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ABSTRACT Great progress has been made in bifurcation control of systems described by ordinary
differential equations. However, the control of Hopf bifurcation and Turing patterns is seldom reported
in reaction-diffusion systems, which is formed by partial differential equations. In this paper, a hybrid
control synthesis combining state feedback is firstly devised in the reaction-diffusion marine planktonic
ecosystem. The Turing instability condition and Hopf bifurcation criterion are derived through carrying out
the eigenvalue analysis of the controlled system. The numerical simulations show that the hybrid control
strategy can not only suppress the formation of Turing patterns, but also delay or advance theHopf bifurcation
point. Therefore, the desired spatial dynamics behaviors can be generated by manipulate the control gain
parameters, so as to achieve the purpose of maintaining the marine ecological balance.

INDEX TERMS Diffusive plankton systems, Hopf bifurcation, turing instability, turing patterns, hybrid
control.

I. INTRODUCTION
In recent years, some ecosystemmodels have been developed
as important analytical methods in order to better understand
marine ecological energy cycles [1], [2]. Plankton plays a
significant role in both marine and lake ecosystems. Plankton
which has become the basis for the reproduction of other
organisms in thewater body and amajor source of food for the
world in the future is widely distributed and highly capable
of reproduction. As the bottom of the food chain, the size
of the catch is basically determined by how much plankton
is produced [3]. At the same time, if the cyanobacteria,
dinoflagellates and other plankton content in the water is too
high, they may cause blooms or red tides, resulting in the
death of economic aquatic animals which will be harmful to
human survival [4]. For decades, many experts and scholars
have done a great deal of work on ecological competition
networks, taking into account factors such as natural enemies,
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age structure, delay in gestation, shelter, infectious diseases,
and so on [5]–[8].

The species and quantities of plankton vary with time
(mainly seasonal distribution) and space (horizontal distribu-
tion and vertical distribution). Based on the reaction-diffusion
equation, the interaction between prey and predator can
be described more accurately [9]–[11]. Nevertheless, there
have been few literatures that introduce species migration
called diffusion into dynamic modeling of marine plank-
tonic ecosystems currently. In the reaction-diffusion system
proposed by Turing [12], [13], the spatial heterogeneity
caused by the internal reaction-diffusion characteristics of
the system resulted in the loss of system symmetry and
made the system self-organize to produce some spatial
patterns. The process of patterns formation is called Turing
instability (Turing bifurcation). The symmetry of the system
was broken, leading to the formation of Turing patterns.
Therefore, we call this phenomenon Turing instability caused
by diffusive reaction [14]. In reality, the limit cycles caused
by Hopf bifurcation and the patterns caused by Turing
instability may exist simultaneously in systems under the
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influence of reaction-diffusion terms [2], [15]–[17]. In the
past few years, the focuses of research on some Turing-
Hopf bifurcations have been shifted from purely spatial
dimensions or time scales to spatio-temporal dynamics.
Wang et al. [15] investigated the spatiotemporal dynamics of
a class of marine planktonic ecosystems containing toxins.
Through linearization analysis, the existence conditions of
Turing-Hopf bifurcation were determined, and the formation
criteria of some specific patterns were derived by the
coupling amplitudes of the system. Shi et al. [16] considered
a predator-prey model with proportional dependence. The
two-parameter selection method was utilized to analyze the
Turing-Hopf bifurcation issue of the reaction-diffusion equa-
tion under Neumann boundary conditions. The stable region,
unstable region and Turing-Hopf bifurcation point on the
two-parameter plane were acquired, severally. As important
dynamic behaviors, Turing instability and Hopf bifurcation
frequently appear in actual marine planktonic ecosystems.
Reasonable control algorithms adopted for different marine
planktonic ecosystems to suppress blooms or red tides
and protect humans survival have great and far-reaching
significance to our homeland.

