
Received July 15, 2021, accepted August 2, 2021, date of publication August 9, 2021, date of current version August 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3103186

Version-Wide Software Birthmark via
Machine Learning
CHIH-KO CHUNG AND PI-CHUNG WANG , (Member, IEEE)
Department of Computer Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan

Corresponding author: Pi-Chung Wang (pcwang@nchu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant 109-2221-E-005-046.

ABSTRACT Identifying the credibility of executable files is critical for the security of an operating system.
Modern operating systems rely on code signing, which uses a default-valid trust model, for executable files
to identify their publishers. A malware could pass software validation of operating systems and security
software by using counterfeit code-signing certificates. Although the counterfeit certificates can be revoked
by CAs, the previous research showed that the revocation delay takes as long as 5.6 months. In this paper,
we attempt to identify the credibility of software with multiple-version executable files without relying on
public key infrastructure (PKI), where a new-version executable file is usually developed incrementally based
on the previous versions. The sharing features among different versions can be extracted for identifying
the software. Accordingly, we present a software-birthmark scheme to serve our purpose. Our scheme
generates a cross-version software birthmark for executable files of the same software. The proposed
software birthmark is a binary-classification model of a machine learning algorithm based on imported
and exported function names extracted from different-version executable files. To evaluate the performance
of version-wide software birthmarks, our experiments include 138 versions of Windows kernel32.dll and
545 versions of firefox.exe.We also usemultiple machine learning algorithms for performance comparisons.
The results show that proposed software birthmark can effectively identify the derivations of these executable
files. The proposed software birthmark can be used by operating systems or security software to evaluate the
credibility of executable files with suspicious certificates.

INDEX TERMS Software birthmark, executable file format, Authenticode, digital signature, machine
learning, content digest, import/export address table.

I. INTRODUCTION
Code signing [1] is a process of digitally signing an
executable file to confirm the software publishers. The pro-
cess also ensures that the file would not be altered or cor-
rupted after it is signed. For example,Microsoft Authenticode
allows developers to embed the publisher information in their
programs through the use of digital signatures. It binds an
executable file to the identity of a software publisher by
using Public-Key Cryptography Standards (PKCS) #7 and
X.509 certificates. The digital-signature protocol is per-
formed upon a cryptographic digest generated by a one-way
hash of the file. Both the hashing and digital signature algo-
rithms are agreed upon beforehand. The existing practices
may use SHA-1 or SHA-256 to generate the cryptographic
digest.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Wang .

Authenticode is facing several threats, including fraudulent
digital signatures, hash-collision attacks, and malicious-code
insertions. It is possible to generate a fake certificate or
purchase a good certificate from the dark market for illegal
purposes [2]. Papp et al. [3] listed several certified malware
programs, e.g., Stuxnet, Duqu, and Flame. These programs
are digitally signed such that they appear to originate from
legitimate software publishers. Lawrence has stated that the
effectiveness of code signing depends on the security of the
underlying PKI [4]. Since Windows and other modern oper-
ating systems trust signed software for installation and execu-
tion [5], a fake-signed executable file could bypass validation
mechanisms of operating systems and security software to
cause damages. A recent report revealed that the total number
of malicious signed binaries has been increased by 12 million
during the fourth quarter of 2020 [6]. Although the compro-
mised code-signing certificates can be revoked, the average
revocation delay is 5.6 months after these certificates were

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110811

https://orcid.org/0000-0001-6392-9560
https://orcid.org/0000-0002-4220-2853
https://orcid.org/0000-0002-7223-8849


C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

first used to sign malware [7]. The hash-collision attacks may
allow two unrelated files to share the same digital signature.
The previous studies have shown the procedures to make
hashing collisions on MD5, SHA-1 and related hash fami-
lies [8]–[13]. Advanced hash algorithms, such as SHA-256
or SHA-3, are thus required to address this issue. In addi-
tion, an executable file could potentially be modified without
compromising the validity of the certificate. Malicious codes
could be appended to the end of the certificate table without
being detected [14]. This is because the hash calculation
of operating systems does not include the certificate table.
The malicious codes could be loaded into memory with the
infected executable file to result in potential risks.We are thus
motivated to identify software credibility without relying on
PKI.

Both software birthmark and watermark can be used to
identify the content of an executable file without relying on
the existing PKI. Software birthmark is generated to indicate
the inherent characteristics of a program, and software water-
mark is used to detect illegal distribution by embedding addi-
tional information into the original file. However, software
watermark of a file could be removed or altered to invalidate
its usage [15]. In addition, software watermarks lack of the
flexibility of renewing released files. In contrast, software
birthmark provides better flexibility since its calculation and
detection can be performed remotely and dynamically. The
related research of software birthmark focuses on extracting
either static or dynamic characteristics from one single pro-
gram, whose characteristics can be preserved, even after the
program is transformed. Software theft and piracy detection
are the main applications of the existing software-birthmark
algorithms [16].

In this paper, we propose a software-birthmark scheme for
the software with multiple-version executable files, where
each executable file may provide new features, fix bugs or
patch security holes over its previous-version executable files.
Since each executable file is usually developed incremen-
tally based on previous versions [17], the features shared
by these files can be used for identifying them. Accord-
ingly, we extend the application of software birthmarks to
support cross-version program detection. Our scheme gener-
ates one software birthmark to characterize different-version
executable files based on their IAT (import address table)
and EAT (export address table), where the birthmark is
a binary-classification model generated by using machine
learning algorithm. The birthmark can then be used to val-
idate whether a file is a different-version executable file of
the same program. The proposed scheme of version-wide
software birthmark (VWSB) could identify the credibility
of an executable file without relying on PKI. We use the
portable executable (PE) format for Microsoft executable
files to demonstrate the performance of our scheme. Two
notable programs, kernel32.dll and firefox.exe, are used
in our experiments. The first program, kernel32.dll, pro-
vides the kernel functions of the Windows operating systems.
Another program, firefox.exe, is a notable open-source web

browser. We conduct the experiments upon 138 kernel32.dll
files and 545 firefox.exe files of different versions. Multiple
machine learning algorithms are employed to analyze the
extracted features of these PE files. The results show that
our scheme can achieve high accuracy of identifying the
derivations of these PE files. The contributions of this work
is summarized as below.
• We present the first scheme of generating cross-version
software birthmarks by using machine learning
algorithms. The proposed software birthmark is a
binary-classification model for identify whether an exe-
cutable file is a different-version PE file of the same
program. It is not an alternative to code signing and does
not rely on PKI.

• We develop a procedure for extracting commonly avail-
able features from unstripped PE files. These features
are input into the machine learning algorithms for
training to generate a binary-classification model. The
experimental results show that the models generated
by several machine learning algorithms can identify
cross-version PE files with high accuracy.

• Various versions of two notable programs, kernel32.dll
and firefox.exe, are collected for evaluation, where the
oldest kernel32.dll is released in 1993 and the oldest
firefox.exe is released in 2004. The evaluation shows
that our scheme is feasible for software even with a long
history of development.

This paper is organized as follows. We first introduce
the background of code signing and summarize the related
work in Section II. In Section III, we present the proposed
software birthmark with IAT and EAT features based on
machine learning algorithms. Section IV describes the exper-
iments and results of validating the proposed scheme. Finally,
we conclude this work in Section V.

