. Depending on operational environments,

VOLUME 9, 2021 121965



S. Kim et al.: Earthquake Alert Device Using Low-Cost Accelerometer and Its Services

FIGURE 1. Approach overview.

different features and models were evaluated, and then we
determined the most suitable machine learning-based model
that can be used for both calm and noisy situations. However,
there is relatively a high chance of false alarms when we use
the model for low-cost MEMS sensors.

To find safe evacuation routes to destinations on the basis
of user location after a disaster [31]. GPS data and accelerom-
eter data from users’ smartphones were collected to esti-
mate safe paths and generate evacuation maps. In addition,
the study did not use basic map data, and evacuation routes
were identified on the basis of the safety of evacuation routes,
evacuation distances, and evacuation times. However, the sta-
bility of evacuation routes remains limited in terms of route
length and evacuate time, and the criteria for destinations are
ambiguous. In addition, the safety about evacuation routes is
only assessed, and no service is provided for users.

III. EARTHQUAKE ALERT DEVICE
In this section, we describe the development of the earthquake
alert device including its hardware and software.

A. APPROACH OVERVIEW
Figure 1 shows the architecture of the proposed earthquake
detection model.

When an alert device installed in a building detects noise,
it triggers the earthquake detection model. Using the trained
model, the device determines whether the noise data are
seismic data in the earthquake detection module. When the
input data is determined to be seismic data, then the service
model provides two services. First, the alert service can be
provided through built-in speakers by sending information to
the alert device installed in the building. Second, the evacua-
tion service also sends information about the evacuation route
to the user’s mobile device, thereby allowing the user to safely
escape dangerous areas and evacuate to a safe shelter.

B. HARDWARE SYSTEM DEVELOPMENT
The developed earthquake alert device is manufactured using
an integrated PCB and a Raspberry compute module. It also
has a smoke detection sensor for fire alarms and a speaker for
broadcasting. Figure 2 shows the developed device and its
external ports including RS-485, Ethernet, USB, and audio
ports. The system can be connected directly to a broadcast-

FIGURE 2. Earthquake alert device.

ing facility installed in a building through the audio port or
broadcast an earthquake alarm within a limited area using the
built-in speaker.

The earthquake alert device is easily affected by the sur-
rounding environment, including the operating temperature,
electromagnetic waves, heat, noise, and vibration. In the fol-
lowing discussion, we describes the effects of the surrounding
environment to the earthquake alert device.
• Operating temperature: Low temperatures can cause
problems such as delays in data processing or power
cuts. By contrast, high temperatures can affect the MCU
or other equipment. Therefore, installation guidelines
should specify the need to avoid cooking facilities,
heaters, and direct sunlight when installing the earth-
quake alert system.

• Electromagnetic waves: Although the earthquake alert
system can receive frequency interferences from nearby
radio communication devices, the effects of the alarm
due to electromagnetic waves are very limited because
radio communication functions are not used.

• Heat: The heating test using stressberry 1 shows that the
stress situation is above 73 ◦C. Furthermore, the tem-
perature outside the case is affected by the external
temperature rather than the temperature of the board.

• Noise: Noise can degrade the quality of the acceleration
sensor, and it can be detected by the acceleration sensor
because of the large speakers. Considering this factor,
the installation location of the earthquake alert device
must be decided carefully.

• Vibration: The most significant factor affecting the
ability of the device to detect earthquakes is a sudden
spike of acceleration occurring at the hardware level
of the device. The effects of external vibration exert a
significant impact on the seismic detection performance
of the earthquake alert device.

1https://pypi.org/project/stressberry/
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TABLE 1. CRNN model architecture for earthquake detection.

C. MACHINE LEARNING MODELS FOR EARTHQUAKE
DETECTION
We considered three machine learning models for detect-
ing real-time earthquakes by using low-cost accelerometers.
Two of them are based on the traditional ANN models and
comprise three and five input features. The third model uses
a deep neural network that combines convolutional neural
network and recurrent neural network (RNN) models. Below
is the complete description of each model.