Control synthesis is a commonmethod to improve dynamic
behaviors of systems [18]–[22]. Based on the previous
results [23]–[25], the research on controllers of complex
systems has received extensive attention from scholars.
At present, various bifurcation control methods such as
state feedback method, parameter adjustment method, time
delay feedback method and PID control method have been
proposed [26]–[29] based on traditional ordinary differential
equation (ODE) theorems, but there are few studies on the
control of reaction-diffusion systems described by partial
differential equations (PDE). Beck et al. [30] studied the
diffusion equation on the real line of the control parameter.
It was shown that travel front solutions for which the rest
state behind the front undergo a supercritical Turing or
Hopf bifurcation as the increase of control parameter. Kumar
and Gangopadhyay [31] studied the dynamic behavior of
the equilibrium point of an open nonlinear system other
than the traditional Turing pattern with cross-diffusion, and
found that the Turing instability condition can be changed
by a critical control parameter including self-diffusion. The
above-mentioned documents have provided the possibility
for scholars to control the dynamic evolution of diffusive
reaction systems. However, most of the bifurcation control
strategies for diffusion systems are limited to the time-delay
feedback control [32], [33]. In addition, a class of time-delay
feedback controllers have disadvantages such as difficulties
in design and single control mode.

Based on the characteristics of microorganisms that
are liable to multiply and combinations with traditional
biological methods to control red tides, we utilize artificial
introduction of microorganisms to control plankton for the
first time. With reference to the design methods of state
feedback control and parameter adjustment, we propose a
new hybrid bifurcation control strategy that simulates human

intervention to eliminate or delay the adverse effects caused
by the occurrence or formation of water blooms and red tides
in marine ecological systems.

The main innovations of this paper can be listed as follows:
(1) Although there have been some results on the dynam-

ical behaviors of stability for equilibrium and bifurcation for
delayed marine planktonic ecosystems, they did not consider
the inevitable diffusion of plankton in the spatiotemporal
domain. In order to better reflect real marine phytoplankton
ecosystems, this paper introduces the reaction diffusion terms
into both phytoplankton and zooplankton.

(2) The necessary and sufficient conditions for Turing
instability and Hopf bifurcation dynamics have been deter-
mined in the meaning time, by analyzing the characteristic
equation of the corresponding system. Observe the formation
of Turing patterns and the appearance of Hopf bifurcation
periodic solution in the presence of reaction-diffusion
phenomenon.

(3) Combined with the design methods of parameter
adjustment and state feedback, the hybrid bifurcation control
strategy is applied to the marine planktonic ecosystem with
diffusion for the first time. The results demonstrate that
the hybrid controller can suppress the occurrence of Turing
pattern, change the position of Hopf bifurcation critical value,
and enhance the stability and controllability of the system, so
as to obtain the expected dynamic behaviors.

The paper is arranged as follows: In Section II, A diffusive
marine planktonic ecosystem with a hybrid bifurcation
controller is put forward. In Section III, the conditions
for local stability of equilibrium point, Turing instability
of equilibrium without time delay, and Hopf bifurcation
derived by the sum of time delays under the influence
of hybrid controller synthesis are given, separately. The
theoretical results are verified by two calculation examples
and numerical simulations are illustrated in Section IV.
Finally, Section V summarizes the paper and indicates the
future research.

II. MODEL DESCRIPTION
Motivated by previous work by Jiang et al. [34], we put
forward a novel marine planktonic ecosystem with diffusion
as follows:



∂P(t, x)
∂t

= d11P(t, x)+ r1P(t, x)(1−
P(t,x)
δ

)

− mf (P(t, x))Z (t − τ1, x),
∂Z (t, x)
∂t

= d21Z (t, x)+ r2Z (t, x)(1−
Z (t,x)

γP(t−τ2,x)
),

t > 0, x ∈ �,

(1)

under Neumann boundary conditions

∂P(t, x)
∂υ

=
∂Z (t, x)
∂υ

= 0, t > 0, x ∈ ∂�,
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TABLE 1. The definitions of parameters in system (1).

