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ABSTRACT Skin lesions are caused due to multiple factors, like allergies, infections, exposition to the
sun, etc. These skin diseases have become a challenge in medical diagnosis due to visual similarities, where
image classification is an essential task to achieve an adequate diagnostic of different lesions. Melanoma
is one of the best-known types of skin lesions due to the vast majority of skin cancer deaths. In this work,
we propose an ensemble of improved convolutional neural networks combined with a test-time regularly
spaced shifting technique for skin lesion classification. The shifting technique builds several versions of the
test input image, which are shifted by displacement vectors that lie on a regular lattice in the plane of possible
shifts. These shifted versions of the test image are subsequently passed on to each of the classifiers of an
ensemble. Finally, all the outputs from the classifiers are combined to yield the final result. Experiment
results show a significant improvement on the well-known HAM10000 dataset in terms of accuracy and
F-score. In particular, it is demonstrated that our combination of ensembles with test-time regularly spaced
shifting yields better performance than any of the two methods when applied alone.

INDEX TERMS Image processing, deep learning, classification, skin lesion.

I. INTRODUCTION
Skin lesions are one of the most common types of malignan-
cies, and a considerable increase of cases is expected in the
following years due to pandemics (lockdown). Apart from
other factors like allergies or infections, exposition to the
sun is the leading cause of skin alterations, producing an
abnormal multiplication of melanocytes and, consequently,
melanomas. Searching for beauty, looking for a tan of their
skin with a high exposition to the sun, can have a negative
effect on the appearance of skin lesions, especially after a low
exposition to the sun due to the lockdown and mask-wearing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

Skin cancers initiate from the epidermis, which is the
topmost skin layer. Therefore, it is pretty visible, and a
computer-aided system might use the images of skin lesions
to reveal the preliminary diagnosis without assessing any
other relevant information. Melanoma is one the most lethal
type of skin cancer in humans, while in the current year,
thousands of new cases of melanoma are predicted to be
identified and are estimated to die due to melanoma [1], [2].
However, melanoma is highly curable when detected in its
earliest stages, and it is more likely than other skin cancer
to spread to other parts of the body [3]. There is a high
probability of treatment if the skin cancer is detected in the
early stages. Nevertheless, it is difficult to analyze whether
the skin lesion is malignant or benign and detect skin cancer
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during these early stages since the skin lesions look similar to
one another. In their initial growth phases, melanoma is very
similar to other benign moles in their characteristic, which
makes the diagnosis difficult between what is malignant and
what is benign even for experienced dermatologists [4].

Numerous computational intelligence techniques, includ-
ing genetic algorithms, artificial neural networks, support
vector machines, ABCDE rule, have been proposed to assess
and classify skin lesions either malignant or benign. Most of
the automatic classification systems in medical imaging have
suffered the lack of data availability, provoking an insuffi-
cient generalization of the prediction models. In addition to
this, training datasets lack sufficient quality in the sense of
homogeneity in the acquisition procedure and non-expected
objects present in the image, making it necessary to carry
out several preprocessing steps [5] and segment the region of
interest [6], [7]. Moreover, another commonly used technique
is the extraction of features that are used then to improve
the classification rate [8], [9]. The use of specific features
extracted from the melanoma images was widely used to
develop classification models [10]–[12], although the main
inconvenience of these approaches is the requirement of spe-
cific expertise to extract the adequate features and the high
quantity of time necessary to select the most appropriate.
Moreover, image preprocessing may introduce errors or loss
of essential information that can affect the final classification
rate. A simple example is the low accuracy obtained when
a poor skin lesion segmentation is carried out. Until a few
years, the classical workflow was the use of these traditional
techniques [13], yielding not good enough accuracy. In order
to overcome these limitations, deep learning models have
recently been developed with success, having the ability to
automatically learn the crucial features that can help differ-
entiate among the classes that can be found in digital images.