1) ARTIFICIAL NEURAL NETWORK WITH THREE INPUTS
(ANN3)
The first model for evaluation is MyShake [7], as it is the
first global real-time earthquake detection algorithm to utilize
low-cost accelerometer sensors. The model architecture of
MyShake is shown in Figure 3a. Themodel has three features:
interquartile range (IQR), zero crossing (ZC) rate, and cumu-
lative absolute velocity (CAV). IQR and CAV constitute the
amplitude feature while ZC is the frequency feature. Herein,
IQR is the mid 50% of the vector sum of three seismographic
components, CAV is the cumulative measure of the vector
sum for the given time window, and ZC is the maximum zero
crossing rate of the three components.

2) ARTIFICIAL NEURAL NETWORK WITH FIVE INPUTS (ANN5)
The second ANN that we selected for evaluation was that
proposed in [9]. Thismodel is similar toMyShake, but it splits
the frequency component into three separate features, namely,
Max ZC,Min ZC, andMax Non-ZC.Max ZC counts the zero
crossings of themaximum acceleration component in the case
of zero crossing at multiple components at the same time; for
single-component zero crossings, it is identical to ANN3’s
ZC feature. Conversely, Min ZC counts the zero crossings of
the minimum acceleration component. Max Non-ZC counts
the frequency ofmaximum acceleration in the absence of zero
crossing. The model architecture is given in Figure 3b.

3) CONVOLUTIONAL RECURRENT NEURAL NETWORK
(CRNN)
We also evaluated the deep neural model used in
CrowdQuake proposed in [10]. The model uses a 1D CNN
with an additional RNN layer before the dense layer.

Themodel architecture is given in Table 1, where C denotes
the convolution and F denotes the fully connected layer. The
CRNN uses a recurrent unit in which the previous output
is fed back with the current input. For example, a 2 s input

FIGURE 3. Earthquake detection models: ANN3 and ANN5.

FIGURE 4. Window-based earthquake detection.

sequence is divided into two subsamples of 1 s each. These
two subsamples are fed sequentially into the model; the out-
put of the first subsample is fed back through the model along
with the second subsample.

4) SLIDING WINDOW-BASED REAL-TIME DETECTION
To further increase the possibility of seismic detection,
we classified the data into two groups on the basis of 4.0 mag-
nitude. At this point, different models were intended to be
applied depending on whether the maximum acceleration
value of the event exceeded the 4.0 magnitude level when
the event surpassed the trigger criteria. The performance was
then measured by increasing the window size for learning
from 2-second to 6-second data. To evaluate the performance
of the proposed model, we compared it with the ANN3 and
ANN5models and the CRNNmodels based on deep learning.

The proposed model performed better on the 6-second data
than on the 2-second data. Therefore, this study adopted a
method of learning that uses a 2-second window simulta-
neously with 2-, 3-, and 4-second windows for earthquake
detection. Moreover, the method detects earthquakes bymov-
ing each window for 1-second at a time.

Figure 4 schematizes the use of different window sizes.
As seismic detection lasted up to 10 seconds, the 2-, 3-, and
4-second windows are run 9, 8, 7 times, respectively. The
computational time is acceptable for the real-time processing.

D. DATA MANAGEMENT
The earthquake alert device periodically transmits status
information and data together with the event information to a
management server when an event occurs. At present, when
events due to earthquakes and motions exceeding a certain
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FIGURE 5. Metadata for storing events for seismic alarms.

threshold (0.002 g), and acceleration data are sent for post-
analysis.

When an earthquake occurs, the earthquake alert device
sends the recorded acceleration data to a proxy server, which
then forwards the data to the data processing server. The event
data sent to the data processing server are then stored in the
database after frequency component analysis. Furthermore,
the results of the frequency component analysis are graph-
ically represented and stored as an image file for retrieval.
The event and acceleration data are stored in the database,
with the event data viewable by the administrator through a
web server.

Figure 5 shows the metadata of the acceleration data for
storing events recorded by the earthquake alert system. The
database consists of two types: event and seismic activity data
stored together and device information. The types of data
stored in the database consist of acceleration instrumentation
data and metadata for earthquake alerts. The acceleration
instrumentation data are divided into event data and seismic
data. Event data include all vibrations over a century applied
to the earthquake alert system, and seismic data include the
seismic behavior by seismic detection algorithms.