with initial conditions
P(t, x) = φ1(t, x) ≥ 0,
Z (t, x) = φ2(t, x) ≥ 0,
(t, x) ∈ [−τ, 0]× �̄,

where (φ1, φ2)T ∈ C
1
= C([−τ, 0] ,X ), and X is determined

by

X = {(P,Z ) : P,Z ∈ W 2,2(�),
∂P(t, x)
∂υ

=
∂Z (t, x)
∂υ

= 0,

x ∈ ∂�}

with the inner product 〈·, ·〉.
P(t, x) and Z (t, x) stand for the population density of

phytoplankton and zooplankton at time t and location x,
severally. 1 denotes the Laplacian operator in Rn. d1 and
d2 represent the diffusion coefficients of phytoplankton and
zooplankton, receptively. Assume � = (0, lπ) (l > 0) is a
bounded domain with smooth boundary ∂�. υ is the outward
unit normal vector on ∂�. The homogeneous Neumann
boundary conditions mean that system (1) is self-contained
with zero population flux across the boundary. The remaining
parameters of system (1) are shown in Table 1.
Remark 1: If there is no diffusions (d1 = d2 = 0) in the

marine ecological system, system (1) will degenerate into the
form of ordinary differential equation cited from [34].

To consider the positive effects of control on the dynamics
of plankton, an interaction system between phytoplankton
and zooplankton has been investigated in the presence of a
hybrid controller:

∂P(t, x)
∂t

= d11P(t, x)+ k1[r1P(t, x)(1−
P(t,x)
δ

)

− mf (P(t, x))Z (t − τ1, x)]
+ k2(P(t, x)− p∗),

∂Z (t, x)
∂t

= d21Z (t, x)+ r2Z (t, x)(1−
Z (t,x)

γP(t−τ2,x)
),

t > 0, x ∈ �,

(2)

where the parameter k1 and k2 treated as human-control
parameters stand for regulation parameter and state feedback
parameter, respectively. p∗ is on behalf of the steady-state
value of phytoplankton population density.
Remark 2: Here k2 is called the feedback gain, k2 > 0 is

considered as breeding rate which means that the number of
phytoplankton will be artificially increased. On the contrary,
k2 < 0 is regarded as the capturing rate resulting from

zooplankton which means that the number of phytoplankton
will be artificially reduced. k1 corresponding to k2 controls
the system by changing parameter. Furthermore, k1 = 1 and
k2 = 0 mean that there is no artificial control.
Remark 3: The significance of the control is that by arti-

ficially increasing or reducing the account of phytoplankton
to maintain the marine ecological balance in a local area.
Improved by the thought in [35]–[37]. A hybrid control
strategy combined with parameter adjustment method and
state feedback transmission is designed to control the Turing
patterns and Hopf bifurcation generation of system (2) in
order to obtain the desired dynamical behaviors.
Remark 4: The single-parameter hybrid control method

has a small adjustable parameter area, and it is difficult
to achieve control tasks with a high precision range or
anti-interference ability. The dual-parameter hybrid control
method has two adjustable control gain parameters, which not
only enlarges the parameter adjustable area, but also further
considers the control effect of parameter disturbance. Com-
pared with the traditional single-parameter hybrid control
method, it has better control effects [35], [38].

Let p(t, x) = P(t−τ2, x), z(t, x) = Z (t, x) and τ = τ1+τ2,
then system (2) becomes:

∂p(t, x)
∂t

= d11p(t, x)+ k1[r1p(t, x)(1−
p(t, x)
δ

)

− mf (p(t, x))z(t − τ, x)]
+ k2(p(t, x)− p∗),

∂z(t, x)
∂t

= d21z(t, x)+ r2z(t, x)(1−
z(t, x)
γ p(t, x)

),

t > 0, x ∈ �.

(3)

We make the following assumption:

(H1) f (0) = 0, f ′(x) > 0 for x ≥ 0 and lim
x→∞

f (x) = 1.