Deep learning has been applied to resolve very complex
classification and segmentation tasks [14], [15] without the
use of any image preprocessing method. The architecture
of these networks is mainly based on convolutional lay-
ers. These layers filter and extract essential features of the
images to learn to identify different lesions. For example,
Zhou et al. [16] used different modality images to learn the
features that determine dementia cases. Commonly named
Convolutional Neural Networks (CNNs), they have been
applied to many areas of interest, showing exceptional perfor-
mance in image and video processing [17], [18]. Nowadays,
CNNs use the power of GPUs to compute a large number of
operations in a few seconds, allowing them to process large
datasets to create reliable models to be applied to image clas-
sification, decision support systems and object recognition
and segmentation. With the increase of publicly available
datasets, deep networks have shown excellent performance
on medical image analysis [19]. Gao et al. [20] used neu-
ral networks fed with extra privileged information to carry
out strain reconstruction in ultrasound elastography. Deep
learning models have also been used to detect vessel borders
[21], to perceive blood flow from angiographies [22], and for

segmentation of different human organs like vertebrae [23] or
liver [24]. Specifically, recent research related to skin lesion
classification [25], [26] have been published, although there
is still margin for improvement. This research is based on a
two-stage process where deep networks are used to segment
and extract features and then make the prediction. Moreover,
most of them focus on the binary classification problem.
Often different types of skin pathologies are grouped into the
same class and not classified.

Convolutional Neural Networks (CNNs) is one of the most
popular deep learning techniques for image analysis. CNNs
were inspired by the animal visual cortex. They are one of
the first truly successful deep learning architectures, which
have shown outstanding performance in processing images
and videos. Nowadays, with the help of GPU-accelerated
computing techniques, CNNs have been successfully applied
to object recognition (e.g. handwriting, face, behavior. . . ),
decision support systems and image classification. Recent
research shows that deep networks are powerful tools for
medical image analysis [19], [27]. Therefore, they offer great
potential for melanoma classification [28], [29]. In particular,
CNN ensemble methods have proved particularly successful
for this task [30].

In this work, an improved CNNmodel based on a test-time
regularly spaced shifting technique is proposed. Other shift-
ing techniques like random shifting have been successfully
applied to increase the resolution of magnetic resonance
images [31]. In this research a shifting technique with a
regular displacement for the test input image is proposed. The
method is aimed at improving the performance of the CNN
in the classification. It should be noted that this proposal is
not related to train-time data augmentation by shifting the
training images. It is also different from previous approaches
that apply a random shift to the input image [32] and from
previously considered transformations for test time augmen-
tation [33]. Experimental results show a significant improve-
ment in terms of accuracy and F1-score when an ensemble of
deep networks is combined with the test-time regular shifting
technique.

Consequently, this paper has the following contributions:
• a successful application of transfer learning for dermo-
scopic image classification;

• an implementation of a test-time regularly space shifting
method to improve the classification;

• the proposal of an ensemble model of deep networks that
takes the benefit of the knowledge learned by several
classifiers.

The rest of the paper is organized as follows: Section II
sum up the recent works in the field of skin lesion diagnosis.
Section III presents the proposed methodology to carry out
the classification of skin lesions. Section IV describes the
convolutional neural networks used in the ensemble model,
as well as the parameter setup. The experimental setting and
the discussed results are presented in Section V. Finally,
the main conclusions and further works are summarized in
Section VI.
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II. RELATED WORK
Several approaches have been developed for the classifi-
cation of skin lesion images during the last years. For
that purpose, many datasets were released to motivate
researchers to find a proper solution to this task. The most
famous challenges are the ISBI/ISIC, created in 2016, which
comprises data for classification and segmentation. Specif-
ically, the ISIC2018 contains the HAM10000 dataset as
training data. Next, we summarize some of the published
works using these datasets, focusing on the performance
achieved.

Romero Lopez et al. [34] presented a model based on
VGG16 to classify images of the ISBI 2016 challenge dataset.
This method enhances the conventional CNN performances
and achieved 81.33% accuracy and 78.6% sensitivity. In [35]
a VGG19 combined with randomized trees is used to achieve
a precision and F-score of 83%.

Yap et al. [36] employed a pre-trained ResNet 50
architecture using the ISIC 2017 datasets and also utilize data
augmentation techniques. In this work, two parallel architec-
tures are used to build a multimodal architecture to train der-
moscopic images, and macroscopic images, achieving 72.9%
mean average precision.Mahbod et al. [37] proposed a hybrid
model to classify the skin lesion into seven classes. They com-
bined AlexNet, VGG16, and ResNet18 pre-trained models
to extract features that will further used to train the SVM
classifier. The results were evaluated on ISIC 2016 and ISIC
2017 datasets using data augmentation. The model achieved
an accuracy of 90.69%.

