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ABSTRACT We propose a novel data-driven feature extraction approach based on direct causality and fuzzy
temporal windows (FTWs) to improve the precision of human activity recognition and mitigate the problems
of easily-confused activities and unlabeled data, which significantly degrade classification performance
owing to the correlation of labeled data. In recognizing activities, the proposed approach not only considers
the importance of oncoming short-term sensor data but also considers the continuity from past activities
of the preceding long-term sensor data. In terms of the oncoming data, the causality feature is extracted
using the direct transfer entropy to determine the unique pattern of an activity, which represents the quantified
causal relationship between sensor activations. In terms of the preceding data, several hours of historical data
are compressed to fuzzy features based on FTWs. Subsequently, the causality and fuzzy features are fused
by matrix multiplication to express distinct features of activities. To effectively learn the spatiotemporal
dependencies of the fused feature, deep long short-term memory (LSTM), two-dimensional convolutional
neural network (2D-CNN), and hybrid models composed of a combination of LSTM and CNN were used.
Leave-one-day-out cross-validation was performed based on the CASAS open datasets, including Aruba,
Cairo, and Milan. The results showed that the macro-F1-scores were improved by 16.4, 37.5, and 18.5%,
respectively, compared with those of the FTW-only environments. In addition, the proposed approach could
improve the precision of activity recognition and mitigate the problems associated with the environments
containing unlabeled data.

INDEX TERMS Activity of daily living, activity recognition, causality, convolutional neural network, deep
learning, fuzzy feature, long short-term memory.

I. INTRODUCTION
Owing to enhanced life expectancies, the number of elderly
people has increased worldwide. Therefore, the social-level
demand for caring for those living alone in terms of physical
and mental health has increased [1]–[4]. Moreover, recog-
nition of daily activities based on artificial intelligence and
machine learning is a promising solution. Bymonitoring their
health conditions, identifying deviations in their activities,
and detecting emergencies, activity recognition (AR) can be
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used to assist the elderly that live on their own. AR can
be classified into three main categories based on the type
of data collection method: camera video [5]–[10], wearable
devices [11]–[28], and binary sensors [29]–[36]. The cam-
era video and wearable devices methods are not desirable
because of their invasion of privacy and impracticality, such
as discomfort while wearing a wearable device and main-
tenance burden in practical applications. Thus, this study
focused on data-driven AR based on deep learning using
a device-free and non-privacy-invading method. The binary
sensor-based method was used because it provides a practical
solution for real-life long-term activity monitoring.
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In general, feature representation and extraction are crucial
steps in the AR. To precisely classify and recognize easily-
confused activities, such as meal preparation, dish washing,
and eating in a kitchen area, this study focused on extracting
a meta-action by quantifying the causal influence between a
series of sensor activations. This is because human activity
is a process variable comprising sequential activities formed
based on the unique rules, habits, and lifestyles of a per-
son [37]–[41]. Even if the areas of activities are identical,
the unique orders or characteristics of sensor activation in
the activities can differ depending on the habits and lifestyles
and can be represented as a causality between sensors. These
unique features can be extracted and learned to improve AR
performance.

Studies on quantitative characterization while extracting
causality on a given time series have been reported [42]–[46].
Among them, a well-known study analyzed Granger causal-
ity (G-causality) [42], [43], which represents the causality
between two time series using an auto-regression model.
However, G-causality is limited in dealing with nonlin-
ear relationships because it is based on a linear model.
To overcome the limitation of G-causality, transfer entropy
(TE) [44], [45], which deals with nonlinear relationships, was
proposed to measure the causal influence among multivariate
time series. In [46], the authors proposed direct TE (DTE)
by dividing it into direct and indirect quantitative causality
between a pair of variables because the propagation of infor-
mation between two variables can be affected by intermediate
variables. In this study, to utilize the benefits of extracting the
meta-action of current sensor activation and enhancing the
recognition performance in AR, we adopted the concept of
direct causality between oncoming short-term series of sensor
activations, such as sensor activation for tens of seconds or a
few minutes after query time. We implemented this concept
by calculating the normalized DTE (NDTE) as a feature
matrix to be learned.

Furthermore, processing of not only the oncoming short-
term data but also of the preceding long-term data of sensor
activation are crucial for recognizing the current activity
because activities occur in succession based on the activ-
ity transition probability of residents. However, long-term
historical data are significantly vast, for example, several
hours or a day before query time, and they should be com-
pressed and transformed into a single feature matrix to be
effectively learned. In this study, fuzzy features extracted by
fuzzy temporal windows (FTWs) [2], [47]–[51], which is a
data representation method that effectively compresses large
preceding data, were used.

Concurrently, there are still unresolved challenges in AR,
such as unlabeled other activity data. Some of the chal-
lenges are irrelevant and routine activities, whereas others
are related to a predefined target class. Unlabeled data can
significantly reduce the AR performance [52]–[55] because
of their correlation with labeled data. In real-time AR ser-
vices that test all sensor data generated in real time in
order, if the AR model is not trained on the other data,

it will erroneously recognize queries as predefined activi-
ties even though there is no correspondence between them.
In some studies, although the models were trained using
such unlabeled data, queries were tested only with labeled
data, excluding the queries from the unlabeled data in the
performance evaluation. Model evaluation using this method
is impractical because of the unreliability of the recognition
accuracy.