Remark 5: In most of cases, f (x) is represented by
Holling I-IV types and Ivlev type [34]. In this paper,
we suppose that f (x) as an abstract function which covers
most case of the above.
Theorem 1: If (H1) holds, system (3) has only one positive

equilibrium E∗ (p∗, z∗).
Proof: The positive equilibrium E∗ (p∗, z∗) of

system (3) satisfies:

z∗ = γ p∗, r1(δ − p∗) = δmγ f (p∗).

Let G(p) = δmγ f (p) − r1(δ − p). It is clear that G(0) =
−r1δ < 0 and G′(p) = δmγ f ′(p) + r1 > 0 when (H1)
is satisfied. By the zero point theorem, G(p) has only one
intersection with the positive half horizontal axis described
in Cartesian coordinates, which means that system (3) always
exists a unique positive equilibrium E∗ (p∗, z∗).
Remark 6: System (3) always has an predator free equi-

librium (δ, 0) which is an unstable saddle point. This implies
that the zooplankton population is on the verge of extinction.
That is obviously not realistic. The main goal of this paper
is to investigate the dynamic behaviors near the positive
equilibrium E∗ (p∗, z∗).
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Remark 7: The following analyses in this paper are based
on the assumption H (1) that system (3) has a unique positive
equilibrium point E∗ (p∗, z∗).
Next, we study the characteristic equation of controlled

system (3), and then analyze the effects of the controller on
the Turing patterns and Hopf bifurcation.

III. LINEAR STABILITY ANALYSIS
Let p̄ = p− p∗, z̄ = z− z∗ and delete ’−’, and the linearized
system of (3) is ∂p(t, x)

∂t
∂z(t, x)
∂t

 = D1
(
p(t, x)
z(t, x)

)
+ L1

(
p(t, x)
z(t, x)

)

+L2

(
p(t − τ, x)
z(t − τ, x)

)
, (4)

where

D =
(
d1 0
0 d2

)
, L1 =

(
k1A11 + k2 0

A21 A22

)
,

L2 =
(
0 −k1B12
0 0

)
,

and

A11 = r1 −
2r1p∗

δ
− mγ p∗f ′(p∗), A21 = r2γ,

A22 = −r2, B12 = mf (p∗).

It is well known that the eigenvalues of 1 on X are
−k2 (k ∈ N0

1
= {0, 1, 2, . . .}), and the characteristic equation

of (3) is

det(λI −Mk − L1 − L2e−λτ ) = 0,

where I is 2 × 2 identity matrix and Mk = −k2D. Then we
have

λ2 +3(k)λ+2(k)+ k1A21B12e−λτ = 0, (5)

where

3(k) = (d1 + d2)k2 − k1A11 − k2 − A22,

2(k) = d1d2k4 − [d1A22 + d2(k1A11 + k2)]k2

+(k1A11 + k2)A22.

Remark 8: In ecological competition networks, it is too
difficult to construct the Lyapunov function precisely. This
is almost impossible to investigate the global bifurcation
dynamical behaviors of ecological competition networks
through nonlinear methods. Hence, a lot of scholars on
complex systems use linearization methods to analyze the
local bifurcation dynamics of equilibrium point [1], [3],
[6], [7], [14], [15]. These previous works illustrate that the
linearization method is resultful and effortless for analyzing
the local dynamics of ecological competition networks.
Therefore, this paper also uses the method of linearization to
discuss the local dynamics of marine planktonic ecosystems.

In the following two subsections, we analyze the Turing
instability conditions without time delay (τ = 0) of positive

equilibrium E∗ (p∗, z∗), and the existence of Hopf bifurcation
with time delay (τ > 0) under the influence of hybrid
controller.

A. TURING INSTABILITY WITHOUT TIME DELAY (τ = 0)
In this subsection, we investigate the Turing instability of
system (3) based on the pattern dynamics theory proposed
by Turing [12].

When τ = 0, (5) is reduced to

λ2 +3(k)λ+2(k)+ k1A21B12 = 0. (6)

We make the following assumptions:

(H2) A11 + A22 < 0, A11A22 + A21B12 > 0;

(H3)
d1A22 + d2A11

2d1d2
> 0,

(d1A22 + d2A11)2 − 4d1d2(A11A22 + A21B12) > 0;

(H4) 3(k) > 0, 2(k)+ k1A21B12 > 0.