In [38] is presented a comparative analysis of state-of-art
CNN models, Inceptionv3, ResNet50, DenseNet201, and
Inception-ResNet-v2, trained by using transfer learning in
order to classify theHAM10000 dataset. The overall accuracy
of Inception-ResNet-v2 is 81.62%, and that of DenseNet is
81.43%. Also, with this dataset, Kadampur et al. [39] the per-
formances of five deep learning models, including ResNet,
SqueezeNet, and DenseNet, are compared. They reported
precision of 98.19% on the training set.

Mahbod et al. [40] presented an ensemble of pre-trained
CNN models to classify the ISIC 2018 skin lesion images.
It incorporates a three-level fusion method. The predic-
tion vectors of Efficient Net B0, Efficient Net B1, and
SeResNext-50 are fused with models trained on images of
different sizes, and finally, they are all combined together.
It achieved a balanced multi-class accuracy of 86.25% in the
test set of the ISIC 2018 challenge.

III. METHODOLOGY
In what follows, our proposal is explained in detail. Our aim
is to combine several convolutional deep classifiers which
form an ensemble, by merging the class information provided
by the classifiers when they are run on shifted versions of
the test image, where the shift vectors are distributed on a
regular lattice. This way, the advantages of each classifier
are exploited, while positional invariance is enhanced by
the shifting procedure. The scope of our proposal is the

classification of skin lesions, although the proposal could be
extended to other types of medical images.

Let us note Fi the i-th deep convolutional classifier, where
i ∈ {1, . . . ,N } so that N stands for the number of classifiers
in the ensemble. Each classifier produces a vector of class
scores z ∈ RC for each possible input image X, where C is
the number of considered classes:

z = Fi (X) (1)

Now, let us consider shifted versions X ⊕ s of the input
test image X, where s ∈ Z2 is a shift vector which indicates
the displacement in pixels that is applied to X. The circular
shift operation is assumed here. Independent on how the
image is shifted and which classifier is employed, the true
class remains the same. The rationale of our approach is that,
under these circumstances, one can merge the outputs of the
networks for various shifts in order to obtain a more accurate
estimation of the class.

We propose to employ a regular, square lattice of possible
displacement vectors s which is characterized by two param-
eters: a pixel stride R ∈ N+ and a maximum Manhattan
distance ρ ∈ R+. The displacements to be considered are
those that fall into a square of side ρ around the null shift
s = 0 because too large shifts may compromise the ability
of the networks to correctly recognize the class of the shifted
image. Therefore, the set of considered shift vectors is given
by:

S =
{
s ∈ Z2

| s = (Rs1,Rs2) , (s1, s2) ∈ Z2, ‖s‖1 < ρ
}
(2)

where ‖·‖1 stands for the Manhattan norm.
Each shifted version of the input test image X is tested

with one of the classifiers in the ensemble to yield a set of
tentative class scores. This is done by assigning each shift
vector s ∈ S uniformly at random to one out of N subsets Si,
i ∈ {1, . . . ,N }, that form a partition of S. The set of tentative
class scores is obtained as follows:

T =
N⋃
i=1

{Fi (X⊕ s) | s ∈ Si} (3)

Finally, the tentative class scores in T must be merged to
yield a final class score vector ẑ ∈ RC :

ẑ = g (T ) (4)

where g is a suitable combination function. In our experi-
ments we have tested two different functions separately: g =
mean and g = median.
For sake of clarity, Fig. 1 depicts a summary of the oper-

ation of the proposed model,1 using the ensemble of two
networks (N = 2). First, the square lattice of displacements
is created and divided into two equally sized subsets. Each of
these subsets are applied to the image and tested through their

1The source code of the proposed method in available online in:
https://github.com/icai-uma/SLC_ShiftingEnsemble
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FIGURE 1. Scheme of the operation of the proposed method. The input image is shifted by defining a lattice of displacement vectors
around the center of the image. Then, two subsets of shifted images are passed through the CNNs and the scores are fused using and
ensemble function.

respective network. Then, the outputted scores are grouped
and the combination function is applied. The predicted class
is the one which corresponds to the maximum value of the
computed score vector.