By considering the above-mentioned limitations, the moti-
vation and objectives of this study were to improve the pre-
cision of AR and mitigate the problems of easily-confused
activities and unlabeled data for real-time reliable AR ser-
vices. Therefore, the following steps were adopted:
Step 1: A novel sensor-based data-driven AR architecture

based on causality and fuzzy feature learning was proposed.
After data preprocessing for event-triggered feature extrac-
tion, the causality feature that describes the cause-and-effect
information between sensor activation to express the unique
patterns of resident activity was extracted. The extraction
was based on NDTE and self-NDTE for all sensor pairs of
oncoming short-term data, where self-NDTE is the causality
between the same sensors.
Step 2: The fuzzy features were extracted from a large

amount of historical data using FTWs for several hours to
infer the current activity by determining the past activities.
Thereafter, the two features (causality and fuzzy) were fused
by the dot product to capture both the past and present
features. Because the two-dimensional (2D) matrix of the
fused feature contains spatiotemporal information, three deep
learning models were trained: deep long short-term memory
(LSTM), deep 2D convolutional neural network (2D-CNN),
and deep 2D-CNN–LSTM to utilize the enhancing process
of deep learning. To the best of our knowledge, this is
the first study to examine the approach of the extraction
and learning of a fused feature based on direct causality
in AR.
Step 3: Experiments were conducted to investigate the

recognition performance of the proposed AR architecture
utilizing the three open datasets, Aruba, Cairo, and Milan,
provided by a project of the Center for Advanced Stud-
ies in Adaptive Systems (CASAS) of Washington State
University [56]. The experimental results were obtained
using a well-known performance measure, precision, recall,
F1-score, and confusion matrix in experimental environ-
ments. Three open datasets, three deep learning models,
application/nonapplication of the causality features, and pres-
ence/absence of unlabeled data were utilized. The leave-one-
day-out cross-validation results indicated that our proposed
model outperformed the existing studies in terms of the
macro-F1-scores, including the other activities.

The remainder of this paper is organized as follows.
Related studies are discussed in Section II. In Section III,
we describe the proposed model, including feature extraction
and fusion. Section IV presents the experimental results.
Finally, the conclusions of this study are summarized in
Section V.
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II. RELATED STUDIES
This section discusses the existing studies in two main cate-
gories of human AR (HAR) subproblems: i) feature learning
with temporal dependencies of binary sensor-based data and
ii) interference with unlabeled data.

A. TEMPORAL DEPENDENCY-BASED FEATURE
EXTRACTION
Binary sensor-based AR is a useful and unobtrusive method
for evaluating the conditions of daily living in a sensorized
environment. Binary sensors, such as small and light devices,
including passive infrared sensors, motion detectors, and con-
tact switches, are suitable for obtaining data on sequential
human activities and interactions. For high-precision AR,
an effective method for extracting and expressing the hidden
temporal features from sequential sensor activation data is
essential, and the effectiveness of the extraction of the distinct
temporal features leads to high recognition performance.

One efficient method for extracting temporal features is
the using FTWs [2], [47], [48] and membership functions to
implicitly express the features for several hours in preceding
massive event data. In [2], an LSTM and CNN-based model
that learns partial oncoming activities in addition to preced-
ing sensor activations was proposed. In [47], an ensemble
of activity-based classifiers, where each classifier is com-
posed of LSTM networks, was proposed for balanced-based
similarity training.

Feature extraction has been developed for dimensional-
ity reduction methods without the loss of class separabil-
ity. Unsupervised techniques, such as single k-means, fuzzy
c-means, multi-view k-means, and multi-view fuzzy c-means
clustering, are powerful techniques for finding hidden and
unhidden labels considering feature reduction and unknown
number cluster patterns in data. A novel algorithm was
proposed in [57] for clustering multi-view data, termed
feature-reduction multi-view K-means, which could auto-
matically reduce unimportant features. In [58], a mecha-
nism was presented for determining the number of clusters
with feature-reduction behavior under an unknown number
of clusters for k-means clustering, called Entropy-k-means.
In [59], a novel multi-view fuzzy c-means clustering algo-
rithm was proposed with view and feature weights based
on collaborative learning for feature reduction to exclude
redundant/irrelevant feature components. In [60], a robust
learning-based fuzzy c-means framework was introduced to
obtain free of the fuzziness, initializations without parameter
selection, and to find the best number of clusters.

To develop intelligent systems from sensor data streams,
a new approach was introduced for online AR with three
temporal sub-windows [49], [50]. Moreover, an ensemble of
activity-based classifiers was presented for balanced train-
ing and the selection of relevant sensors using FTWs [51].
Even though the fuzzy temporal feature extraction-based
approaches in [2], [47]–[51] exhibited advanced perfor-
mance, performance degradation owing to the unlabeled

data for other activities that comprise half of the dataset
and present high correlation to the labeled data were not
investigated.

Mutual information and entropy-based methodologies
quantifying information flow between multiple time series
were studied for AR as alternative methods to extract fea-
tures based on activation flow. Furthermore, a sensor-based
method that recognizes a group of sensors as windows that are
continuously activated together by their mutual information
measure was proposed in [53]. In [35], the model presented
in [53] was extended, and its performance was improved by
altering the computation of mutual information. A causality-
induced hierarchical Bayesian model was suggested to deal
with interaction AR [40]. In [43], a G-causality-based frame-
work was presented for the recognition of single-user activity.
Additionally, another study proposed a human–object inter-
action model that integrates the causal relationship between
humans and objects based on the TE for video AR [39].

B. RECOGNITION OF UNLABELED OTHER ACTIVITIES
To improve recognition precision for realizing real-time reli-
able AR services, studies on the most problematic activity
class of ‘‘others’’ of unlabeled sensor events are required.
Some studies have discussed this problem in addition to using
the corresponding data in training and not querying this class
in performance analysis, which degrades the reliability of the
AR architecture.

The problem of dealing with a large proportion of noncat-
egorized data between predefined classes was investigated
in [61], [62]. Moreover, patterns in the data were demon-
strated by segmenting them into learnable targets, where the
predefined classes denoted categories confirmed to be labeled
among various human activities when generating a dataset.
In [59], an architecture of feature extraction by merging
the methods of natural language processing and time-series
classification domains was proposed, and an unidentified
class name, ‘‘Other,’’ was discussed for the Milan and Aruba
datasets. In [52], the authors proposed an online application
of the hierarchical hidden Markov model for detecting the
current activity from live streaming of sensor events and
identifying the activities that occur during another activity,
called interrupted activities.