II. BACKGROUND
A. CODE SIGNING
Digital signature has long been employed to avoid poten-
tial attacks such as dynamic-link-library (DLL) hijacking
or module replacement [18]. Authenticode, the code-signing
solution released by Microsoft, embeds digital signature into
the PE format. Fig. 1 shows the format of Windows PE
and that of the Authenticode signature. The Authenticode
signature uses both PE file hash value (contentInfo in Fig. 1)
and the signed hash value to detect the origin and integrity
of an executable file. Only the PE files with valid signatures
are approved to install and execute. Other modern operating
systems, including macOS, Linux, Android and iOS, also
support enforcing signed-software execution [5].

A PE file with a valid digital signature is completely
trusted, and the trustworthiness of third-party software relies
on the code-signing PKI. The PKI includes certificate author-
ities (CAs) that issue certificates to software publishers
for identification. Software publishers use these certificates
to sign the software to be published, and users verify
these signatures to decide whether the software is trustable.

110812 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

FIGURE 1. The formats of windows PE and authenticode signature [19].

An attacker may destroy the code signing certificate by gen-
erating valid signatures for malware. Papp et al. [3] shared a
predicament of the existing PKI. The existing PKI involves
many participants in numerous countries with different CAs
and software publishers. Due to the fact that the infrastruc-
ture has a multitude of procedures and practices, enforc-
ing common rules in the complex infrastructure to meet
the same standard is thus difficult. For example, there are
many implicitly trusted root certificates. The existing PKI
cannot detect key leakage and fake certificates [20]. The
cases of key leakage and fake certificates are described as
below.
• Mismanagement of Publisher Keys Top-level certifi-
cates can be acquired from dark web marketplaces [21].
Certificates could be stolen from legitimate organi-
zations due to system compromise from a malware
infection. Kim et al. [22] identified 72 compromised
certificates. These certificates come from eight publish-
ers, and five of them were not aware of the abuse ini-
tially. The authors also analyzed a malware family that
infects developer machines and embeds malicious code
into files to be compiled and signed. Alsaid andMitchell
elaborated on risks caused by inserting self-issued public
key into the list of root public keys of a computer [20].
The certificates issued by some publishers, including
Digicert, Symantec, and Verisign, were used to sign

malware [23]. CopyKittens, Suckfly, Turla, Regin, and
Destover are well-knownmalwarewith signatures stolen
from software publishers. Papp et al. [3] also listed
several certified malware.

• Verification Failures of CAs CAs may issue certifi-
cates to attackers that mimic a legitimate organization
based on social engineering techniques. Kim et al. [22]
reported that 27 certificates are issued to attackers who
impersonate legitimate companies. Moreover, the report
of 2018 showed that 66% downloadable malware are
signed [23]. The same report also claimed that some
CAs cannot properly validate certificate requests. For
example, more than ten percent binary codes signed
with the certificates issued by Comodo and Certumwere
malicious. A certificate from a Russian financial broker
is used for the Razy ransomware.

The fake-signed malware could cause serious damages.
It is found that antivirus software may not detect a mal-
ware with an Authenticode signature extracted from a legit-
imate file, even though the signature does not match the
file digest [22]. Moreover, the protection mechanism can be
bypassed to install a digital certificate as the local root cer-
tificate so that any malicious programs can be validated [3],
[20]. A publisher of antivirus software revealed that a large
number of malware are signed by trusted authorities to pass
software validation mechanisms of operating systems and
browsers [23]. Currently, revoking the abusive certificates
is the primary mechanism for mitigating these threats, but
CAs may take a long time period to discover and revoke the
compromised certificates [24]. As a result, the malware with
compromised certificates may remain a threat for a long time
without being detected.

B. BINARY CODE SIMILARITY
The algorithms of binary code similarity compare binary-
code segments to identify their similarities and differ-
ences [25]. The applications of detecting binary code
similarity include detecting reused code segments [26]–[29],
malware [30], and vulnerable/buggy binary-code
segments [27], [31]–[36].

The algorithms of binary code similarity can be categorized
into three types according to the number of queried and target
binary-code segments: one-to-one (OO), one-to-many (OM),
and many-to-many (MM). The algorithms of the first two
categories compare one queried binary-code segment with
one or multiple target code segments. The algorithms of
the last category usually perform clustering upon all input
binary-code segments.

Among these categories, the OM algorithms may extract
binary-code segments from multiple versions of the same
program as the targets. However, the comparisons among
binary-code segments are usually performed in one-to-one
basis to yield the top k similar binary-code segments [25].
To the best of our knowledge, no algorithm has been created
that yields a set of features shared by different versions of a
specific program for binary code similarity.

VOLUME 9, 2021 110813



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

C. SOFTWARE BIRTHMARKS
Software birthmarks are developed for characterizing a soft-
ware [37]. They can be used for detecting binary-code sim-
ilarity [38]. The idea of software birthmarks is similar to a
computer-virus signature, which uses small pieces of data
to identify whether a program is infected or not. A recent
survey article identifies 24 types of techniques for generating
software birthmarks [39]. These techniques mainly focus
on detecting software theft and piracy [16], [40]. There are
also birthmarks designed for software asset management [41]
or malware detection [42]. Nazir et al. [43]–[45] presented
fuzzy-based classification for software birthmark estimation.

The existing techniques of software birthmarks can be
either static or dynamic. A static birthmark is extracted from
the information stored in an executable file. Choi et al. [46]
developed a statistical method by calculating the distribu-
tion of IAT and imported DLL names as a birthmark for
program identification. The k-gram birthmark [47] divides
n instructions into sequences of length k and uses them as
the birthmark [48]. Kim et al. [49] extracted strings from an
executable file as the birthmark, where these strings could
be exception handling messages inserted in the compilation
process or texts from the programmers. They used the Jaccard
coefficient and the n-gram method to compare similarities
between extracted strings.

A dynamic birthmark is obtained from runtime of a pro-
gram [15], [37]. A dynamic birthmark proposed by Myles
uses whole program path (WPP) [15]. The birthmark rep-
resents execution paths of a program in a graph. The sim-
ilarities of programs can thus be measured by comparing
graphs. This birthmark may convert its graph into another
form for efficient comparison. Another dynamic birthmark
is based on the API call frequency and sequence of a pro-
gram [37]. Tamada et al. [50] extended Grover’s concept and
presented a dynamic birthmark method based on the API
call sequence. However, extracting birthmarks for differ-
ent window sizes requires running the program multiple
times [51].

For both static and dynamic software birthmarks, effec-
tive feature selection is crucial to the accuracy of software
recognition. We are thus motivated to employ machine learn-
ing algorithms to generate software birthmarks. Multiple
machine learning algorithms are used to show the applicabil-
ity of our scheme. We also note that the previous approaches
of software birthmarks focus on identifying the origin of
one single program. In other words, these approaches oper-
ate in a one-to-one manner for identifying the source of a
program. In contrast, our scheme attempts to generate one
single birthmark by using multiple-version executable files
of a program. To the best of our knowledge, there is no
cross-version software birthmark for identifying authenticity
of a program.