IV. ENSEMBLE MODEL
Here the concrete definition of the ensemble model compo-
nents are described, as well as the estimation of the model
parameters.

A. DEEP NETWORKS
The proposed ensemble of neural networks can be configured
with any number of classification networks. The more classi-
fiers, the lower is the computational efficiency. Thus, reach-
ing equilibrium is very important. In our proposal, we found
that with N = 2, using MobileNetV2 and GoogLeNet neural
networks, the results are satisfactory.

The first deep network is MobileNetV2 [42]. This network
is composed of an initial full convolutional layer followed by
19 residual bottleneck blocks. As shown in Fig. 2a, the latter
are connected by shortcut connections in order to eliminate
the non-linearity and maintain the representation of the data.
This model was created as a light neural network suitable
for its use in mobile devices. It has been trained on the
ImageNet dataset and testedwith several well-known datasets
(ImageNet, COCO, VOC), demonstrating more efficiency
with fewer parameters and achieving the same accuracy as
its predecessor (MobileNetV1).

We also used a deeper neural network, GoogLeNet [41].
This network has an architecture based on Inception modules
and it is one of the best state-of-art deep networks. The fun-
damentals of GoogLeNet is both increasing the depth of the
network and the number of neurons at each layer. As shown
in Fig. 2b, it contains 22 layers. Most of the layers correspond
to Inception modules. Here the convolutional layers use a
ReLU activation function. Experiments with several datasets
showed that the accuracy increases substantially. Neverthe-
less, the required processing time is larger than others net-
works and of course, more than of MobileNetV2.

The input image size of both networks is 224 × 224
taking RGB color channels with mean subtraction. The

FIGURE 2. Structure of the deep networks used for the proposed
ensemble model.

deep networks were fine-tuned for the melanoma classi-
fication problem in Matlab R2019b, with the following
hyper-parameter values:

• Batch size =16.
• Learning rate = 0.0001.
• Validation frequency = 10.
• Max. epochs = 10.

B. MODEL PARAMETERS SETUP
The definition of the square lattice depends on the type of
deep networks and the dataset used. First, the input layer of
the networks restricts the maximum values of the displace-
ment vectors s ∈ Z2. Both MobileNetV2 and GoogLeNet
require an input of size 224× 224 pixels, so the images need
to be resized. Furthermore, the maximumManhattan distance
allowed is ρmax = 224. Taking into consideration the image
features is essential since oversized shiftings may distort the
original shape of the moles.
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FIGURE 3. Study of optimal hyperparameters. Mean and median accuracy
varying the stride and the maximum shifting. The X and Y axes represent
the stride and the side of the square lattice. 30 random divisions of the
lattice were computed.

Therefore, analyzing the data visually, we found that most
of the moles are placed in the center of the image with a
margin of 40 pixels around each side. Thus, we need to define
ρ � 224. In addition, the square grid can be generated with
different stride sizes. A tiny stride would create a very dense
lattice, augmenting the computational cost. However, a large
stride would produce few score vectors, and the combination
function g would not be precise enough.
In order to study which are the optimal parameters of the

ensemble model, we carried out a parameter optimization,
running a batch of 30 random executions (referred to the Si
sets) varying the values of the square side ρ and the stride
R. These runs were done using a tenth part of the dataset
(details can be found in Section V). The results are shown
in Fig. 3. The mean was used as the combination function
g (similar results were obtained with the median). In this
analysis, where the mean and median among the 30 runs were
computed, it can be observed that an intermediate value of ρ
provides a better overall performance. Besides, using a big
stride R does not provide good performance. In both analysis,

we found that the best configurations are obtained for ρ = 20
or ρ = 22, using R = 1, and in second place, R = 2.

Therefore, we have adopted an intermediate position in our
work, taking ρ = 22 and a stride ofR = 1 pixels. This defines
a lattice S of 484 displacement vectors. Depending on the
time and precision requirements, these values can be chosen
in a different way. For example, a larger stride (R = 2 or
R = 3) can provide similar results with less shifts.

V. EXPERIMENTS
This section describes the dataset, the evaluation metrics,
the experimental setup, and the discussion of the results
obtained from the set of experiments.