III. METHODOLOGY
To improve the precision and sensitivity of AR and mitigate
the problems of easily-confused activities and unlabeled data,
a novel sensor-based data-driven AR architecture was pro-
posed that extracts the causality and fuzzy features, as shown
in Fig. 1. The proposed architecture was divided into feature
extraction and AR.

In the feature extraction, fuzzy and causality features are
extracted from the sensor data, and feature fusion is per-
formed to transform these two features into one. In the
extraction of the causality feature, sparsely recorded sensor
activation data are restored to a uniform time series of 1 s,
and the causal influence between the sensors is calculated

VOLUME 9, 2021 112259



Y. M. Hwang et al.: Deep Learning for HAR Based on Causality Feature Extraction

FIGURE 1. Flow chart of the proposed activity recognition architecture, where j satisfies ti ≤ tj < ti+1.

using the restored data to form the causality feature matrix.
In the extraction of the fuzzy feature, the FTWs composed of
multiple membership functions are applied to calculate the
fuzzy feature matrix for long-period preceding data.

In AR, deep neural network models designed based
on LSTM, 2D-CNN, and hybrid models composed of a

combination of LSTM and 2D-CNN were trained with the
fused feature to effectively learn the dependencies of the
feature. The trained model operates as a classifier for real-
time AR, and the precision performance is evaluated using
leave-one-day-out cross-validation with and without unla-
beled data. In the architecture, we consider the problem of
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FIGURE 2. Data preprocessing for feature extraction.

dealingwith unlabeled ‘‘Others’’ data, which comprise half of
the dataset. The unlabeled data are correlated with the labeled
data, which confuses the classifier and degrades its classi-
fication performance. To alleviate performance degradation
problem, we introduce a method of extracting NDTE-based
causality feature extraction along with the conventional
FTW-based fuzzy feature extraction to express unique
patterns of activities.

A. DATA PREPROCESSING
For binary sensor-based data, three open datasets of Aruba,
Cairo, and Milan [56] were utilized. These datasets capture
daily activities, such as cooking, sleeping, and leaving home,
using sensors installed in smart homes.

Before performing the feature extraction, 1,719,558,
433,665, and 726,534 binary sensor activation events were
preprocessed from the raw datasets of Aruba, Cairo, and
Milan, respectively, as depicted in Fig. 2. For each dataset,
the distribution of the entire target class, including the other
classes (unlabeled data), is depicted in Fig. 3. The raw sensor
data in this data processing were cleansed by correcting
some corrupted values (e.g., ‘‘OF’’ to ‘‘OFF’’), mapping the
time form to ‘‘hh:mm:ss,’’ removing the temperature sensor
data, and performing a single labeling operation on scarce
multi-labeled data. To extract and train the other class data,
unlabeled sensor events between the end of a labeled activity
and beginning of the next activity were labeled with the target
name, ‘‘Others,’’ in the data cleansing. Subsequently, two data
transformations were considered: last-fired and reconstructed
data, which are described as follows:
Last-fired data: This data refer to the last implemented

sensor. The sensor that last changed the state remains ‘‘ON,’’
and it changes to ‘‘OFF’’ when another sensor changes its
state. Last-fired data are transformed from the cleansed data.
Reconstructed data: These data refer to the reconstruction

of the ‘‘ON’’ or ‘‘OFF’’ status of each sensor in increments

of 1 s and conversion into a uniformly sampled time series
instead of irregular sensor events. The reconstructed data are
transformed from the cleansed data.

B. FEATURE EXTRACTION
The main purpose of this study is to use the causality fea-
ture and the fuzzy feature simultaneously by fusing the two
features for real-time AR because the advantages of the two
features are different. We propose an evolved feature extrac-
tion approach based on NDTE and FTWs to take advantage
of both the causality feature and the fuzzy feature as follows:

• Causality feature: It is used for single activity and has
the advantage in that it contains meta-action information
by calculating direct causal influence between sensors to
express unique orders and characteristics of an activity.

• Fuzzy feature: It is for multiple activities and has the
advantage in that it contains historical activity informa-
tion by compressing long-term sensor event data; how-
ever, there should be a loss of information in extracting
short-term and specific features of each activity.

This subsection describes the extraction of the two types of
features: i) NDTE-based causality features and ii) FTW-based
fuzzy features. To mine the meta-activity information during
a predefined oncoming time interval (e.g., 60 s), the causality
feature matrix is generated by calculating the NDTE [46] of
the regular time series of each sensor from the reconstructed
data.While considering the preceding time interval (e.g., 3 h),
a large amount of sensor activation data is expressed as one
fuzzy feature matrix based on the number of sensors and the
FTWs; subsequently, a training set is prepared by combining
the causality feature matrix with the fuzzy matrix.

A set of binary sensors is represented by S ={
s1, s2, . . . sα, . . . , s|S|

}
, where |S| is the total number of

sensors. The ON–OFF status of sensor event index i ∈
{1, 2, . . . ,I } from the last-fired data and j ∈ {1, 2, . . . ,J}
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FIGURE 3. Human AR dataset of CASAS [56]; activity distributions of
Aruba (top), Milan (middle), and Cairo (bottom) datasets and related
targets.

from the cleansed data (I < J) can be expressed as follows:

Si =
{
si1 , si2 , . . . siα , . . . , si|s|

}
, siα = {0, 1} , (1)

Sj =
{
sj1 , sj2 , . . . sjα , . . . , sj|s|

}
, sjα = {0, 1} , (2)

where siα and sjα are the activation statuses of irregular and
regular sensor events i and j of the αth sensor, respectively.
It should be noted that in this study, observations are the
sequence of sensor events, and features are extracted for each
observation.