III. IDEA AND FRAMEWORK
We propose an alternative approach to identify software
credibility by using software birthmarks based on machine

learning. Specifically, a machine learning algorithm ana-
lyzes features extracted from executable files to generate a
binary-classification model as the birthmark. We attempt to
use the software birthmark based on different-version exe-
cutable files to check whether a file is an executable file
of the same program but in a different version. The idea
is based on an inference that a software publisher usually
has a standard procedure for building their software deliv-
erables. We also assume that all related third-party libraries
are used across multiple versions since an executable file is
usually developed incrementally based on its previous ver-
sions. It is thus possible to generate a VWSB by using the
features of different-version executable files. Since a software
publisher always has the complete information of its pro-
grams, the VWSB provides another advantage in which the
extracted features from different-version programs are them-
selves the secret key of the scheme. For example, the pro-
grams of non-released versions could provide hidden feature
sets which cannot be easily retrieved.

The executable file format includes a section of import and
export address table for module redirection. Executable files
usually have an IAT in order to retrieve operating-system
services such as file access or memory allocation. The IAT
may also specify functions imported from the companion
library files. The executable files such as DLLs export func-
tions through EATs for module reuse. To support dynamic
address mapping, both IAT and EAT map the code bodies
of functions into a lookup table with their addresses and
function names. Although the code addresses of these func-
tions may change for newly compiled executable files, their
function names usually remain unchanged throughout differ-
ent versions [46]. Therefore, we collect historical IATs and
EATs from cross-version executable files to generate soft-
ware birthmarks because of their consistency and common-
ality in executable files. We consider each function name in
IAT and EAT as a feature. The function names of IAT or EAT
in the same file are not allowed to be repeated. All unique
function names are extracted and processed to generate global
features. Then, we apply machine learning algorithms to
analyze the cross-version features in each executable file and
generate binary-classification models to serve as the VWSBs.

We use supervised machine learning algorithms to analyze
the features of labeled training dataset, where the dataset
includes the target executable files and other random exe-
cutable files. Machine learning algorithms have been used
to generate text classifiers for the text categorization prob-
lem [52]. We extend the concept by treating the function
names in IAT and EAT of each executable file as a text.
The text is used to generate a text feature set based on
Salton’s vector space model [53], where the feature set is a
bag of strings extracted from imported or exported function
names of an executable file. By parsing the text to extract the
words, the strings of function names are inserted into a string
collection to serve as the feature strings of an executable
file. A feature string (FS) collection gathers feature strings
extracted from all target executable files. Each feature string

110814 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

must appear in at least one target executable file, but it could
be absent in some target executable files. Moreover, each
FS in the collection can be characterized by its appearance
frequency in the entire collection. The frequency is later used
to yield weighted features.

We illustrate the framework of generating the proposed
software birthmark in Fig. 2. In this figure, the upper-left
humanoid mark represents the starter of the build system
operation, and the lower-left humanoid mark represents the
publisher who receives and delivers the output. The dotted
line indicates the system-execution process. In the frame-
work, the generation of a software birthmark is iterative and
accumulative for data training and testing. It contains a feed-
back loop including the procedures from data pre-processing
to model validation. The first procedure invokes the standard
build system to compile and build the executable file from
the source code in order to extract the required features.
In our implementation, the feature strings of IAT or EAT are
extracted in each iteration of the build procedure.

FIGURE 2. The framework of generating VWSB.

The procedure of data pre-processing consists of two steps,
data ingestion and data aggregation. Data ingestion extracts
FSs from the target executable files and stores them in the set
of local FSs. Then, data aggregation merges the local FS sets
as a global FS set to yield the total length of all unique strings.
Next, the local FS set of each executable file is converted
to a local feature vector, where each item is the ratio of the
corresponding string length to the total string length. Each
item is further assigned aweight value based on the number of
its appearance frequency. All local feature vectors are stored
in a weighted feature matrix. The idea of generating weights
for each feature string is inspired by previous literature of
document identification, where the weight and frequency of
different terms are calculated [39], [54]. Our scheme also
treats the IATs and EATs of executable files as a corpus for
executable file identification.

The matrix is then used for training the machine learning
algorithms to build software-birthmark models in the training
procedure. Once the model is generated, it will be evaluated
by testing datasets to measure its effectiveness. If the result is
not satisfied, the software-birthmark model is regenerated by
updating feature sets until the required accuracy is achieved.
Otherwise, the model serves as the software birthmark for
executable-file identification.

The procedure of training machine learning algorithms is
shown in Fig. 3. In the training phase, not only the executable
files of the genuine programs are used, unknown executable
files are also included in the training dataset. Accordingly,

the feature matrix also includes the class, target or non-
target, of each executable file, where a target executable file
indicates the genuine program to be detected.

FIGURE 3. Training procedure.

With the software-birthmark model, the validation proce-
dure (Fig. 4) uses a set of additional executable files which are
not used in the training procedure to evaluate the performance
of a generated model. These files also include both target
and non-target executable files. Each tested file is parsed
to generate a local feature vector for classification upon the
model generated in the training procedure. The performance
of a model can thus be evaluated based on the classification
accuracy.

FIGURE 4. Validation procedure.

Note that non-well-managed or non-versioned executable
files constructed by random methods are not considered in
this work since these files may lose their modularization as
well as important features. Our scheme focuses on versioned
software with full development because these executable
files usually have import and export functions for software
modularization to allow programmers collaborate with each
other [55]. Moreover, these functions usually provide back-
ward compatibility [46], [56]. These files can thus be charac-
terized by using the function names to generate a birthmark
to distinguish them from the other executable files.

We also note that our scheme cannot be applied to
stripped binary codes, whose function entry points have been
removed. These stripped binary codes could be commercial
software for hindering reverse engineering and unlicensed
use or malicious programs for resisting analysis [57], [58],
where function names are removed from the stripped binary
codes. Different types of features must be extracted for birth-
mark generation, e.g., runtime values from the outcome of
machine instructions [59] or runtime call stacks. We also
consider the possibility of generating static birthmarks from

VOLUME 9, 2021 110815



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

unstripped binary codes, which can be applied to stripped
binary codes in the further work. While our scheme cannot
support stripped binary codes, it still supports various exe-
cutable files of software with open interfaces for external
third-party developers, e.g., base libraries of operating sys-
tems, browsers, and document editors.

IV. IMPLEMENTATION OF VWSB
In this section, we describe the implementation of generat-
ing the proposed software birthmark. As mentioned above,
we use multiple machine learning algorithms to generate
VWSBs based on the features in IAT and EAT of executable
files. The proposed feature extraction for machine learn-
ing is based on global-ranking local feature selection [60].
Our implementation selects FSs based on ALOFT (At Least
One FeaTure) and employs FSs as well as their weights
for machine learning. The implementation ensures that each
target executable file in the training dataset is represented
by at least one feature string and contributes to the model
generation.

In the following subsections, we describe the procedures
for extracting feature strings from IAT and EAT as well as
transforming these feature strings into local feature vectors
for machine learning algorithms. Finally, VWSB is compared
with code signing.

A. FEATURE EXTRACTION FOR IAT AND EAT
An IAT consists of function pointers used to get the addresses
of functions when the executable file is loaded. These func-
tions include the wrapper functions of system calls from
operating systems. An executable file without an IAT cannot
interact with the operating system to access resources, such
as computer memory, file storage, and network connection.
An EAT is an array of function pointers that contain the
names and addresses of exported functions provided by an
executable file. Both IAT and EAT provide important features
for characterizing an executable file. Our scheme processes
the features of IAT and EAT separately because the FSs in
IAT and EAT have very different lengths.