Case 1: Without control (k1 = 1, k2 = 0) and diffusion
(d1 = d2 = 0).
Theorem 2: Assume that k1 = 1, k2 = 0, d1 = d2 = 0

and τ = 0. If (H2) holds, then E∗ (p∗, z∗) of system (3) is
locally asymptotically stable.

Proof: When k1 = 1, k2 = 0 and d1 = d2 = 0, (6)
becomes

λ2 − (A11 + A22)λ+ (A11A22 + A21B12) = 0. (7)

It is obvious by Routh-Hurwitz criterion that all roots
of (7) will have negative real parts if (H2) is arrived. Hence,
E∗ (p∗, z∗) of system (3) is locally asymptotically stable.
Case 2: Without control (k1 = 1, k2 = 0) but with

diffusion (d1 > 0, d2 > 0).
Theorem 3: Assume that k1 = 1, k2 = 0, d1 > 0,

d2 > 0 and τ = 0. If (H2) and d1A22+ d2A11 < 0 hold, then
E∗ (p∗, z∗) of system (3) is locally asymptotically stable.

Proof: When k1 = 1, k2 = 0, d1 > 0 and d2 > 0, (6)
turns into

λ2 + φ(k)λ+ ϕ(k) + A21B12 = 0, (8)

where

φ(k) = (d1 + d2)k2 − A11 − A22,

ϕ(k) = d1d2k4 − (d1A22 + d2A11)k2 + A11A22.

If (H2) and d1A22 + d2A11 < 0 hold, we have φ(k) ≥
−A11−A22 > 0 and ϕ(k)+A21B12 ≥ A11A22+A21B12 > 0.
This implies that all eigenvalues of (8) have negative real parts
for k ∈ N0, thus E∗ (p∗, z∗) is locally asymptotically stable.

Theorem 4: Assume that k1 = 1, k2 = 0, d1 > 0, d2 > 0
and τ = 0. If (H2) and (H3) hold, then E∗ (p∗, z∗) of
system (3) will undergoes k − mode Turing bifurcation at
k ∈ N+ 1

= {1, 2, . . .}.
Proof: Denote

g(z) = d1d2z2 − (d1A22 + d2A11)z+ A11A22 + A21B12.
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Note that g(0) = A11A22+A21B12 > 0 under (H2). If (H3)
holds, it is easy to know that g(z) and the positive semi-axis in
Cartesian coordinate system have two different intersection
points. This implies that g(z) has two positive zero points.
Therefore, there exists k ∈ N+ such that g(k2) = ϕ(k) +
A21B12 < 0. This ensures that at least one root of (8) will
have positive real parts. Then, E∗ (p∗, z∗) of system (3) will
undergoes k − mode Turing bifurcation.
Remark 9: The Turing instability of system (3) caused

by reaction diffusion coefficients d1, d2 will initiate the
formation of Turing patterns.
Case 3: With control (k1 6= 0, k2 6= 0) and diffusion

(d1 > 0, d2 > 0).
Theorem 5: Assume that k1 6= 0, k2 6= 0, d1 > 0, d2 > 0

and τ = 0. If (H4) holds, then E∗ (p∗, z∗) of system (3) is
locally asymptotically stable.

Proof: It is judged byRouth-Hurwitz criterion that when
(H4) holds, all roots of (6) have negative real parts. Hence,
E∗ (p∗, z∗) of system (3) is locally asymptotically stable.
Remark 10: By choosing appropriate k1 and k2 of the

hybrid controller, we can manipulate the distribution of all
roots of (6), so as to get command of the appearance and
disappearance of Turing patterns.

B. HOPF BIFURCATION WITH TIME DELAY (τ > 0)

In this subsection, we consider the effects of time delay,
diffusion terms and hybrid controller on the dynamics of
system (3).