E. TESTBED
For the testbed, we installed the developed devices at 29 pub-
lic service offices located in three different cities. The devices
are connected to the management server via the internet,
and status messages and important events are sent to the
management server for further analysis.

The collected data are used to analyze the environmental
characteristics of the installed location and issued alarms.
Noise data or non-earthquake event data are used for the
model training. The event data are analyzed to determine a
threshold triggering an earthquake detection model. Figure 6
shows the peak ground acceleration (PGA) distribution plot
of events collected from a normal device. Initially, we set the
trigger threshold to 0.001 g, however, the device reported too
many triggers in a short time period. Thus, after analyzing
the noise levels of the installed devices, we set the trigger
threshold to 0.0025 g to reduce the number of seismic data
records. Because devices has different operational environ-
ments, we set different thresholds for them after analyzing all
the triggered events.

IV. EARTHQUAKE EVACUATION SERVICE
The proposed evacuation service visualizes various informa-
tion received from server devices on user devices. In the event

FIGURE 6. The PGA distribution: normal devices and abnormal devices.

of an earthquake, the location of a nearby shelter is indicated
on the map, centering on the user’s location. When the user
is in a specific area or market, the exit of the zone is received
from the server device and selected as a stopover. In addition,
the data received from the alert device [9] and the information
received from server devices are used to determine the safety
of specific areas. After determining the final destination on
the basis of the safety of the shelter determined, the route to
the shelter is provided as a pedestrian route.

A. EVACUATION ROUTE GUIDANCE PLATFORM
The proposed platform provides information to users in real
time and visualizes it. Stored information about nearby areas
of a user’s location is generally provided. In the event of a
disaster, the safest shelter is selected, and pedestrian paths are
provided using the distance between the user and the shelter
and the attribute values received from the server. In addition,
the safety and capacity of the shelter are determined in real
time to rediscover the user’s evacuation route.

B. EARTHQUAKE RESPONSE FRAMEWORK
Figure 7 shows the framework for earthquake response.
It describes the framework in which server devices provide
information, and user devices receive information after disas-
ters such as earthquakes. Through P2P connections to Wi-Fi
Direct, user devices can be located, and messages can be sent
within the specified radius of the server device. In addition,
user devices can receive messages from server devices to
the cloud regardless of the distance between devices. In the
event of an earthquake, information about dangerous areas
and about exits based on user location is automatically down-
loaded and visualized on user devices. The message is deliv-
ered in JSON format.

C. RECOMMENDATION OF EVACUATION PATHS
The proposed evacuation route searching algorithm is
described below.

Input includes location userloc of the user received via GPS
and location safei of the shelter. Safety is determined accord-
ing to the degree of danger of the shelter. Maximum capacity
countmax and current capacity countnow are also measured for
safe shelters. Therefore, the shelter that is closest to the user’s
location and has a large capacity for evacuees is selected. The
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FIGURE 7. A framework for earthquake response services.

Algorithm 1 Algorithm for Searching an Evacuation Path
Input: userloc is the location of device user, safei is the
shelter)
Output: path is the pedestrian route to shelter

1: if recog(userloc) = true then
2: SAFE[]← Min(dis(Userloc, shel[lat][lng]),ASC)
3: if intensity(safei) > α||server(safej) then
4: SAFE[i] = NULL
5: SAFE[j] = NULL
6: end if
7: for each safei in SAFE do
8: update()
9: capacity[]← (countmax − countnow)

10: end for
11: final ← destination(SAFE[i]min, capacity[]max)
12: path← navigate(Userloc)
13: end if
14: return path

information on shelters is updated and reflected in real time
so that users can choose from more than one shelter.

Instead of simply providing a route to a nearby shelter,
the algorithm compares the earthquake measurement data
received from the alert device with the hazard level threshold
to determine the safety of the shelter. It also aims to pro-
vide information on dangerous shelters from server devices,
excludes such locations from the search, and provides routes
to safe shelters.