A. DATASET
The evaluation of the proposed method is carried out by
using a well-known dataset of labeled dermoscopic images,
called HAM10000 [43]. This dataset contains 10,050 images
divided into seven classes (see examples in Fig. 4):

1) Actinic keratosis (akiec): usually not pigmented.
2) Basal cell carcinoma (bcc): flat, nodular, pigmented,

cystic.
3) Benign keratosis (bkl): often biopsied or excised and

similar to melanoma.
4) Dermatofibroma (df): reticular lines at the periphery

with a white center.
5) Melanoma (mel): malign neoplasms which are chaotic
6) Nevi (nv): benign neoplasms.
7) Vascular skin (vasc): red or purple circle.

This data was collected from the Medical University of
Viena and Cliff Rosendahl in Queensland. These are two
prestigious institutions in Austria and Australia, respectively.
The International Skin Imaging Collaboration (ISIC) 2018
challenge and posterior editions have included this dataset
within their competition. This has become a benchmark for
testing new dermatological classification and segmentation
techniques.

However, the main disadvantage of this dataset is the
irregular distribution of the number of diseases. Most of
the images, exceeding 70% of the total number of images,
correspond to the nevi class. This sets up an extreme dataset
imbalance. This fact severely affects the training, provoking
an extreme specialization in the nevi class. In the second level
is situated the bkl class, with around 13% of the images.
The rest of classes represent a large minority of the samples.
In particular, the df class, with less than 2%, will be the
most difficult class to predict. Therefore, one may think about
using data augmentation to balance the data and make the
learning procedure more robust. In this work, we show that
this is not an essential requirement for the proposed ensemble
model.

We also carried out a set of experiments with data augmen-
tation using different reflections and rotations of the original
images. The specific type of transformations used include:

• Horizontal and vertical flippingwith a probability of 0.5.
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FIGURE 4. Example images of the seven classes of HAM10000 dataset.

• Random image rotations between −90◦ and 90◦, with a
probability of 0.75.

It should be considered that this data augmentation may
smooth but not solve the great ratio between the nevi class
and the others.

B. EVALUATION METRICS
Typical classification measures were used to analyze the
performance of the shifting model. Since we are dealing with
a seven-class problem, these measures will be computed,
binarizing the results depending on the analyzed class. Thus,
the true positives (TP), true negatives (TN ), false positives
(FP), and false negatives (FN ) are computed as well as the
following measures:

Acc =
TP+ TN

TP+ FP+ FN + TN
(5)

Sensitivity =
TP

TP+ FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP+ FP
(8)

F1 = 2 ·
Precision · Sensitivity
Precision+ Sensitivity

(9)

MCC =
TP · TN − FP · FN

√
(TP+ FP)(TP+ FN )(TN+FP)(TN+FN )

(10)

which are the accuracy, sensitivity (True Positive Rate),
specificity (True Negative Rate), precision (Positive Predic-
tive Value), F1-score and Matthews Correlation Coefficient,
respectively. The metrics range from 0 to 1, where higher
measures indicate better performance.

The Sensitivity and the Specificity provide a measure of
howwell the method is classifying the relevant instances. The
Acc and F1 provide a general overview of the performance,
taking into account the positive and negative samples. The
latter gives equal importance to precision and recall. The
MCC takes into account the TP, TN , FP, and FN , being a
balanced measure that can be used even if the classes are of
very different sizes.

C. EXPERIMENTAL SETTING
Our ensemble model method, which we called Shifted
MobileNetV2 + GoogLeNet or Shifted 2-Nets, is compared
with the following methods:

FIGURE 5. Probability histogram of the HAM10000 dataset.

• Raw MobileNetV2 and Raw GoogLeNet: The deep net-
work directly tests the original image once, without any
modifications.

• Shifted MobileNetV2 and Shifted GoogLeNet: The pro-
posed shifting model, using the same configuration
explained in Subsection IV-B, is used with the deep
network to test the image.

We carried out 10-fold cross-validation for all the execu-
tions. The following division of the dataset was used: 70%
of samples for training, 10% for validation, and 20% for
testing. The data was distributed in a balanced manner, that
is, the proportion of images belonging to each class shown
in Fig. 5 is respected within each set. Thus, we should find
the same distribution of classes within each of the ten folds.
This way, we directly visualize the benefit or deficit of the
ensemble model compared with the original networks.