Suppose that iω(ω > 0) is a root of (5), then ω satisfies

−ω2
+ (iω)[(d1 + d2)k2 − k1A11 − k2 − A22]+ d1d2k4

−[d1A22 + d2(k1A11 + k2)]k2 + (k1A11 + k2)A22
+k1A21B12(cosωτ − i sinωτ ) = 0. (9)

By separating real and imaginary parts of (9), we obtain

k1A21B12 cos(ωτ ) = ω2
− d1d2k4 − (k1A11 + k2)A22

+[d1A22 + d2(k1A11 + k2)]k2,

k1A21B12 sin(ωτ )=ω[(d1 + d2)k2 − k1A11 − k2 − A22].

(10)

Adding up the squares of (10) yields

ω4
+ C1ω

2
+ C2 = 0, (11)

where

C1 = [(d1 + d2)k2 − k1A11 − k2 − A22]2 − 2d1d2k4

+2[d1A22 + d2(k1A11 + k2)]k2 − 2(k1A11 + k2)A22,

C2 = {d1d2k4 − [d1A22 + d2(k1A11 + k2)]k2

+(k1A11 + k2)A22}2 − (k1A21B12)2.

We propose the following hypotheses:

(H5) C1 > 0, C2 > 0, C2
1 − 4C2 ≥ 0 or C2

1 − 4C2 < 0;

(H6) C2 < 0 or C1 < 0, C2
1 − 4C2 = 0;

(H7) C1 < 0, C2 > 0, C2
1 − 4C2 > 0.

FIGURE 1. Waveform plots and phase portraits of plankton. The numerical
results are acquired with τ1 = τ2 = 0,d1 = d2 = 0,k1 = 1,k2 = 0, and
initial condition

(
0.41,0.39

)
.

Lemma 1: For (11), we have the following results.
1) If (H5) holds, then (11) has no positive root.
2) If (H6) holds, then (11) has only one positive root.
3) If (H7) holds, then (11) has two positive roots.
The proof of Lemma 1 is easy to prove, so we omit it.
Suppose that (11) has positive roots. Without loss

of generality, we assume that it has two positive roots
ωj > 0 (j = 1, 2). On account of (10), it is obvious that

cos(ωjτ ) = ι
κ
,

where

ι = ωj
2
− d1d2k4 + [d1A22 + d2(k1A11 + k2)]k2

−(k1A11 + k2)A22,

κ = k1A21B12.

Therefore

τ
(γ )
j =

1
ωj
{arccos(

ι

κ
)+ 2γπ}, (12)

where j = 1, 2 and γ = 0, 1, 2, . . .. Then ±iωj is a pair of
purely imaginary roots of (5) when τ = τ (γ )j . We define

τ0 = τ
(0)
j0
= min{τ (0)j , j = 1, 2} ω0 = ωj0 . (13)

Let λ(τ ) = µ(τ ) + iω(τ ) is the root of (5) for
τ = τ0 satisfying ω(τ0) = ω0 and µ(τ0) = 0. Then,
differentiating (5) with respect to τ , we have(
dλ
dτ

)−1
=

[
2λ+(d1 + d2) k2 − k1A11−k2−A22

]
eλτ

λk1A21B12
−
τ

λ
.
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FIGURE 2. Behaviors of plankton for Turing stable conditions. The
numerical results are acquired with τ1 = τ2 = 0, d1 = 2.5, d2 = 5, k1 = 1,
k2 = 0, and initial condition

(
0.41+ 0.2 cos x,0.41+ 0.2 cos x

)
.

Thus, Re
( dλ
dτ

)−1
|τ=τ0 , as shown at the bottom of the page.

If Re
( dλ
dτ

)−1
|τ=τ0 6= 0, then system (3) will meet the

traversal condition. According to [39], the Hopf bifurcation
occurs when Im(λk ) 6= 0, Re(λk ) = 0 at k = 0, then we have
the following theorem.
Theorem 6: Supposing that (H2) holds, the following

results hold for system (3). 1)

1) If (H5) holds, then E∗ (p∗, z∗) of system (3) is locally
asymptotically stable for all τ ≥ 0.