D. IMPLEMENTATION OF THE EVACUATION SERVICE
Figure 8 shows the implementation of the scenario assuming
that the user is on a certain street in a market and that an
earthquake is occurred. The left figure provides a pedestrian

FIGURE 8. Scenario implementation.

evacuation route to the shelter near to the user’s location. The
alarm broadcasting from the terminal equipment installed in
the customer center in the market determines the dangerous
area in advance and enters the degree of danger of the shelter
in the system. The right figure presents an evacuation route
to a safe shelter provided by the server device, along with
location information for the hazardous area and exit location.
Hazardous zones are marked with a circle, and shelters within
the zones are excluded from the search. The nearest shelter
based on the user’s location is set as the destination.

The proposed system determines the safest shelter depend-
ing on the user’s location in the event of an earthquake
or disaster. It also provides a pedestrian evacuation route
that reflects real-time data so that users can easily move to
shelters. The system marks the location of shelters and a
user collected through GPS on the map. The locations of all
shelters within the scope of the user’s location (special city,
metropolitan city, city) are also provided using the National
Civil Defense Evacuation Facilities2’ standard data. A pedes-
trian evacuation route is generated by determining the safety
of shelters in real time.

V. EVALUATION
In this section, we evaluate our earthquake detection models
using a deep neural network and two artificial neural net-
works using different training methods. We comprehensively
explain the experimental procedures used for the models
under review.

A. DATASET
We use two datasets in our experiments;
• Earthquake data downloaded from the National
Research Institute of Earth Science and Disaster Preven-
tion (NIED) [32]. We downloaded seismograms from
May 1996 to March 2020 and obtained 14,145 earth-
quake records. All the data were normalized (subtracting
mean) and converted from counts to unit g (9.8 m/s2).
Deep net models can be trained on an entire dataset,
whereas traditionalmodels are limited and can be trained
only on a certain range of intensities. Therefore, we cate-

2Shelter data was retrieved from www.safekorea.go.kr on
Oct. 2020.
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TABLE 2. Dataset for the evaluation.

FIGURE 9. Sensors’ noise.

gorized the earthquake data into low- and high-intensity
data. Low-intensity data included earthquakes whose
X-component (EW) PGA is less than 0.05 g. For high-
intensity earthquakes, we selected earthquakes whose
PGA values are greater than or equal to 0.05 g. Table 2
shows the number of earthquakes in each resulting
category.

• This dataset includes recordings collected from
deployed stationary sensors and human activity data
recorded on smartphones. Low-cost accelerometer sen-
sors are usually installed at sites where noise can be
introduced by anthropogenic or natural sources; more-
over, the sensors can themselves introduce noise. There-
fore, we included some human activity and noise data
as a non-earthquake dataset. Human activity data were
recorded onmobile phones for several hours. The dataset
includes recordings of activities, such as bus riding and
staying, indoor and outdoor noise data, and recordings
of shaking desks. We included 1 hour of data from
each of the 20 sensors with different noise patterns
(Figure 9).

B. MODEL EVALUATION
1) PRE-PROCESSING
The data recorded on low-cost sensors usually have intrinsic
noise; we therefore applied a bandpass filter of 0.1–10 Hz
to all the data used. For the traditional machine learning
models, we further applied the standard scaler normalization
to the scaled feature sets to speed up the training process
and increase the performance. Then, to transform the data
collected by the NIED and PEER into data collected by
the sensor environment, we reduced the sampling rate to
50 Hz and inserted the noise collected by the sensor. The data
collected and the existing seismic data were used together
for learning. By reducing the proportion of human movement
data, earthquake-induced shaking was sought from the build-
ing’s constant/emergency vibration data. We also intended
to improve accuracy by learning different models depend-
ing on earthquake magnitude. Figure 10 shows the results
of the addition of the noise data collected by the sensors
to the seismic acceleration values observed at high-quality
stations.

FIGURE 10. Results of data processing by adding noise.

2) MODEL TRAINING
The traditional models were trained on a feature set extracted
from the raw data (X, Y, and Z axis). The deep net model
requires no simplified feature set; it can operate on the raw
data directly. We split the raw data into 70% and 30% for
training and testing, respectively.