In addition to this, the proposed method Shifted
MobileNetV2 + GoogLeNet entails a random division of
the set of displacement vectors S. Thus, to have a realistic
statistically significant comparison. A total of 30 random
divisions were computed and tested for each execution. The
mean and standard deviation values were calculated as the
final performance of the ensemble method.

D. RESULTS AND DISCUSSIONS
The first batch of experiments are reported in Figs. 6-9. The
result of each of the ten folds of the cross-validation proce-
dure is reported for each tested method. Besides, the plotted
bar of our proposed model contains a small error bar in
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FIGURE 6. Comparison of the proposed models (without data augmentation) using the mean as the combination function. Accuracy of
each cross-validation split is presented. The error bar represents the variability of the random divisions of the lattice.

FIGURE 7. Comparison of the proposed models (without data augmentation) using the median as the combination function. Accuracy of
each cross-validation split is presented. The error bar represents the variability of the random divisions of the lattice.

its peak. This represents the variability among the 30 random
divisions of the shifting lattice.

In the first instance, the results obtained using the models
trained without data augmentation are presented. In Fig. 6 the
used combination function was the mean. One can observe
that there is a great difference between the ensemble of 2
nets and the simple nets. The former is more than 3% more
accurate in most of the splits. If we focus only on the shifting

models, there are splits where the MobileNetV2 worked bet-
ter than GoogLeNet, and vice versa, but there is no clear
pattern.

The results of the median combination function are
depicted in Fig. 7. The tendency is quite similar to the
mean function. The ensemble method yielded larger per-
centages of accuracy for all splits. Moreover, in both cases,
the error among the 30 independent runs of the proposed
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FIGURE 8. Comparison of the proposed models (with data augmentation) using the mean as the combination function. Accuracy of each
cross-validation split is presented. The error bar represents the variability of the random divisions of the lattice.

FIGURE 9. Comparison of the proposed models (with data augmentation) using the median as the combination function. Accuracy of each
cross-validation split is presented. The error bar represents the variability of the random divisions of the lattice.

model is minimal. This indicates that the method is quite
robust regardless of the type of data tested.

The performance increase using the proposed method
is remarkable. In some cases, like in split 1, there is an
improvement of almost 6%, being both raw models used
in the ensemble method. Alternatively, the shifting model
alone is not enough to significantly improve the classification

performance (only around 1%) and sometimes accuracy tends
to decrease.

The next two figures show the outcomes for the mod-
els trained with data augmentation. Fig. 8 represents the
results of the mean combination function. Now there are
differences in the split’s performance since the training was
varied with more data. The ensemble model is still the best
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FIGURE 10. Comparison of the confusion matrices for the five tested models trained without data augmentation. This statistics were generated rounding
the average of the confusion matrices of the cross-validation procedure.

FIGURE 11. Comparison of the confusion matrices for the five tested models trained with data augmentation. This statistics were generated rounding the
average of the confusion matrices of the cross-validation procedure.

classification method. This is closely followed by the
Shifted MobileNetV2. There are some splits where the Raw
MobileNetV2 overcomes the Shifted GoogLeNet. This indi-
cates that a deeper network is not always suitable for its
application on specific tasks.

Results of the median combination function (Fig. 9)
present even closer results. Although the simple models
worked well, our proposal is still the best. In split 7, a similar
behavior is noted. The raw model overcomes the shifted one.
The median function yields slightly results than the mean
function. This may indicate that among the 484 shiftings,
there are not outlying classifications.

In general terms, we can state that data augmentation is
vital for the raw and shifting models. This not however the

case for the ensemble model since the overall performance of
the splits (the maximum accuracy reached) is closely similar.
This can be useful if we need to develop an online method
where the model needs to be re-trained again. If no data
augmentation is used, the training time will be reduced.

Next, the confusion matrices are analyzed. Figs. 10 and 11
show the average confusion matrix of the cross-validation
tests. Without loss of generality, since this calculation can
generate fractional numbers, we have rounded the computed
average values. In figuere Fig. 10 the results of the models
without data augmentation are presented. The first observa-
tion is that the number of wrong classifications has been
reduced in the Shifted MobileNetV2 + GoogLeNet model.
Here the number of blank squares is higher (nine instead
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TABLE 1. Evaluation metrics for the five compared models trained without data augmentation. Mean and standard deviation values of the
cross-validation procedure are reported.