2) If either (H6) or (H7) holds, then E∗ (p∗, z∗)
of system (3) is locally asymptotically stable for
τ ∈ [0, τ0) and unstable for τ > τ0.

Remark 11: When k1 = 1, k2 = 0, τ0 defined in (13) is
reduced to the Hopf bifurcation point of system (3) without
control.

IV. NUMERICAL SIMULATIONS
In this section, the theoretical results acquired in Section III
will be supported by means of two numerical simulations to
substantiate the veracity and feasibility.
Example 1: Consider system (2) with r1 = 1, r2 = 1,

δ = 2, γ = 1, m = 1, l = 25, and τ1 = τ2 = 0.
From Theorem 1, we can confirm that system (2) has a unique
coexisting equilibrium E∗ (0.4, 0.4) by choosing Holling

FIGURE 3. Behaviors of plankton for Turing unstable conditions. The
numerical results are acquired with τ1 = τ2 = 0, d1 = 0.05, d2 = 5,
k1 = 1, k2 = 0, and initial condition

(
0.41+ 0.2 cos x,0.41+ 0.2 cos x

)
.

response function as f (x) = x/(0.1 + x). Then we select
different diffusion coefficients to verify the conditions of
Turing pattern occurrences, and adopt appropriate control
parameters to certify the effects of hybrid controller on Turing
patters.
We set d1 = d2 = 0, k1 = 1, and k2 = 0. It is easy to

verify that (H2) is satisfied. It follows from Theorem 2 that
E∗ (0.4, 0.4) is locally asymptotically stable (see Fig. 1).
We take d1 = 2.5, d2 = 5, k1 = 1, and k2 = 0.

From Theorem 3, E∗ (0.4, 0.4) of system (2) is still locally
asymptotically stable as shown in Fig. 2.
We choose d1 = 0.05, d2 = 5, k1 = 1, and k2 = 0.

By Theorem 4, E∗ (0.4, 0.4) is Turing unstable (see Fig. 3)
and Turing patterns appear (see Fig. 4).

To handle with the appearance of Turing instability and
the occurrence of patterns at E∗ (0.4, 0.4), we can choose
the hybrid controller with k1 = −0.3 and k2 = −0.5.
By Theorem 5, E∗ (0.4, 0.4) is locally asymptotically stable.
It indicates that the Turing instability can be effectively
suppressed through manipulating the control gain parameters
k1 and k2 of the hybrid controller, which are illustrated
in Figs. 5 and 6. Therefore, our hybrid control strategy is
efficient in eliminating Turing instability and Turing patterns.
Example 2: We study the Hopf bifurcation of system (2)

and select d1 = 0.05, d2 = 5, r1 = 1, r2 = 1, δ = 2,

Re
(
dλ
dτ

)−1
|τ=τ0 =

2ω0 cosω0τ0 +
[
(d1 + d2) k2 − k1A11 − k2 − A22

]
sinω0τ0

ω0k1A21B12
.

VOLUME 9, 2021 111331



Y. Lu et al.: Hybrid Control Synthesis for Turing Instability and Hopf Bifurcation of Marine Planktonic Ecosystems

FIGURE 4. Pattern appearance of plankton for Turing unstable conditions.
The numerical results are acquired with τ1 = τ2 = 0, d1 = 0.05, d2 = 5,
k1 = 1, k2 = 0, and initial condition

(
0.41+ 0.2 cos x,0.41+ 0.2 cos x

)
.

FIGURE 5. Behaviors of plankton for Turing stable conditions. The
numerical results are acquired with τ1 = τ2 = 0, d1 = 0.05, d2 = 5,
k1 = −0.3, k2 = −0.5, and initial condition(
0.41+ 0.2 cos x,0.41+ 0.2 cos x

)
.