1) CAUSALITY FEATURE MATRIX
In an environment in which various sensors are installed,
causality is the process of extracting the cause-and-effect
information to express the unique patterns of resident activity
for a predefined time interval (e.g., 60 s). As an asymmetric
matrix with directional and dynamic information, the causal-
ity, cαβ = NDTEα→β ∈ C , denotes the causal relationship

between a pair of sensors (α, β) ∈ {1, 2, . . . , |S|}, where
C ∈ R|S|×|S| denotes the causality matrix. The quantitative
causal influence, cαβ 6= cβα , can be calculated using certain
patterns of the joint probability of activation between sensors.

The causality from variable stα to variable stβ is composed
of direct and indirect paths, owing to an intermediate variable.
For example, stγ , where variable sets

{
stα , stβ , stγ

}
∈ St ={

st1 , st2 , . . . stα , . . . , st|s|
}
is a time series reconstructed from

the sensor event set,
{
sjα , sjβ , sjγ

}
∈ Sj, with time stamp

t in units of seconds from the reconstructed data, γ ∈
{1, 2, . . . , |S|}, α 6= γ and β 6= γ . In [46], a TE-based
methodology was used to detect and differentiate between
direct and indirect causalities for process variables. In this
study, only direct causality is used. For a binary sensor-based
dataset for AR, direct causality can be considered as pure
causality (or the information of the meta-action) in which
the causal influence of the intermediate sensors is removed.
Schreiber proposed a TE-based measure of causality to com-
pute the deviation from the following generalized Markov
condition [44]:

p
(
st+1α |s

n
tα , s

m
tβ

)
= p

(
st+1α |s

n
tα

)
, (3)

where smtα =
(
stα , . . . , st−m−1α

)
, sntβ =

(
stβ , . . . , st−n−1β

)
,

m and n represent the orders (memory) of Markov processes
stα and stβ , respectively, and p (|) represents the transitional
probability. The TE from stα and stβ [45] is formulated as

TEα→β

= H
(
st+1β |s

n
tβ

)
− H

(
st+1β |s

n
tβ , s

m
tα

)
=

∑
st+1β ,s

n
tβ
,smtα

p
(
st+1β , s

n
tβ , s

m
tα

)
log

p
(
st+1β |s

n
tβ , s

m
tα

)
p
(
st+1β |s

n
tβ

) , (4)

where H
(
st+1β |s

n
tβ

)
denotes the conditional Shannon

entropy of stβ at time stamp t + 1, provided its value at time
t is expressed as

H(st+1β |s
n
tβ ) = −

∑
st+1β ,s

n
tβ

p(st+1β |s
n
tβ )log

p(st+1β |s
n
tβ )

p(sntβ )
. (5)

TEα→β can be regarded as the information about future
observations st+1β gained from past observations of sntβ , and
it is subtracted from the information gained from future obser-
vations st+1β when the joint probability,

(
sntβ , s

m
tα

)
, is known.

If sntk is independent of s
m
tα , then the second term in (3) is zero.

The TE can be in the range of 0 ≤ TEα→β < ∞. In [46],
the DTE was calculated for variables stα , stβ , and stγ , where
sotγ =

(
stγ , . . . , st−o−1γ

)
and o represent the orders.

DTEα→β
= TEα→β|γ

= H
(
st+1β |s

n
tβ , s

o
tγ

)
− H

(
st+1β |s

n
tβ , s

o
tγ , s

m
tα

)
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=

∑
st+1β , s

n
tβ ,

sotγ , s
m
tα

p
(
st+1β , s

n
tβ , s

o
tγ , s

m
tα

)
log

p
(
st+1β |s

n
tβ , s

o
tγ , s

m
tα

)
p
(
st+1β |s

n
tβ , s

o
tγ

) ,

(6)

where

p
(
st+1β |s

n
tβ , s

o
tγ , s

m
tα

)
p
(
st+1β |s

n
tβ , s

o
tγ

) =

p
(
st+1β , s

n
tβ , s

o
tγ , s

m
tα

)
p
(
sntβ , s

o
tγ

)
p
(
st+1β , s

n
tβ , s

o
tγ

)
p
(
sntβ , s

o
tγ , s

m
tα

) .
(7)

Equation (7) is an example of a DTE with an intermediate
variable, stγ . In the case of the Aruba dataset, a total of 35 sen-
sors and 33 sensors exist, excluding the target sensor pair,
which can be a set of intermediate sensors every time the DTE
is calculated for all possible pairs of sensors. Furthermore, the
self-DTE is calculated to obtain the causal influence between
themselves, where the target sensor pair consists of the same
sensors, as follows:

DTEα→β =

{
DTEα→β if α 6= β
Self − DTEα→α if α = β,

(8)

where

Self DTEα→α
= TEα→α|β,γ

= H
(
st+1α |s

n
tβ , s

o
tγ

)
− H

(
st+1α |s

n
tβ , s

o
tγ , s

m
tα

)
=

∑
st+1α , s

n
tβ ,

sotγ , s
m
tα

p
(
st+1α , s

n
tβ , s

o
tγ , s

m
tα

)
log

p
(
st+1α |s

n
tβ , s

o
tγ , s

m
tα

)
p
(
st+1α |s

n
tβ , s

o
tγ

) .

(9)

DTEmatrices can contain large amounts of noise and bias-
generating bias entropy. Therefore, to improve the recogni-
tion precision, this bias should be removed from the DTE
separately estimate from the process of filtering out direct
causality. Bias entropy can be removed by subtracting the
average DTEα→β using the shuffled version of stα denoted
by 〈DTEαshuffle→β 〉, over several shuffles. αshuffle denotes the
randomly rearranged stα in a shuffled order to deteriorate time
sensitivity, and the NDTE from stα to stβ can be calculated as
follows [46]:

NDTEα→β =

{
NDTEα→β if α 6= β
Self − NDTEα→α if α = β,

(10)

where

NDTEα→β

=
DTEα→β − 〈DTEαshuffle→β 〉

H
(
st+1β |stβ

) , (11)

SelfN − DTEα→α

=
Self − DTEα→α − 〈Self − DTEαshuffle→α 〉

H
(
st+1α

) . (12)

The NDTE is in the range of 0 ≤ NDTEα→β ≤ 1. It is zero
when stα transfers no information to stβ , and is one when stα
transfers the maximum information to stβ . In this study, self-
NDTE was first derived and applied. It is important to obtain
self-NDTE because it prevents the diagonal component in
the causality matrix from being null. If the self-NDTE is not
calculated, feature information loss occurs during the fusion
of causality and fuzzy features.