TABLE 2. Evaluation metrics for the five compared models trained with data augmentation. Mean and standard deviation values of the cross-validation
procedure are reported.

of six). Besides, for most classes, the number of correct
predictions has increased. This especially the case for the nv,
bcc, bkl, and vasc classes. The use of the median as the com-
bination function yielded similar outcomes. Only two or three
predictions by class varied. The raw models misclassify most
the melanoma, basal cell carcinoma, benign keratosis and the
nevi classes. Some improved results can be observed by the
shifting models. However, the results can be a bit contradic-
tory. For instance, Shifted MobileNetV2 is good at predicting
bkl. This not the case for the Shifted GoogLeNet model.
The second model is good at predicting melanomas but not
the first one. The ensemble model achieves an equilibrium.

The outcomes of the augmented data are displayed
in Fig. 11. The overall performance is better than the pre-
dictions of the previous figure. Analyzing the results class
by class, we found that the number of true positives (the
predominant class nv) is high, but the true negatives (the
rest) are low. This fact depends on the training, so a direct
comparison between both methodologies is not entirely fair.
Nonetheless, the nv and bcc classes have improved their
predictions (1279 and 75 correct classifications, resp.). This
indicates that the data augmentation improved results but
it is not enough to solve the imbalance between the seven
classes. Focusing on the results of this specific comparison,
the tendency is similar. Our proposal improves or adopts

an intermediate position between the two shifting models.
The raw models provided a small improvement, but they are
still far from the ensemble model. Finally, the values of the
differences between the mean and median are not too high.
The mean achieves 9 blank squares instead of the 8 of the
median, so the latter achieved lower results.

The previous plots provided a detailed analysis of the
accuracy for each method. In order to have a better compar-
ison of the performance, the mean and standard deviation of
several evaluation metrics are presented in Tables 1 and 2.
In addition to the accuracy, which has been commented on
before, the ensemble model (Shifted 2-Nets) generated the
best statistics for most cases. That is, the specificity, preci-
sion, F1-score, and MCC are quite better for both g = mean
and g = median.
Analyzing the case of the models trained without data

augmentation (Table 1), the mean accuracy reached 83.6%
and the average specificity of the seven classes is 95.5%. This
indicates a high level of negative predictions. The median
function yielded similar results but slightly worse than the
mean of scores. Across the tested models, a great difference
is appreciable, having an increment of 3% of accuracy and
almost 7% of MCC and F1-score in some cases. Shifted
GoogLeNet has not shown any improvement with respect to
the raw model. However, the MobileNetV2 network is shows

112202 VOLUME 9, 2021



K. Thurnhofer-Hemsi et al.: Skin Lesion Classification by Ensembles

TABLE 3. Examples of the outputs generated by the compared models (trained with data augmentation). The color represents the class, and the
circle/no-circle is the division of the grid into two sets: circle are for MobileNetV2 and no-circle for GoogLeNet.

higher accuracy with an improvement of around 2% in all
measures.

Regarding the augmented models (reported in Table 2),
the highest accuracy obtained is of 83.5%, while the highest
F1-score is 68.8%. Since the classes are unbalanced, the
second value is more significant to compare the methods
because it considers both the precision and recall of all
classes. Thus, Shifted MobileNetV2 model reached 67% in
the F1, and the raw models are far from this percentage.
Similar error differences are found with the other measures.
Comparing the mean and the median, the first one seemed to
be more effective.

Comparing both types of training, the main conclusion that
can be extracted is that data augmentation does not contribute
significantly to the shifting and ensemble models, obtaining
very similar results. However, for the raw models, it is neces-
sary to include this preprocessing to have a better-generalized
model. That is, our model eliminates the need to use data
augmentation.

The comparison with the previous works reported in
Section II should be made carefully since the datasets and
evaluation employed are not always the same. The works
that used the same dataset as us [38]–[40] also used transfer
learning, but only one was evaluated using HAM10000. They
reported 81.62% and 81.43% of overall accuracy, while our
method yielded 83.6% accuracy. On the other hand, it should
be noticed that the clinical appliance has to be decided by
medicals since sometimes the obtained accuracy could be
insufficient for a diagnostic in the medical field.