γ = 1, m = 1, l = 1, and f (x) = x/(1 + x). Under these
parameters, system (2) has a unique coexisting equilibrium
E∗ (1, 1). By direct computation, we have ω0 = 0.5491
and τ0 = 2.6727 while k1 = 1, k2 = 0. It follows

FIGURE 6. Pattern disappearance of plankton for Turing stable conditions
in the presence of hybrid controller. The numerical results are acquired
with τ1 = τ2 = 0, d1 = 0.05, d2 = 5, k1 = −0.3, k2 = −0.5, and initial
condition

(
0.41+ 0.2 cos x,0.41+ 0.2 cos x

)
.

FIGURE 7. Behaviors of plankton for Hopf stable conditions. The
numerical results are acquired with τ = τ1 + τ2 = 2.6 < τ0 = 2.6727,
d1 = 0.05, d2 = 5, k1 = 1, k2 = 0, and initial condition

(
1.1,0.9

)
.

from Theorem 6 that E∗ (1, 1) is locally asymptotically stable
when τ = τ1 + τ2 = 2.6 < τ0 = 2.6727 (see Fig. 7),
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FIGURE 8. Behaviors of plankton for Hopf unstable conditions. The
numerical results are acquired with τ = τ1 + τ2 = 2.8 > τ0 = 2.6727,
d1 = 0.05, d2 = 5, k1 = 1, k2 = 0, and initial condition

(
1.1,0.9

)
.

FIGURE 9. Behaviors of plankton in the presence of hybrid controller. The
numerical results are acquired with τ = τ1 + τ2 = 2.8 > τ0 = 2.6727,
d1 = 0.05, d2 = 5, k1 = −0.3,k2 = −0.5, and initial condition

(
1.1,0.9

)
.

while E∗ (1, 1) loses its stability and the bifurcation occurs
τ = τ1 + τ2 = 2.8 > τ0 = 2.6727 (see Fig. 8).

Next, we adopt the same hybrid bifurcation control strategy
above with k1 = −0.3, k2 = −0.5. Unlike the case of

FIGURE 10. The influence of k1 on the critical value ω0 for system (2)
with k2 = −0.5.

FIGURE 11. The influence of k1 on the bifurcation point τ0 for system (2)
with k2 = −0.5.

TABLE 2. The influence of regulation parameter k1 on critical frequency
ω0 and Hopf bifurcation point τ0 in the case of k2 = −0.5 fixed.

k1 = 1, k2 = 0, E∗ (1, 1) becomes locally asymptotically
stable for τ = τ1 + τ2 = 2.8 (see Fig. 9).
Last but not least, for the controlled system (2) with

k1 6= 0, k2 6= 0, we further make a thorough inquiry of the
relationship between the regulation parameter k1 of the hybrid
controller, the critical frequency ω0 and the Hopf bifurcation
point τ0 in the case of k2 = −0.5 fixed. As k1 decreases,
the critical frequency ω0 rises, and the Hopf bifurcation
point τ0 lags to a certain extent and then advances (see
Figs. 10 and 11). The results are also diagramed in Table 2.

V. CONCLUSION
This paper extends the reaction-diffusion terms into the
marine planktonic ecosystem with multiple delays, and
takes into account the influence of diffusive reaction and
hybrid controller on the dynamic behaviors of system (1).
Firstly, we analyze the Turing instability of the non-delay
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phytoplankton-zooplankton system and further find that
Turing patterns resulted from reaction-diffusion terms can
be eliminated via reasonably selecting the parameters of the
hybrid controller. Next, by means of adopting the sum of
delays as the bifurcation parameter, the sufficient conditions
for the stability of controlled system (2) have been given
and results indicate that reasonable parameter adjustment can
advance or postpone the critical value of bifurcation, so as to
achieve the desired spatial dynamics behaviors. Furthermore,
the functional line chart of the hybrid control parameters on
the onset of Hopf bifurcation has been provided. Finally, two
numerical examples are given to show the correctnesses of
the theorems. The results demonstrate that the hybrid control
synthesis plays an significant role in optimizing the dynamic
performance of complex systems.

The spatial position information involved in this paper is
limited to one dimension. In future work, we will extend it
to two or even three dimensions to further investigate the
different formations of Turing patterns through amplitude
equations.
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