In this study, the causality matrix, Ctj
(
St ,1tj+

)
∈

R|S|×|S|, is extracted for the set of reconstructed time series,
St , for the predefined temporal window (or interval), 1tj+ =[
tj, tj+

]
, where tj denotes the time at which event j occurs,

and tj+ denotes the oncoming point of time from tj(tj < tj+ ).
An element of the causality matrix, cαβ ∈ Ctj

(
St ,1tj+

)
, can

be calculated as follows:

cαβ = NDTEα→β
(
St ,1tj+

)
= NDTEα→β (St) , ∀t ∈ 1tj+ . (13)

2) FUZZY FEATURE MATRIX
This subsection describes the extraction of the fuzzy features
of long-period preceding data using multiple and incremental
FTWs [2], [47]. Each FTW Tk is defined as a set of fuzzy
membership functions whose shape corresponds to the trape-
zoidal function, Tk (x) [l1, l2, l3, l4], as expressed in (14).

Tk (x) [l1, l2, l3, l4] =



0 x ≤ l1
(x − l1) / (l2 − l1) l1 < x ≤ l2
1 l2 < x ≤ l3
(l4 − x) / (l4 − l3) l3 < x ≤ l4
0 l4 < x.

(14)

The well-known trapezoidal membership functions are
defined by a lower limit l1, an upper limit l4, a lower support
limit l2, and an upper support limit l3. The values of l1,
l2, l3, and l4 are defined based on the Fibonacci sequence.
To extract features, the FTWs slide over the temporal window,
1ti− = [ti− , ti], between a particular time ti and a preceding
point of time ti− , where i∗ denotes the corresponding provided
event index for ti∗ . Once the FTW Tk is defined, the activation
degree of a binary activation siα from the sensor activation Si
at the evaluated time ti∗ can be computed using (15).

Tk
(
siα ,1ti−

)
=

{
max(Tk (siα )), ∀t ∈ 1ti−

0, otherwise.
(15)

Subsequently, the fuzzy feature Fti
(
siα ,1ti−

)
∈ Rk×|S|,

can be extracted and aggregated by calculating fkα =

Tk
(
siα ,1ti−

)
∈ F , applying k FTWs for |S| binary sensors

based on the last-fired data. In Fig. 4, some examples of the
activation degree from FTW Tk and different binary activa-
tions siα are presented.

C. WINDOWING AND FEATURE FUSION
The most common windowing techniques include the TW
and sensor event windowing (SEW) [63]. Each approach
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FIGURE 4. Activation degrees of FTW Tk for different binary activations
siα and different limit sets

{
l1, l2, l3, l4

}
by partial overlapping between

Tk and siα .

Algorithm 1 Feature Extraction Based on Causality and
FTWs
Input: cleansed data Sj, last-fired data Si, sensors
S =

{
s1, s2, . . . sα, . . . , s|S|

}
, preceding window

1ti− = [ti− , ti], oncoming window 1tj+ =
[
tj, tj+

]
,

membership function (k , l1, l2, l3, l4), ti = time of event
i.

Result: fused feature F fti,j .
For Sj, event index j ∈ {1, 2, . . . , J} do
Reconstruct uniform time series St from Sj
For sα, sβ ∈ S do

Calculate causality feature matrix Ctj
(
St ,1tj+

)
using (13)
end for

end for
For Si, event index i ∈ {1, 2, . . . ,I } do
For sα ∈ S do
Calculate fuzzy feature matrix Fti

(
siα ,1ti−

)
using

(15)
end for

end for
For i ∈ {1, 2, . . . ,I } do
For j ∈ {1, 2, . . . ,J} do

If ti ≤ tj < ti+1 do
Calculatefused feature F fti,j using (16)

end if
end for

end for

has its own advantages and disadvantages. TW breaks a
dataset into equal periods, and is preferred for selecting the
optimal period for streamed data because of the availability
of extremely few or numerous features for representing an
activity. SEW splits a dataset into equal segments of fired
sensor events and has the advantage that the varying time
windows owing to the fixed number of sensor events can
appropriately capture the context. This is achievable because

a wide time range is necessary to acquire the context in the
case of sleeping, whereas a narrow time range is sufficient for
frequent events, such as housekeeping.

In this study, a sensor event-triggered time window (STW)
combining TW and SEW was applied. STW is a window-
ing technique in which the start time is set as the time an
event (index) occurs, and the end time is set by adding
(or subtracting) a predefined time interval to (from) the start
time. When the start and end times are defined, the events
occurring within that period are included in the window and
used for feature extraction. Therefore, the number of SEW
events may vary, and features are extracted for every event
index to form a training dataset.

As depicted in the second block of Fig. 1, the fuzzy feature
Fti is extracted from an STWwith a start time ti defined as the
time at which the last-fired data-based event index i occurred.
As described in Subsection IIIB, only preceding sensor events
up to 3 h from the start time were utilized to extract the
fuzzy features.Moreover, the fuzzymembership functionwas
subdivided into k functions within the STW. Furthermore,
to extract key patterns of the behavior that occur over a short
period, the causality Ctj is extracted from the STW with the
start time tj and a time interval of 60 s for the oncoming sensor
events, where event index j satisfies ti ≤ tj < ti+1. Therefore,
index i can have multiple indices, j.