Our approach of extracting features is based on the bag-of-
words (BoW) model [61]. This model does not consider the
order information among FSs but focuses on the occurrence
of different FSs in each PE file. On the basis of the BoW
model, two types of feature sets, global and local feature sets,
are generated from the IATs and EATs of target executable
files. The FSs from an IAT include the concatenation of each
function name and its original file name, where the FSs from
EAT offer only the function names. The FSs of IAT include
the file name because the same function name may appear in
different files. As a result, the lengths of IAT FSs and those
of EAT FSs are quite different. To compensate for the length
discrepancy, our scheme builds birthmarks for FSs of IAT and
EAT, respectively. The performance differences between IAT
and EAT birthmarks are presented in the next section.

The feature strings of an executable file are stored in a
corresponding local set of feature strings (LSFS). The global

set of feature strings (GSFS) is the union of all local fea-
ture sets, which contains all unique feature strings from the
collected files. With the LSFS of each file, we can calculate
the characteristics of a file based on GSFS to determine the
similarity between a file and all collected files. The charac-
teristics of different files are then examined by a machine
learning algorithm to generate a binary-classification model
for software birthmark.

B. CALCULATION OF FILE CHARACTERISTICS
The characteristics of an executable file is generated from the
corresponding LSFS and GSFS. The feature strings must be
converted to numbers because they cannot be directly applied
tomachine learning algorithms. These numbers are stored in a
local feature vector (LFV). The sets of all local feature vectors
from all executable files in the training dataset are used to
train machine learning algorithms.

To generate the LFV for each executable file, the GSFS is
used to generate the total length of all feature strings. Next,
the length ratio of each feature string is calculated, where the
length ratio (LR) is equal to the ratio of the corresponding
string length to the total length. The length ratio of feature
string x is calculated by using the following equation:

LRx =
x.length∑

j∈GSFS j.length
(1)

Since a function name found in more files is more repre-
sentative than that in less files, we further employ the number
of executable files importing/exporting a function name as
the weight of the function name. More specifically, a feature
string weight (FSW) is assigned to each feature string in the
GSFS. The FSW value of feature string x is equal to LRx
times x.filecount, where x.filecount denotes the number of
files specifying feature string x.FSW x denotes the FSWvalue
of feature string x. With the FSW values of all feature strings,
an LFV is created for each executable file. The length of each
LFV is equal to the number of unique feature strings. The
pseudo code of generating the LFV for each file is listed in
Algorithm 1.

The algorithm starts from generating the GSFS by merging
the LSFSs of all target executable files in the training dataset,
as shown in the first for loop. In the second for loop, the total
length of feature strings in GSFS is calculated. The number
of executable files referring to a feature string is also yielded.
Then, a vector, FSWV, is generated to store the FSW values
of different feature string length for the third for loop. Finally,
one LFV is generated for each file, where the value of each
item is the corresponding FSW value in FSWV. In our imple-
mentation, both GSFS and LSFS are stored in hash tables to
reduce the cost of accessing their feature strings.

To illustrate further, we use different-version PE files
of kernel32.dll. Most Windows core functionality can be
found in DLLs from Microsoft. Among these DLL files,
kernel32.dll provides the primary dynamic library for Win-
dows base functions, including file access and memory man-
agement. All function names in the IATs of all collected

110816 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

Algorithm 1: LFV Generation
Load training dataset EFtr
/* EFtr: executable files for training */
GFS = ∅
for i ∈ EFtr do

if i is target then
Generate LSFS i
GSFS = GSFS

⋃
LSFS i

/* Insert FSs of File i into GSFS */

TL = 0
for j ∈ GSFS do

TL+ = j.length
for i ∈ EFtr do

if j ∈ LSFS i then
j.filecount++

Create FSWV
for j ∈ GSFS do

FSWV (j.length)+ = j.length× j.filecount ÷ TL

for i ∈ EFtr do
Generate Local Feature Vector, LFV i
for j ∈ FS i do

if j ∈ GSFS then
LFV i(j) = FSWV (j.length)
/* Assign FS Weight */

kernel32.dll in the training dataset are extracted. After trans-
forming these feature strings into local feature vectors, each
FS is converted to one of 70 values, since there are 70 dis-
tinct string lengths. Then, we use a feature string, ‘‘rtlim-
agedirectoryentrytodata:ntdll.dll’’, extracted from IAT of
kernel32.dll (v5.1.2600.1106) to explain the calculation of
FSW value. The length of the feature string is 38, and the total
length of all feature strings in GSFS is 11278. This feature
string also appears in another 41 kernel32.dll files of the
training dataset. Thus, the FSW value of the feature string is
equal to 0.13814506118106 (= 38×41/11278). The LSV of
kernel32.dll (v5.1.2600.1106) is thus updated by assigning
the FSW value to the field corresponding to the FS.

We further generate a local feature matrix (LFM), where
the matrix includes the same number of rows as the number
of executable files in the training dataset. Each row of LFM
is used to store the FSW values of each executable file. The
number of columns is equal to the length of LFV plus one
addition field, which specifies whether the corresponding file
is a target or not. The LFM is the input of machine learn-
ing algorithms. The LFM of our scheme has the following
characteristics:
• Each target executable file can be identified by at least
one feature whose FSW value is nonzero. Thus, the
features of all target executable files in the training
dataset can contribute to the final feature set.

• The algorithm automatically yields the optimal number
of features in a data-driven way without pre-calculating
the best number of features.

• The algorithm finds the least number of features cover-
ing all target executable files in the training dataset.

• The feature extraction based on ALOFT does not require
parameter optimization or preliminary tests for best per-
formance.

• The calculation of FSW is fast and deterministic.

C. CLASSIFICATION BASED ON VWSB
In our scheme, the generated software birthmark is cre-
ated by machine learning algorithms to classify whether
an executable file is a target PE file. The LFV of the
tested executable file is generated and input into the
binary-classification model of the generated software birth-
mark for classification. As compared to the previous
software-birthmark algorithms operating in a one-to-one
manner, our algorithm performs in a one-to-many manner to
simplify the computation of executable file classification and
improve the feasibility of software birthmarks.

D. COMPARISONS WITH CODE SIGNING
Both the proposed scheme of VWSB and code signing
attempt to identify the credibility of executable files, but
they have very different properties. We show the differences
between VWSB and code signing by listing their proper-
ties in Table 1. As mentioned above, code signing provides
PKI-based authentication and digest-based integrity. Soft-
ware publishers pay for the certificate issuance. Each signed
executable file is then embedded with a signature. While
code signing can be applied to virtually all executable files,
VWSB only supports versioned executable files with IAT or
EAT. The authentication provided by VWSB is based on the
prediction performed by the binary classification model of
machine learning. VWSB can only detect the modification
of features for training the classification model. It does not
append any information to executable files.

TABLE 1. Comparisons with code signing and VWSB.

Each signature is tightly coupled with the signed exe-
cutable file, thus the signature can only be updated along with
the executable file. Each certificate authority (CA) maintains
a repository of issued certificates and distributes these cer-
tificates as requested. It also maintains a list of revoked cer-
tificates. Currently, the primary mechanism for mitigating the
threats of code signing is to revoke the abusive certificates [7].
When abusive certificates are discovered, CAs should revoke

VOLUME 9, 2021 110817



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

these certificates and disseminate the revocation information.
Both software installation and execution should also check
the certificate revocation list.