We trained ANN3 and ANN5 models on 70% of the earth-
quake data and an equal number of centroids of the
non-earthquake data because the dataset was imbalanced. The
centroids were calculated using the k-means algorithm [33],
where c is equal to the number of earthquake data points
used for training. The non-earthquake data was grouped into
c clusters. For testing, we used the original 30% test data of
the non-earthquake class instead of the centroids so that the
centroids were only calculated for the training data. However,
because the deep net model’s input was simply the raw data,
we resolved the data imbalance issue by computing the fol-
lowing weighted cross-entropy loss function l:

l = −[w0(1− yt ) ln(1− ŷt )+ w1yt ln ŷt ], (1)

where ŷt is the true class label of the input data, and w0 and
w1 are the weights for the non-earthquake and earthquake
classes, respectively. To resolve the data imbalance problem,
w0 = 1 and w1 to be the ratio of non-earthquake data to the
volume of the earthquake data such that the total cumulative
weights for both classes were the same as that used in [10].
We use the same 70% and 30% split of raw data for training
and testing the deep net model, respectively.

3) EXPERIMENTAL SETUP
In the literature, sampling rates of 25, 50, and 100 Hz have
been used to train and test machine learning models. We con-
ducted exhaustive experiments and found that the perfor-
mance of all of these models was relatively unaffected by
varying sampling rates; for this work, we arbitrarily chose
the 50 Hz sampling rate because it is the median sampling
rate found in the literature.
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FIGURE 11. AUROC (Top row) and AUPR (Bottom row) of 6-second earthquake window with 2-, 3-, 4-, 5-, and 6-second feature-window (left to right)
configurations of the models trained with high intensity earthquake data.

The ANN models were implemented in Python
SKlearn [34], and the deep net model was implemented
in Keras libraries [35]. For the ANN models, we used
the stochastic gradient descent optimization function
with the adaptive learning rate of 0.2 for updating the
weights [36]–[38]. To avoid overfitting, we used an early
stopping strategy [39]. The sigmoid activation function that
we used for the hidden and output layers is defined as a
function f on input x as;

f (x) =
1

1+ e−x
(2)

We used the same configuration proposed in [10] for the
deep net model (i.e., backpropagation [40] and mini-batch
gradient descent [41] with the size of 256 and with an
Adam optimizer [42]) to optimize the model parameters and
weights. The training process took 100 epochs, and dropout
was used [43] with a probability of 0.5 at the fully connected
layer.

4) PERFORMANCE MEASUREMENT
We calculated the accuracy (Acc), precision (Pre), and
recall (Rec) from the performance matrices recording true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN) results. Accuracy indicates the overall
performance of the model, precision indicates how accurately
the model predicts earthquakes, and recall denotes model’s
sensitivity. We also showed the receiver operating character-
istic (ROC) curves and precision–recall (PR) curves for all
test cases to show the trade-off between the TP rate and FP
rate and between precision and recall, respectively.

C. RESULTS AND DISCUSSION
We selected the strongest 6-second and 8-second portions
of each earthquake waveform (i.e., earthquake window) and
extracted 2, 3, 4, 5, and 6-second feature windows for training
and testing the models. A threshold value of 0.7 was set
for all experiments. The results of the models trained with
high- and low-intensity data are shown in Tables 3 and 4,

TABLE 3. Summary of the models’ test performance on 30% data, trained
with high-intensity earthquake data.

FIGURE 12. Prediction results of the models (a-c) Models trained with
high intensity earthquake dataset (d) Model trained with low intensity
earthquake dataset.

respectively. In the Setting column, 6s-2s means that the
model was trained with the strongest 6 second portion of an
earthquake and that a 2-second feature window was used.
We tested five feature windows per earthquake sample. All
three models showed very good performance on the 30% test

VOLUME 9, 2021 121971



S. Kim et al.: Earthquake Alert Device Using Low-Cost Accelerometer and Its Services

FIGURE 13. Graphical comparison of the models’ accuracy, precision, and recall with increasing in feature-window size.

TABLE 4. Summary of the models test performance on 30% data trained
with low-intensity earthquake data.

data. The CRNNmodel outperformed theANNmodels for all
metrics. ANN5 performed better than ANN3, particularly as
the feature window size increased. The 6-second earthquake
window size was suitable for the ANN models. On the basis
of the results shown in the tables, we ranked the models in the
following order: CRNN, ANN5, and ANN3.