If the fuzzy features are extracted based on the cleansed
data-based sensor event, j, several completely identical fea-
ture vectors that do not contain the behavioral pattern changes
can be obtained. This is because of the FTWs-based fea-
ture extraction, which generates one feature matrix for the
long-term TW for several hours. Moreover, it is difficult to
contain relevant context information while extracting fuzzy
features in an extremely short time interval (or low time
resolution). However, it is important to extract the fuzzy
feature for the event index of the last-fired data that expresses
only the data in which the sensor status has changed clearly
by describing the last-fired data. Concurrently, the causality
expresses the changed behavior pattern for every event j, and
it cannot have a smaller resolution than event j. In particular,
the behavior pattern is extracted with maximum detail in both
cases of fuzzy features and causality. The fused feature F fti,j
can be expressed as follows:

F fti,j = Fti ·
(
I|S| − Ctj

)
, ti ≤ tj < ti+1, (16)

where I|S| denotes an |S| × |S| identity matrix and ‘‘·’’ rep-
resents multiplication of two matrices using the dot product.
The pseudo-code algorithm for the proposed feature extrac-
tion method is described in Algorithm I.

The method of fusing two feature matrices is typically
divided into physical fusion based on concatenation and
chemical fusion via matrix multiplication. In this study,
the above fusion was achieved experimentally via matrix
multiplication, as expressed in (16).

In Fig. 5, we extracted the fuzzy and causality features
for the preceding 3 h and oncoming 60 s, respectively, from
each sensor event time of the Aruba dataset. The size of the
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FIGURE 5. Example of extraction of fuzzy, causality, and fused features for easily-confused activities and ‘‘Others’’ class for Aruba dataset.

fuzzy and causality feature matrices becomes 7 × 35 and
35× 35, respectively, when the 7-FTWs listed in Table 1 and
35-sensors are applied. The fused feature is generated using
matrixmultiplication of the fuzzy and causality features using
(16), to combine the strengths of the two features.

The fuzzy features of the easily-confused activity pairs
in Fig. 5 (Meal_Preparation, Eating) and (Leave_Home,

Enter_Home), have similar patterns that confuse the clas-
sifier in classifying activities and cause misclassifications,
which can be confirmed in the confusion matrix of Fig. 7 in
Section IV. The confusion is inevitable because the event
times of easily-confused activities are very close to each
other, and the time interval for the FTW-based extraction is
extremely long at 3 h, that is, the time period of the data to
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TABLE 1. Shape of trapezoidal functions (min).

extract the fuzzy feature approximately coincides with the
two activities.

Moreover, the causality features of the easily-confused
activities exhibit a distinct aspect and pattern of the activities,
as shown in Fig. 5. The reason is because not only the feature
extraction method differs from the FTWs but also overlap-
ping time intervals are not considered as a problem. Fused
features have the samematrix size as fuzzy features; however,
their aspects differ from fuzzy features through the fusion of
causality features.

The ‘‘Others’’ unlabeled data that occupy approximately
half of the entire dataset cause correlation with other activ-
ities, which degrades the precision performance of the clas-
sifier. To mitigate this degradation and recognize ‘‘Others’’
as ‘‘Others’’ as much as possible, we generated the fused
features of ‘‘Others,’’ and used them for model training.

D. MODEL ARCHITECTURE
In the previous section, we extracted the 2D matrix of the
fused features for each activity from the sensor data. In this
subsection, we focus on effectively learning the dependencies
of the fused features to classify the activities. Because the
fused feature is generated through matrix multiplication of
the fuzzy and causality features, it has both the temporal
dependency of the fuzzy feature and spatial dependency of
the causality feature.

Here, we consider that there is a temporal dependency
between the elements of the fuzzy feature matrix because
the fuzzy feature is calculated based on the FTWs having
a temporal relationship between the windows. As for the
causality feature, it can be seen that only the spatial depen-
dency, in which the elements are arranged and located in
the matrix, is provided in the causality feature because the
elements of the causality feature matrix are independently
calculated based on the NDTE.

To effectively learn the spatiotemporal dependencies of the
fused feature, LSTM, 2D-CNN, and hybridmodels composed
of a combination of LSTM and CNN were used as classifiers
in this study. LSTM is a type of recurrent neural network
that includes memory to learn the temporal dependencies
from sequences of observations over time. In the experiments,
the LSTM model was designed by stacking three LSTM
layers followed by a fully connected dense layer and a soft-
max layer. For all models in this study, a learning rate of
0.001, batch size of 100, and 20 training epochs were used
in the experiments. As a regularization technique, a dropout

rate of 40% was applied to the LSTM network to prevent
overfitting.

Furthermore, to learn the spatial dependencies of the fused
feature, a 2D-CNN model was designed. CNN, which is a
promising solution for image classification, speech recogni-
tion, and text analysis, has two advantages for HAR in learn-
ing local dependencies and scale invariance. In this study,
a 2D-CNN architecture was adopted to extract and learn
local 2D subsequences from sequence data. The model was
designed by stacking three convolutional layers with dropout
and learning rates of 40% and 0.001, respectively, followed
by a max-pooling layer. This was further followed by three
fully connected dense layers with a dropout rate of 40% and
a soft-max layer.

The hybrid 2D-CNN–LSTM model learns spatiotempo-
ral dependencies and is also employed to induce a local
sensitivity-based 2D-CNN as a preprocessing step before
LSTM. In this model, 2D-CNN is important for recognizing
the spatial patterns, and the output of 2D-CNN becomes the
input of LSTM to learn the temporal dependencies of the
fused feature. The model was designed by stacking three
convolutional layers with a dropout rate of 40%, followed
by a max-pooling layer. This is followed by three LSTM
layers with a dropout and learning rates of 40% and 0.001,
respectively, followed by a fully connected dense layer and a
soft-max layer.