As compared to coding signing, VWSB can be updated
without renewing executable files. Since VWSBs are gen-
erated by software publishers for remote identification,
the update procedure is also simplified. The operational
overhead includes extracting features for training machine
learning algorithms and distributing the binary classification
model to security-related partners.Whenmalware can imitate
the features used by an existing VWSB, it is possible to
generate a new VWSB by using different features.

In summary, VWSB cannot ensure whole-file integrity,
and the authentication performance of VWSB relies on the
extracted features and employed machine learning algo-
rithms. Therefore, VWSB cannot take the place of code
signing. However, VWSB is not embedded with the exe-
cutable files to provide the resilience of renewing features
and employing different machine learning algorithms. While
CAs take a long time period for abuse certificate revocation,
VWSB could identify the credibility of executable files with
suspicious certificates without relying on PKI.

V. EXPERIMENTS
In order to evaluate the proposed scheme of VWSB, we car-
ried out experiments for different executable files and dif-
ferent machine learning algorithms. We used the Python
language to implement our scheme. Our implementation
includes twelve notable machine learning algorithms selected
from scikit-learn [62], as listed in Table 2. We did not opti-
mize any parameters for these algorithms to show the baseline
performance of our scheme, even though they may have
different performance upon the features.

TABLE 2. Selected machine learning algorithms.

The executable files used in our experiments include var-
ious versions of kernel32.dll and firefox.exe. They come
from two notable software, Microsoft Windows operating
system and Mozilla Firefox. The file, kernel32.dll, was
selected because of its importance that most programs of the
Windows operating systems rely on its functions. We col-
lected globally published 138 kernel32.dll files since 1993.
These files cover five major versions, v3.x, v4.x, v5.x, v6.x,
and v10.x. Firefox was created in 2002 and released in 2004.

It was selected because of its popularity and open-source
codes. For Firefox, 545 files of firefox.exe across 31 major
versions (from 0.8.x, to 77.0b9.x) since 2004 were collected.
It is important to note that the files of version 3.0.x to
48.0.2.x (597 files of about 50 major versions) did not have
EATs and were excluded from our experiments. The col-
lected executable files can demonstrate the performance of
our scheme even though their IATs and EATs may have
been changed constantly because the collected executable
files span up to more than two decades. We also prepared
another random 10900 executable files from ‘‘Windows’’ and
‘‘Program Files’’ folders for training and testing. None of
these executable files are stripped binary codes. To effectively
validate the classification performance, these non-target PE
files were retrieved from the applications of the same or
similar environments as the target executable files.

The performance evaluation of VWSB consists of two
parts. In the first part, we used 80% of the collected files for
training and the other files for testing to show the accuracy
of VWSB. In the second part, we divided the collected target
PE files into different groups to generate training datasets of
different sizes, where each dataset has different number of
target and random PE files. We used these training datasets
to show the importance of cross-version features.

A. STATISTICS OF EXTRACTED FEATURES
We show the statistics of different-major-version files
in Table 3 and 4, where the major version is defined based
on the leftmost number in the version number. For both
kernel32.dll and firefox.exe, we categorize the collected
files into five groups according to their versions, and there
is another group for all files. The feature strings of IAT and
EAT in an executable file are usually similar to the other
executable files of the same major version because software
publishers usually avoid significant upgrades to maintain
consistent functionality and quality.

Table 3 lists the total numbers of feature strings from IAT
and EAT of the kernel32.dll files in the same group. The
kernel32.dll files were extracted from Windows operating
systems of different versions, thus the names of these Win-
dows operating systems were also revealed. It is shown that

TABLE 3. Statistics of selected kernel32.dll versions.

110818 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

FIGURE 5. A part of the local feature matrix (kernel32.dll, IAT).

the number of feature strings increases as the version num-
ber raises. The collected kernel32.dll files have 2402 and
1808 distinct FSs in IAT and EAT, respectively.

The total numbers of feature strings for each group of
firefox.exe files are listed in Table 4. Using regular rapid-
release cycles, there has been one major-version release of
firefox.exe every six weeks since June 2011. The collected
files cover 31 different major versions; thus, each file group
for firefox.exe includes executable files from approximately
six major versions. The first group of firefox.exe includes
files before April 2009 and after September 2016, because
the files of versions from 3.0.x to 48.0.2.x were excluded
from our experiments. Table 4 shows that the files of the first
group have many more FSs in both IAT and EAT than the
files of the other groups. For the files of the other groups,
both the FS numbers of IAT and EAT gradually increase
as the version number increases. The results suggest that
software publishers may change the layouts of IAT and EAT
of their executable files in some major-version upgrades. The
collected firefox.exe files have 3953 and 823 distinct FSs in
IAT and EAT, respectively.

TABLE 4. Statistics of selected firefox.exe versions for windows.

After extracting feature strings from the executable
files of training datasets, the FSW value of each fea-
ture string is calculated. For kernel32.dll files, the total
string length varies from 6726 (v 3.10.404) to 54464
(v10.0.10586.0). Then, one local feature matrix was
generated for each training dataset. We show a part of
the local feature matrix for the training dataset of ker-
nel32.dll in Fig. 5. We observed that some function names
of IAT appear in all PE files, ntreadfile:ntdll.dll, ntopen-
file:ntdll.dll, ntcreatemailslotfile:ntdll.dll, to name but

TABLE 5. Statistics of selected firefox versions for linux.

a few. There are also some function names appearing
intermittently, e.g., _local_unwind:ntdll.dll, rtlvirtualun-
wind:ntdll.dll and _aulldiv:ntdll.dll. As a result, the dif-
ferences among executable files of different versions are
dynamic and difficult to classify without obtaining these
executable files.

We further show the number of IAT and EAT FSs in
the executable files of firefox for Linux and macOS. The
executable file format of Linux is Executable and Linkable
Format (ELF) and that of macOS is Mach Object File Format
(Mach-O). We collected the executable files of all major
versions since 2012 and categorized them into eight groups.
Because of the different build system of macOS, the Mach-O
executable file of firefox heavily relies on another dylib file
of dynamic shared libraries for most functions. For example,
the dylib file for firefox v10.0 is libmozutils.dylib and that
for v88.0 is libmozglue.dylib. Accordingly, we exact the
IATs and EATs from the companion dylib files. The number
of FSs in both IATs and EATs of each group are listed
in Table 5 and 6. Both tables show that the executable files of
Linux and macOS have a similar count of FSs in both IATs
and EATs. Specifically, there are 151 and 279 FSs in the IAT
and EAT of libmozglue.dylib for firefox (version 88.0). The
same-version ELF file has 128 and 273 FSs for IAT and EAT,
respectively. As a comparison, there are 364 IAT and 98 EAT
FSs for the same-version PEfile. Although differences among
different build systems exists, it is still feasible to apply
the proposed software birthmarks to the executable files of
different operating systems with a sufficient number of FSs
in IATs and EATs.

VOLUME 9, 2021 110819



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

FIGURE 6. ROC performance for IAT and EAT of kernel32.dll and firefox.exe.

TABLE 6. Statistics of selected firefox versions for Mac.