The AUROC and AUPR of the 6-second earthquake win-
dows (Figure 11) clearly demonstrate the same ranking of
models. CRNN showed almost the same results in every case
andwas invariably the best among the threemodels. The other
two models, however, showed variable results; for instance,
ANN5 showed an increase in performancewhenwe increased
the feature window size, with 4- and 5-second appearing to
be the optimal feature window settings for the model. For
ANN3, AUROC increased when the feature window size
increased, whereas AUPR decreased for the 5 and 6-second
windows (as shown in Figures 11i,11j). As a result, the best

TABLE 5. Models’ comparison with STA/LTA.

configuration in terms of AUROC and AUPRwas determined
to be the 4-second window.

Figure 13 displays graphically the overall test accuracy,
precision, and recall status with respect to the changes
in the feature window sizes of the models. The accu-
racy and recall of ANN5 increased as the size of the fea-
ture window increased, and its precision remained approx-
imately the same. By contrast, ANN3 shows a relatively
low performance, especially when trained with low-scale
earthquakes.

To compare thesemachine learningmodels with traditional
seismic methods, we used recursive STA/LTA to detect the
maximum acceleration of an earthquake in each of the low-
and high-intensity earthquake datasets. Setting the time and
threshold parameters of the STA/LTA is quite difficult; we
used the default setting, due to its optimal results in the
experiments (i.e., 5/10 and 1.5 threshold values). We counted
TP (detected) when the maximum acceleration of an earth-
quake sample was within the 5-second range of the STA/LTA
trigger; otherwise, FN (missed) were counted. We trained the
machine learningmodels on the 2-second earthquake window
with the same length of feature-window, and also on non-
earthquake datasets. In this way, the model’s TP or FN shows
only whether the model detected or missed the maximum
acceleration of an earthquake. Table 5 compares the machine
learning recall rate with the STA/LTA recall rate. The results
of the machine learning models are an improvement over
those of the STA/LTA method.
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1) PREDICTION
We tested the models and the traditional triggering method
(STA/LTA) on the data of real earthquakes that recently
struck South Korea, as recorded on low-cost accelerometers.
All models trained on the high-intensity earthquake dataset
accurately detected the earthquake with a PGA of.06 (Fig-
ure 12a). When we tested these models on low-intensity data
(e.g., PGA of.03), the CRNN model was able to detect more
low magnitude earthquakes than ANN3 and ANN5 (Fig-
ure 12c). The result was expected because traditional models
are trained with two amplitude features and these models can
be affected by earthquake intensity. If we trained the models
on the low-intensity earthquake dataset, then they would be
able to detect very low-amplitude earthquakes (Figure 12d)
but with high probabilities of false alarms. This case is espe-
cially true for ANN3 and ANN5; the mean probabilities of
these two models are higher than that of the CRNN, with
ANN3 having the highest among the three. STA/LTA trig-
gered accurately but with a high probability of false alarms
because of fixed threshold value (Figure 12a and 12b).

2) PARAMETERS
The parameters of a model are the numbers of train-
able parameters (i.e., weights and biases). The numbers
of trainable parameters of CRNN, ANN5, and ANN3 are
340,493, 36, and 26, respectively. Given its deep architecture,
the CRNN comprises a very large number of parameters and
thus requires more memory and computational power than
traditional models such as ANN5.

VI. CONCLUSION
In this article, we aim to develop an earthquake alert device
and its services as well as improving the performance of the
developed device. Using more earthquake dataset and differ-
ent window sizes, we tested recently proposed earthquake
detection models used for IoT devices. As we increase the
window size, all models show promising results, with CRNN
demonstrating the best performance, followed by ANN5 and
ANN3. However, we believe that the deep neural network is
not necessarily the best choice for the earthquake alert device
because of the computational cost. As a result, we use the
ANN5 with variable window sizes ranging from 2 seconds to
4 seconds.

In addition, we implemented an evacuation route guidance
service that provides useful safety information before an
earthquake and the locations of shelters or other safe places
are suggested after an earthquake. The service uses visual
or social data to determine dangerous areas that should be
avoided and then the best route is suggested. In the future
research, we will provide various safety-related services tai-
lored to specific disaster situations.
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