IV. EXPERIMENTS
A. DATA DESCRIPTION
In this study, the most useful binary sensor open datasets,
including Aruba, Milan, and Cairo from the CASAS [56],
were used to identify human activities. Aruba is a single-
occupancy dataset in which a volunteer woman interacts with
31 motion sensors, four door sensors, and five temperature
sensors. In the Aruba dataset, ten annotated activity cate-
gories and the ‘‘Others’’ class as unlabeled sensor events
were included in the model training, as depicted in Fig. 3.
Milan is a dataset based on a volunteer woman with a dog,
28 motion sensors, and three door sensors with 16 categories,
including the ‘‘Others’’ class. Cairo is a dataset of a vol-
unteer adult couple and a dog. The 13 annotated categories
and the ‘‘Others’’ class sensor events were generated from
27 motion sensors and five temperature sensors. All datasets
contain five attributes (date, time, sensor ID, status, label,
and label status), and the events from the temperature sensors
were excluded while extracting the features and training the
models. The unlabeled sensor events between the end of a
labeled activity and beginning of the next activity are labeled
as ‘‘Others.’’

B. FEATURE VECTOR
The fuzzy features are computed by applying k = 7 FTWs
with trapezoidal functions, Tk (x) [l1, l2, l3, l4], for each sen-
sor using (14).We set the shapes of the membership functions
listed in Table 1 in this experiment because a larger number
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FIGURE 6. Probability of activity transition for Aruba dataset; rows and columns are before and after transition, respectively.

TABLE 2. Macro-F1-scores for CASAS Aruba, Milan, and Cairo datasets with leave-one-day-out cross-validation.

of windows and a wider time interval did not improve the
AR performance. The causality features were extracted as a
core feature to improveAR performance and the FTWs-based
fuzzy features were utilized as the base features of this experi-
ment to see the improvement of theAR performance. Because
the current activity has a pattern that is linked or derived
from a past activity, as depicted in Fig. 6 (for the Aruba
dataset), it is excellent to use the past information of several
hours to perform AR. To extract the features of the oncoming
data, causality was calculated for all possible sensor pairs
using (12). The memory orders were set as m = n = o = 58,
and the time windows for oncoming data1tj+ and preceding
data 1ti− were set as 60 s and 180 min, respectively. The
fused features as the training dataset were calculated using
(16), and labeled based on the label information of the corre-
sponding raw datasets. The resulting datasets were used for
the real-time AR.

C. PERFORMANCE MEASURES
The performance evaluation method commonly used in clas-
sification problems is utilized as follows:
Accuracy represents the proportion of all cases that is

correctly classified.
Precision = TP

TP+FP shows the proportion of cases cor-
rectly predicted to belong to a class, where true positive
(TP) denotes the number of samples correctly classified as

positive and false positive (FP) denotes the number of sam-
ples incorrectly classified as positive.
Recall = TP

TP+FN represents the proportion of correctly
classified cases of a class, where false negative (FN) denotes
the number of samples incorrectly classified as negative.
F1− score = 2

1/Sens+1/Prec yields the weighted average of
precision and sensitivity.

D. RESULTS
In this section, the results of the different models and
datasets are discussed based on the different feature extrac-
tion approaches. Themain objective of the study was to verify
the effectiveness of using the causality feature in an environ-
ment in which the ‘‘Others’’ class is considered. To examine
the capability of the deep LSTM, deep 2D-CNN, and deep
2D-CNN–LSTMmodels in predicting new data that were not
used in estimating it, leave-one-day-out cross-validation was
applied. In this validation method, one day of the activities
was used for the test, and the remaining days were used for
the training set.

1) COMPARISON OF THE EXTRACTION METHODS
Table 2 lists the macro-F1-scores for the three CASAS
datasets to compare the performance of the conventional
method, which uses only FTWs, and the proposed feature
fusion-based method. The latter uses both the causality and
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TABLE 3. Precision, recall, and F1-score for Aruba dataset with leave-one-day-out cross-validation.

fuzzy features (indicated as ‘‘Causality + FTW’’) in an
environment with or without the ‘‘Others’’ class from the
unlabeled data. The macro-F1-scores listed in Table 2 were
calculated based on the precision and recall data summarized
in Tables 3 and 5 for each dataset. The F1-score is the average
of ten implementations of the training model. The boldface
values in Table 2 denote the macro-F1-scores of the ‘‘Causal-
ity+ FTW’’ cases for comparisonwith those of the only FTW
cases. The results corresponding to FTW only of deep LSTM
in Table 2 refer to the FTW-based approach in [47].

A comparison of the models based on the macro-F1-scores
shows that deep 2D-CNN–LSTM presents a superior overall

performance among all the other methods. Moreover, learn-
ing spatiotemporal dependencies is more effective in recog-
nizing activities than learning only the spatial or temporal
dependencies of the fused feature.

Furthermore, we compared the AR performance with that
of the delayed FTWmethod [2], which is also an FTW-based
AR method that uses both the preceding and oncoming data.
The experimental environment was set identical to the envi-
ronment, unlabeled data was included in the feature extrac-
tion, and the time windows of the preceding and oncoming
data were 180 and 1 min, respectively. Additionally, features
were extracted fromAruba dataset, the deep 2D-CNN–LSTM
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TABLE 4. Precision, recall, and F1-score for Milan dataset with leave-one-day-out cross-validation.
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TABLE 5. Precision, recall, and F1-score for Cairo dataset with leave-one-day-out cross-validation.

model was trained, and leave-one-day-out cross-validation
was applied to examine the AR performance of the delayed
FTWmethod [2]. In the delayed FTWmethod, fuzzy features
were extracted from both the preceding and oncoming data.

The experimental results showed that there was insignif-
icant improvement compared to the macro-F1-scores of the
Baseline in Table 7 when the unlabeled ‘‘Others’’ data were
considered. Unlike [2], where performance is improved by
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TABLE 6. Performance comparison with other methods.

TABLE 7. Welch’s t-test values based on leave-one-day-out cross-validation.

using up to 4 h of the oncoming data, this experiment has
an extremely short time of 1 min of the oncoming data;
thus, it does not yield a considerable improvement. However,
because a long time delay is difficult to practically apply to
real-time AR, improvements should be made with a short
delay. Because the causality feature extracted from 1 min
of the oncoming data differs from the fuzzy feature of the
preceding data in the proposed method in this study, the per-
formance is improved by generating a new feature using the
synthesis of the two features.