B. PERFORMANCE OF VWSB
We use the receiver operating characteristic (ROC) curve
to show the performance of the generated software birth-
mark. ROC has been used to visualize the performance
of a classifier for selecting a suitable operating point or a
decision threshold. The area under a ROC curve (AUC) is
used to evaluate the performance of machine learning algo-
rithms [63]. If the ROC curves of different algorithms do
not intersect, at least one algorithm would outperform the
others. However, if two ROC curves intersect, one algorithm
outperforms the other for only some cost ratios.

Our experiments included two sets of target executable
files. The training datasets were generated for kernel32.dll

TABLE 7. Summarized ROC performance in Fig. 6.

and firefox.exe, where each dataset includes 80% target and
non-target executable files. For each training dataset, two
software birthmarks were generated, one for IAT and the
other for EAT.

We show the IAT and EAT results for kernel32.dll
in Fig. 6(a) and 6(b), respectively. As shown in Fig. 6(a),
fivemachine learning algorithms achieve 100% classification
accuracy. The accuracy of another five algorithms, XGBClas-
sifer, GNB, KNN, LR and LinearSVC, is within the range

110820 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

FIGURE 7. VWSB performance for files groups in Table 8.

between 93.48% and 99.64%. The accuracy of SVM is further
degraded to 68.12%. However, MLP can only achieve 50%
accuracy.

For EATs of kernel32.dll files, the performance of eleven
machine learning algorithms achieve 100% classification
accuracy, as shown in Fig. 6(b). However, MLP remains 50%
accuracy in this experiment.

The IAT and EAT results for firefox.exe are shown
in Fig. 6(c) and 6(d), respectively. Fig. 6(c) shows that
twomachine learning algorithms achieve 100% classification
accuracy. The accuracy of another eight algorithms, XGB-
Classifer, GB, KNN, LR, SVM, DT, RF and LinearSVC,
is within the range between 94.04% and 99.91%. GNB can
only achieve 82.11% accuracy, and the accuracy of MLP is
further degraded to 50%.

For EATs of firefox.exe files, six machine learning algo-
rithms achieve 100% accuracy, as shown in Fig. 6(d). The
accuracy of another five algorithms, GNB, KNN, LR, SVM,
LR and LinearSVC, is at least as high as 99.82%. However,
MLP remains 50% classification accuracy in this experiment.

Table 7 summarizes the above results. MLP is the only
algorithm which cannot achieve perfect classification accu-
racy in any scenarios. GNB and SVM have relatively
low accuracy for IAT of firefox.exe and kernel32.dll,
respectively. The other algorithms can achieve high accu-
racy of at least 97.61%. Two machine learning algorithms,
ET and AdaBoost, have perfect accuracy in all scenarios.
iIn summary, the proposed software birthmark can achieve
high classification accuracy by using most machine learning
algorithms. Moreover, the software birthmarks based on EAT
have better performance than those based on IAT.

Next, we conduct two experiments to demonstrate the
effectiveness of the proposed software birthmarks by varying

the PE files for training and testing. In both experiments,
we only use the best five machine learning algorithms in
the previous experiments as shown in Table 7, namely DT,
ET, GB, AdaBoost and RF, to better illustrate the perfor-
mance difference caused by different training and testing
datasets. We also increase the number of non-target files for
training, where the ratios of target to non-target files vary
from 1:1, 1:10 to 1:20. The first experiment uses different
groups of PE files for training and uses randomly selected
PE files of different versions for testing. This experiment
demonstrates whether a software birthmark generated from
specific-version PE files can be used to classify PE files
of the other versions. The combinations of target PE files
for training and testing are listed in Table 8, where each
combination has a group identifier. There are fewer FSs in the
corresponding GSFS because the training dataset is reduced.
We denote the updated GSFS as GSFS’ and show their sizes
in Table 8. The feature string (FS) ratio for each combination
is defined as the ratio of the size of GSFS’ to that of the
original GSFS.

The classification accuracy for each file group is shown
in Fig. 7, where Fig. 7(a) and 7(b) show results for ker-
nel32.dll and Fig. 7(c) and 7(d) for firefox.exe. These results
show that the accuracy for the first five groups is usually
much lower than that for the last group, whose files for
training include all target PE files. Fig. 7(a) and 7(b) show
that for kernel32.dll, training based on the file groups of
newer versions cannot achieve better accuracy than that of the
earlier versions, even though these groups also have higher FS
ratios. The results also suggest that EAT has stronger corre-
lations among different-version kernel32.dll files than IAT.
Fig. 7(c) and 7(d) show that although the accuracy degrades
for different groups of firefox.exe files, the decrement is

VOLUME 9, 2021 110821



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

TABLE 8. Files groups for specific-version training and cross-version testing.

TABLE 9. Files groups for cross-version training and specific-version testing.

FIGURE 8. VWSB performance for files groups in Table 9.

less obvious as compared to the results of kernel32.dll. The
results of firefox.exe also show that the firefox.exe files have
higher similarity in their IATs and EATs than kernel32.dll.

In addition, the EATs of firefox.exe provide better accu-
racy than IATs. For both kernel32.dll and firefox.exe,
the ratios of non-target files in the training dataset may lead

110822 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

TABLE 10. VWSB accuracy results in Fig. 8.

to oscillatory accuracy. The oscillation is caused by the simi-
larity between limited FSs of specific-version target files and
non-target files. By including all target PE files of different
versions, the oscillation can be eliminated to achieve perfect
accuracy.

The second experiment uses another set of file groups
shown in Table 9 for training and testing. In this experiment,
we include two target PE files of each major version in
the training dataset and show the accuracy for PE files of
specific versions in Fig. 8. The selected files of different
major versions can provide sufficient FSs to identify PE
files to achieve superior accuracy, even though the FS ratio
is only 0.1283 for firefox.exe. Moreover, different numbers
of non-target files in a training dataset only result in subtle
influence. We conclude that the features extracted from target
PE files of different versions are crucial for the accuracy of
the proposed software birthmarks. The detailed results are
listed in Table 10.

VI. CONCLUSION
In this work, we propose a scheme, version-wide software
birthmark, to detect software credibility without relying on
PKI. Unlike the previous algorithms of software birthmarks
designed for detecting software theft and piracy, our scheme
generates one birthmark based on the different-version exe-
cutable files of a program by using machine learning
algorithms. The birthmark is a binary-classification model
classifying whether an executable file is a different-version
executable file of the same program. We implement this
scheme for Windows portable executable file format. Our
implementation extracts function names from import and
export address tables and transforms these function names
into a matrix of features, where the transformation is based
on string lengths and occurrences. The matrix is then used
for training selected machine learning algorithms. In our
experiments, two notable programs, kernel32.dll and fire-
fox.exe, are used to evaluate the performance of our scheme.
Although these executable files are quite different with
respect to the number and appearance of feature strings,

the results show that most machine learning algorithms have
at least 99% accuracy for EAT of the tested executable files.
Two algorithms, ET and AdaBoost, can achieve 100% accu-
racy of classification for both IAT and EAT. We also demon-
strate that a training dataset including different-version target
files has a positive impact on the classification accuracy.