We carried out a visual inspection of the predictions to
check and understand the behavior of the ensemble model.
For that purpose, Table 3 depict four examples, with their

respective grid division and prediction and the outputs of each
model. Please note that the number of circled stars (assigned
to MobineNetV2) is the same that the number of non-circled
stars (assigned to GoogLeNet) since the random division has
the same size but different positions.

The first image corresponds to actinic keratosis. The
MobileNetV2 model predicted more incorrect shifts (yellow)
than correct ones (red). The final prediction was wrong.
Nevertheless, all the predictions of GoogLeNet (non-circled
red stars) were identified as the akiec class. That is because,
in this case, the GoogLeNet model worked better.

The second example is that of basal cell carcinoma. This
case is very interesting since the RawMobileNetV2 outputted
a bkl, while most of the shifted images yielded the nv or the
bcc classes. The reason is unknown, but we can observe a
yellow star near the center of the lattice (s = 0), which would
explain this behavior. The MobileNetV2 network predicted
more bcc’s than GoogLeNet, and that caused the different
outputs. Thus, these two first examples showed that there
are cases where one network works better than the other.
Compensation is achieved when the predictions of both are
merged.

The third example concerns the class dermatofibroma. This
is am underrepresented class within the HAM10000 dataset.
If the image is shifted to the upper-left, the networks were
not able to have a firm decision on the predicted class.
However, bottom-right shifts clearly yielded the df class.
In this case, both networks have similar behavior. The last
image is a nevus. This image is challenging because the skin
contains many irregularities. MobileNetV2 predicted more
nv and mel, while GoogLeNet classified it as bkl and nv.
Here the combination function was essential to making an
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adequate prediction. Our ensemble model dealt with many
bkl predictions because the nevi class scores were higher in
most of the predictions.

VI. CONCLUSION
Anewmethodology to perform skin lesion classification with
deep convolutional neural networks was proposed. It consists
of constructing an ensemble of convolutional neural networks
that cooperate to yield a more accurate assessment of the
lesion. This is attained by considering multiple shifted ver-
sions of the test input image so that the shift vectors form a
regular lattice. Each shifted version is allocated to one of the
networks of the ensemble. After that, the shifted versions of
the test image are processed. The resulting class score vectors
are combined by a suitable aggregation function in order to
produce the final classification result. This strategy exploits
the strengths of the networks that comprise the ensemble.
The aggregation scheme alleviates the deleterious effect of
individual classification failures. Therefore, our proposal is
more robust than the standard convolutional neural network
classification procedure. Also, it must be highlighted that our
approach is not related to standard train time data augmenta-
tion by training image shifting.

Experimental results demonstrate how the proposed
shifting technique outperforms traditional deep learning
techniques for skin lesions classification. The proposed
ensemble+ shifting model is around 3% better than the deep
networks with shifting and almost 6% better than the simple
network in all classification performance measures. This is
particularly the case in F1-score that is the harmonic mean of
the precision and recall. Specially, themajor improvements of
true predictions has been obtained for the bcc and bkl classes.
The plain models behaved better when the ones trained with
data augmentation. However this technique was unneces-
sary for the ensemble model to achieve the same results,
with almost an 84% accuracy on the HAM10000 dataset.
The lack of enough training images affected the gener-
alization of all networks. The effect appears to be more
severe for the raw models. The Shifted MobileNetV2 +
GoogLeNet compensated this effect by defining an exten-
sive set of displacements that covered many transformations
of the original input image. Note that each deep network
was trained and tested with the same configuration to fairly
compare all models’ performance with the same parameter
values.

Further works will be focused on the testing of more
deep networks and other topologies of the lattice. The image
features are crucial to understand each class and to generate
an adequate classifier for dermoscopic images. Other image
transformations, such as rotations combined with the pro-
posed shifts, may improve the generalization level of the
model. The inclusion of more complex combination func-
tions, such as probabilistic models, is another path to be
explored to enhance predictive accuracy. Moreover, the pro-
posed technique is planned to be applied to other medical
image classification problems.
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