2) STATISTICAL SIGNIFICANCE TEST
We used hypothesis testing for the proposed AR architec-
ture. Therefore, we performed a statistical significance test
to determine whether the classification accuracy of the mod-
els differs with and without the causality feature, where
the accuracy represents the proportion of the prediction that
is correctly classified. The main idea of the proposed AR
architecture was to extract causality features based on the
NDTE in addition to extracting fuzzy features with FTWs to
improve the precision of AR. The two models were set with
the same architecture as deep-2D-CNN-LSTM, and Model 1
was trained with the fuzzy feature only, and Model 2 was
trained with the fused feature in which the causality and fuzzy
features were fused.

We performed a two-tailed Welch’s unequal variances
t-test [64] on the two sets of accuracies, which are the
result of the two models through the leave-one-day-out cross-
validation. Test data were generated with randomly selected
50 days for the Aruba,Milan, and Cairo datasets, and 50 accu-
racies for each model were sampled. The t-test was per-
formed with the null hypothesis H0:µ1 = µ2 versus the
alternative hypothesis Ha:µ1 < µ2 and significance level
α = 0.05, where µ1 and µ2 denote the mean accuracies of
Models 1 and 2, respectively.

The results are shown in Table 7, where it is clearly shown
that the null hypothesis is rejected every time because the
p-value is less than α, and µ2 is calculated to be greater

TABLE 8. Improvement of macro-F1-scores by applying the causality.

than µ1. Therefore, the results suggest that Model 2 predicts
better than Model 1 does.

E. DISCUSSION
Herein, we discussed the proposed causality-based method
by considering the unlabeled data.

In Table 2, it is observed that the AR performance degrades
for all cases involving the ‘‘Others’’ class. In particular,
the precision, recall, and F1-score of Leave_Home of the
Aruba dataset, as shown in Table 3, is significantly reduced
because of the large correlation with the ‘‘Others’’ class,
which explains the reason for dealing with unlabeled data
for real-time AR. If the unlabeled data are not learned as the
‘‘Others’’ class, the model can erroneously classify a query
from the unlabeled data as the most probable predefined
activity because the model does not know about the ‘‘Others’’
class.

To overcome the performance degradation caused by
the ‘‘Others’’ class, an AR architecture using the causal-
ity between sensor activations was presented in this study.
We confirmed that the macro-F1-scores was improved in all
cases when the causality was applied. Among the datasets,
the improvement in the macro-F1-scores of the Milan dataset
was the most remarkable (see Table 2), and the proposed
method of applying causality was effective in AR when the
size of the dataset was not sufficiently large. Table 6 provides
the improvement in the macro-F1-scores for the best model
in the training dataset containing the ‘‘Others’’ class.
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FIGURE 7. Normalized confusion matrix of the deep 2D-CNN–LSTM
model for only FTW without ‘‘Others’’ class for Aruba dataset.

FIGURE 8. Normalized confusion matrix of the deep 2D-CNN–LSTM
model for causality application without ‘‘Others’’ class for Aruba dataset.

Among the normalized confusion matrices depicted
in Figs. 7–10, the ‘‘Others’’ class presented in Fig. 9 seems
to absorb the predicted label from other categories as white
noise. This is because the ‘‘Others’’ class data account for
approximately half of the raw datasets, and some of the ‘‘Oth-
ers’’ data are unlabeled even though they have to be labeled
as predefined activities. Using the causality feature, the prob-
lems of easily-confused activities (Meal_Preparation, Eating,
Enter_Home, and Leave_Home, as shown in Figs. 7–8),
which absorb predicted labels into the ‘‘Others’’ class, are
significantly mitigated, as depicted in Figs. 9–10.

This is possible because the causal relationship of each
sensor activation uniquely indicates distinct dependencies

FIGURE 9. Normalized confusion matrix of the deep 2D-CNN–LSTM
model for only FTW with ‘‘Others’’ class for Aruba dataset.

FIGURE 10. Normalized confusion matrix of the deep 2D-CNN–LSTM
model for causality application with ‘‘Others’’ class for Aruba dataset.

for each activity. Therefore, we employed distinct features
to recognize activities. Consequently, the proposed feature
fusion can be used to complement the shortcomings of the
FTW-based fuzzy features in improving AR performance.

V. CONCLUSION
In this study, a novel feature extraction approach based on
binary sensor data was proposed to improve classification
performance by mitigating the problems of easily confused
activities and unlabeled data. To clearly recognize an activity,
the proposed method not only considers that the current
activity is a continuation of the long-term preceding activ-
ity but also that it is important for predicting a short-term
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oncoming activity. For the preceding activity, a large amount
of historical data for several hours was used as the fuzzy
features obtained by FTWs, and for the oncoming activity,
the direct causal influence, serving as a spatial feature, was
extracted for the relationship of sensor activation. Moreover,
they were fused as a unique feature of the activity. The spa-
tiotemporal dependencies of the fused feature were learned
by deep LSTM, deep 2D-CNN, and deep 2D-CNN–LSTM.
The experiments demonstrated that the F1-score improved
when the causality feature was applied to recognize all activ-
ities performed in the CASAS open datasets, Aruba, Milan,
and Cairo. In addition, it was confirmed that the precision and
the recall performance were improved even in the case the
training model included the unlabeled data in the others class.
This result indicated that it is important to consider causality
for enhancing the learning process of the models.

In future studies, we will explore a chain model for classi-
fying current activities and predicting future activities based
on the results of the classifier, further providing the prob-
ability of the next activities. For the chain model, a multi-
labeled problem can be considered to express the transition
of an activity. In addition, an AR service can be designed to
deal with unexpected emergency scenarios prior to predicting
future behavior.
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