The version-wide software birthmark is not embedded in
the PE files, thus software identification based on birthmarks
can be performed remotely. The software birthmarks can be
hidden or updated by software publishers. It is thus difficult
for malicious programmers to create a forgery executable
file without collecting different-version executable files, even
when they employ the same feature extraction method.
In summary, we believe that the proposed version-wide soft-
ware birthmark could be an effective approach for validating
the credibility of a program, especially the executable files
with suspicious certificates. In the future work, we attempt
to extend VWSB by extracting features for stripped binary
codes.

REFERENCES
[1] Microsoft. (2017). Introduction to Code Signing. [Online]. Available:

https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx
[2] S. Khandelwal. (2017). The Rise of Super-Stealthy Digitally Signed

Malware-Thanks to the Dark Web. [Online]. Available: https://
thehackernews.com/2017/11/malware-digital-certificate.html

[3] D. Papp, B. Kócsó, T. Holczer, L. Buttyán, and B. Bencsáth, ‘‘ROSCO:
Repository of signed code,’’ in Proc. Virus Bull. Conf., 2015, pp. 1–7.

[4] E. Lawrence. (2011). Everything You Need to Know About Authenticode
Code Signing. [Online]. Available: https://blogs.msdn.microsoft.com/
ieinternals/2011/03/22/everything-you-need-to-know-about-
authenticode-code-signing/

[5] National Security Agency. (2019). Enforce Signed Software Execution
Policies. [Online]. Available: https://media.defense.gov/2019/Sep/09/
2002180334/-1/-1/0/Enforce%20Signed%20Software%20Execution%
20Policies%20-%20Copy.pdf

[6] McAfee. (Apr. 2021). McAfee Labs Threats Report. [Online]. Available:
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-
threats-apr-2021.pdf

[7] D. Kim, B. J. Kwon, K. Kozák, C. Gates, and T. Dumitras., ‘‘The broken
shield: Measuring revocation effectiveness in the windows code-signing
PKI,’’ in Proc. 27th USENIX Secur. Symp., 2018, pp. 851–868.

[8] P. R. Kasselman, ‘‘A fast attack on the MD4 hash function,’’ in Proc. South
Afr. Symp. Commun. Signal Process. (COMSIG), 1997, pp. 147–150.

VOLUME 9, 2021 110823



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

[9] T. Xie and D. Feng, ‘‘How to findweak input differences forMD5 collision
attacks,’’ in Proc. IACR Cryptol. ePrint Arch., 2009, p. 223.

[10] F. Chabaud andA. Joux, ‘‘Differential collisions in SHA-0,’’ inProc. Annu.
Int. Cryptol. Conf., 1998, pp. 56–71.

[11] W. Xiaoyun, ‘‘Finding collisions in the full SHA-1,’’ in Proc. CRYPTO,
2005, pp. 17–36.

[12] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov,
A. P. Bianco, and C. Baisse. (2017). Announcing the First SHA1 Collision.
[Online]. Available: https://security.googleblog.com/2017/02/announcing-
first-sha1-collision.html

[13] E. Bursztein. How we Create the First SHA-1 Collision and What it
Means for Hash Security. Accessed: Jul. 26, 2017. [Online]. Available:
https://www.blackhat.com/us-17/briefings/schedule/index.html#how-we-
created-the-first-sha-1-collision-and-what-it-means-for-hash-security-
7693

[14] T. Nipravsky. (2016). Certificate Bypass: Hiding and Executing Malware
From a Digitally Signed Executable. Blackhat USA. [Online]. Available:
https://www.blackhat.com/docs/us-16/materials/us-16-Nipravsky-
Certificate-Bypass-Hiding-And-Executing-Malware-From-A-Digitally-
Signed-Executable-wp.pdf

[15] G. Myles and C. Collberg, ‘‘Detecting software theft via whole program
path birthmarks,’’ in Proc. Int. Conf. Inf. Secur., 2004, pp. 404–415.

[16] S. Nazir, S. Shahzad, and N. Mukhtar, ‘‘Software birthmark design and
estimation: A systematic literature review,’’ Arabian J. Sci. Eng., vol. 44,
no. 4, pp. 3905–3927, 2019.

[17] A. Tucker, R. Morelli, and C. De Silva, Software Development: An Open
Source Approach. Boca Raton, FL, USA: CRC Press, 2011.

[18] U. Haritha and V. L. Naidu, ‘‘A survey on windows component loading
vulnerabilities,’’ Int. J. Adv. Res. Comput. Eng. Technol., vol. 2, no. 5,
pp. 1780–1783, 2013.

[19] Microsoft. (2008). Windows Authenticode Portable Executable
Signature Format (Version 1.0. March 21, 2008). [Online]. Available:
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-
9fde-d599bac8184a/Authenticode_PE.docx

[20] A. Alsaid and C. J. Mitchell, ‘‘Installing fake root keys in a PC,’’ in Proc.
Eur. Public Key Infrastruct. Workshop, 2005, pp. 227–239.

[21] J. Henno, H. Jaakkola, and J. Mäkelä, ‘‘Using multiplayer games to create
secure communication,’’ in Proc. 8th Workshop Softw. Qual. Anal., Monit.,
Improvement, Appl., 2019, pp. 1–13.

[22] D. Kim, B. J. Kwon, and T. Dumitraş, ‘‘Certified malware: Measuring
breaches of trust in the windows code-signing PKI,’’ inProc. ACMSIGSAC
Conf. Comput. Commun. Secur., 2017, pp. 1435–1448.

[23] TrendMicro. (2018). Understanding Code Signing Abuse in Malware
Campaigns. [Online]. Available: https://www.trendmicro.com/en_us/
research/18/d/understanding-code-signing-abuse-in-malware-
campaigns.html

[24] D. Kim, ‘‘Understanding of adversary behavior and security threats in
public key infrastructures,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ.
Maryland, College Park, MD, USA, 2020.

[25] I. U. Haq and J. Caballero, ‘‘A survey of binary code similarity,’’ ACM
Comput. Surv., vol. 54, no. 3, pp. 1–38, Jun. 2021.

[26] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Kam1n0: MapReduce-
based assembly clone search for reverse engineering,’’ in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 461–470.

[27] Y. Hu, Y. Zhang, J. Li, and D. Gu, ‘‘Binary code clone detection across
architectures and compiling configurations,’’ in Proc. IEEE/ACM 25th Int.
Conf. Program Comprehension (ICPC), May 2017, pp. 88–98.

[28] H. Huang, A. M. Youssef, and M. Debbabi, ‘‘BinSequence: Fast, accurate
and scalable binary code reuse detection,’’ in Proc. ACM Asia Conf.
Comput. Commun. Secur., Apr. 2017, pp. 155–166.

[29] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[30] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, ‘‘FOSSIL: A resilient
and efficient system for identifying FOSS functions in malware binaries,’’
ACM Trans. Privacy Secur., vol. 21, no. 2, pp. 1–34, Feb. 2018.

[31] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang,
and A. Hanna, ‘‘Binarm: Scalable and efficient detection of vulnera-
bilities in firmware images of intelligent electronic devices,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerability Assessment, 2018,
pp. 114–138.

[32] Y. David, N. Partush, and E. Yahav, ‘‘FirmUp: Precise static detection of
common vulnerabilities in firmware,’’ ACM SIGPLAN Notices, vol. 53,
no. 2, pp. 392–404, Nov. 2018.

[33] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, ‘‘VulSeeker: A semantic
learning based vulnerability seeker for cross-platform binary,’’ in Proc.
33rd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2018,
pp. 896–899.

[34] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, ‘‘Neu-
ral machine translation inspired binary code similarity comparison
beyond function pairs,’’ 2018, arXiv:1808.04706. [Online]. Available:
http://arxiv.org/abs/1808.04706

[35] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
‘‘Safe: Self-attentive function embeddings for binary similarity,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerability Assessment, 2019,
pp. 309–329.

[36] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and T. Liu, ‘‘Patch based vulner-
ability matching for binary programs,’’ in Proc. 29th ACM SIGSOFT Int.
Symp. Softw. Test. Anal., Jul. 2020, pp. 376–387.

[37] D. Grover, The Protection of Computer Software: Its Technology and
Applications. Cambridge, U.K.: Cambridge Univ. Press, 1992.

[38] S. Cesare and Y. Xiang, Software Similarity and Classification. London,
U.K.: Springer-Verlag, 2012.

[39] G. Salton and C. Buckley, ‘‘Term-weighting approaches in automatic
text retrieval,’’ Inf. Process. Manage., vol. 24, no. 5, pp. 513–523,
1988.

[40] K. Guan, S. Nazir, X. Kong, and S. U. Rehman, ‘‘Software birthmark
usability for source code transformation using machine learning algo-
rithms,’’ Sci. Program., vol. 2021, pp. 1–7, Feb. 2021.

[41] D. Kim, J. Moon, S.-J. Cho, J. Choi, M. Park, S. Han, and L. Chung,
‘‘A birthmark-based method for intellectual software asset manage-
ment,’’ in Proc. 8th Int. Conf. Ubiquitous Inf. Manage. Commun., 2014,
pp. 1–6.

[42] S. Vemparala, F. Di Troia, V. A. Corrado, T. H. Austin, and M. Stamo,
‘‘Malware detection using dynamic birthmarks,’’ in Proc. ACM Int. Work-
shop Secur. Privacy analytics, 2016, pp. 41–46.

[43] S. Nazir, S. Shahzad, S. A. Khan, N. B. Alias, and S. Anwar, ‘‘A novel
rules based approach for estimating software birthmark,’’ Sci. World J.,
vol. 2015, Apr. 2015, Art. no. 579390.

[44] S. Nazir, S. Shahzad, I. Zada, and H. Khan, ‘‘Evaluation of software
birthmarks using fuzzy analytic hierarchy process,’’ in Proc. 4th Int. Multi-
Topic Conf., 2015, pp. 171–175.

[45] S. Nazir, S. Shahzad, R. B. Atan, and H. Farman, ‘‘Estimation of software
features based birthmark,’’ Cluster Comput., vol. 21, no. 1, pp. 333–346,
Mar. 2018.

[46] J. Choi, Y. Han, S.-J. Cho, H. Yoo, J.Woo,M. Park, Y. Song, and L. Chung,
‘‘A static birthmark for ms windows applications using import address
table,’’ in Proc. 7th Int. Conf. Innov. Mobile Internet Services Ubiquitous
Comput., 2013, pp. 129–134.

[47] X. Xie, F. Liu, B. Lu, and L. Chen, ‘‘A software birthmark based on
weighted K-gram,’’ in Proc. IEEE Int. Conf. Intell. Comput. Intell. Syst.,
vol. 1, Oct. 2010, pp. 400–405.

[48] G. Myles and C. Collberg, ‘‘K-gram based software birthmarks,’’ in Proc.
ACM Symp. Appl. Comput. (SAC), 2005, pp. 314–318.

[49] Y. Kim, J. Moon, D. Kim, Y. Jeong, S.-J. Cho, M. Park, and S. Han, ‘‘A
static birthmark of windows binary executables based on strings,’’ in Proc.
7th Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput., 2013,
pp. 734–738.

[50] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K.-I. Matsumoto,
‘‘Design and evaluation of dynamic software birthmarks based on API
calls,’’ Info. Sci., Nara Inst. Sci. Technol., Kansai Science City, Japan,
Tech. Rep. NAIST-IS-TR2007011, pp. 0919–9527, 2007.

[51] D. Schuler, V. Dallmeier, and C. Lindig, ‘‘A dynamic birthmark for
Java,’’ in Proc. 22nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2007, pp. 274–283.

[52] T. Joachims, ‘‘Text categorization with support vector machines: Learning
with many relevant features,’’ in Proc. Eur. Conf. Mach. Learn., 1998,
pp. 137–142.

[53] G. Salton, A. Wong, and C. S. Yang, ‘‘A vector space model for automatic
indexing,’’ Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[54] L. Bernauer, E. J. Han, and S. Y. Sohn, ‘‘Term discrimination for text search
tasks derived from negative binomial distribution,’’ Inf. Process. Manage.,
vol. 54, no. 3, pp. 370–379, May 2018.

110824 VOLUME 9, 2021



C.-K. Chung, P.-C. Wang: Version-Wide Software Birthmark via Machine Learning

[55] D. Davis and B. J. B. Mark, ‘‘Untangling parametric schemata: Enhancing
collaboration through modular programming,’’ in Proc. 14th Int. Conf.
Comput. Aided Architectural Design, 2011, pp. 55–68.

[56] Wikipedia. (2021). Software Versioning. [Online]. Available:
https://en.wikipedia.org/wiki/Software_versioning

[57] L. C. Harris and B. P. Miller, ‘‘Practical analysis of stripped binary
code,’’ ACM SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68,
Dec. 2005.

[58] X. Meng and B. P. Miller, ‘‘Binary code is not easy,’’ in Proc. 25th Int.
Symp. Softw. Test. Anal., Jul. 2016, pp. 24–35.

[59] Y. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, ‘‘Program charac-
terization using runtime values and its application to software plagiarism
detection,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 925–943, Apr. 2015.

[60] R. H. W. Pinheiro, G. D. C. Cavalcanti, R. F. Correa, and T. I. Ren,
‘‘A global-ranking local feature selection method for text categorization,’’
Expert Syst. Appl., vol. 39, no. 17, pp. 12851–12857, 2012.

[61] Z. S. Harris, ‘‘Distributional structure,’’ Word, vol. 10, nos. 2–3,
pp. 146–162, 1954.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[63] A. P. Bradley, ‘‘The use of the area under the ROC curve in the evalu-
ation of machine learning algorithms,’’ Pattern Recognit., vol. 30, no. 7,
pp. 1145–1159, 1997.

CHIH-KO CHUNG received the bachelor’s degree
from the Department of Management Information
System, National Pingtung University of Science
and Technology, in 1998. He is currently pursuing
the Ph.D. degree with the Department of Com-
puter Science and Engineering, National Chung
Hsing University. He has been serving for Trend
Micro Cybersecurity Solutions department, as a
Senior Architect, since 2000. His research interests
include cyber security and machine learning.

PI-CHUNG WANG (Member, IEEE) received
the M.S. and Ph.D. degrees in computer sci-
ence and information engineering from National
Chiao Tung University, Taiwan, in 1997 and 2001,
respectively. From 2002 to 2006, he was with
the Telecommunication Laboratories, Chunghwa
Telecom. He joined the Department of Computer
Science and Engineering (CSE), National Chung
Hsing University (NCHU), in 2006, where he has
been a Professor of CSE, since 2014. His research

interests include packet classification and mobile edge computing.

VOLUME 9, 2021 110825


