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ABSTRACT A Phonocardiogram (PCG) signal represents murmurs and sounds signals made by vibrations
caused for the period of a cardiac cycle. Acoustic wave generated through the beat of the cardiac cycle
propagates through the chest wall. It can be easily recorded by a low-cost small handheld digital device
called a stethoscope. It provides information like heart rate, intensity, tone, quality, frequency, and location
of various components of cardiac sound. Due to these characteristics, phonocardiogram signals can be used to
detect heart status at an early stage in a non-invasive manner. In previous studies, the Convolutional Neural
Network (ConvNet) is the most studied architecture, which was fed by features, namely Mel Frequency
Cepstral (MFC), Chroma Energy Normalized Statistics (CENS), and Constant-Q Transform (CQT). This
work has proposed a ConvNet model trained by Hybrid Constant-Q Transform (HCQT) for heart sound beat
classification. CQT, Variable-Q Transform (VQT), and HCQT are extracted from each phonocardiogram
signal as the acoustic features, including the dominant MFCC features, feed into five-layer regularized
ConvNets. After analyzing the literature in the same domain, it can be stated that this is the first timeHCQT is
being utilized for PCG signals. The findings of the experiments demonstrate that HCQT ismore effective than
standard CQT and other variants. Also, the accuracies of the system proposed in this work on the validation
datasets are 96% in multi-class classification, which outperforms the proposed work relative to other
models significantly. The source code is available on the Github repository https://github.com/shamiktiwari/
PCG-signal-Classification-using-Hybrid-Constant-Q-Transform to support the research community.

INDEX TERMS Cardiovascular disease, convolutional neural network, decision support system deep
learning, multi-class classification, phonocardiogram signal.

I. INTRODUCTION
As per the fact sheet available with WHO, CVD claims
the lives of around 17.9 million people each year, and it is
31% of total death in a year, which makes CVD disease the
number one cause of death. Most deaths due to CVD occur
in middle and low-income countries where medical facilities
are either not easily available or very costly [1]. Diagnose at
an early stage is the only way to decrease the death rate due to
CVD. There are many invasive and non-invasive methods to
diagnose CVD. All Invasive techniques are costly, painful,
and readily unavailable at all places, especially in remote
areas. Usage of a non-invasive method to diagnose CVD at
an early stage is less expensive and painless. ECG and PCG
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are two such non-invasive ways to diagnose CVD. But their
analysis requires an expert doctor of this domain which is not
readily available in remote areas [2]. When sounds and mur-
murs occur during the cardiac cycle are represented diagram-
matically, it is called a phonocardiogram. These vibrations
generate the wave, which propagates through the chest wall.
A stethoscope, a low-cost handheld digital device, is used
to record the information generated through acoustic waves.
It gives us an estimation of parameters like heart rate, inten-
sity, tone, quality, frequency, and location of various com-
ponents of the cardiac sound, which helps in the diagnosis
of CVD in a non-invasive manner [3]. Recent advances in
computing have enabled researchers to design decision sup-
port systems that can be utilized to diagnose CVD at an early
stage, even in the absence of an expert. Machine learning and
deep learning algorithms have allowed us to create decision
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support systems that can help doctors and can also be used by
laypeople in the absence of doctors [4].

The authors have proposed a hybrid constant-Q transform-
based classification model to acquire more detailed informa-
tion from PCG signals in this work. Acoustic features from
the PCG signal are fetched to the ConvNetmodel for learning.
The following are the key contributions of the proposed work:

• Propose hybrid constant-Q transform-based (HCQT)
acoustic features for PCG signals.

• Compare the HCQT features to other acoustic features
and recommend the best feature set for PCG signal
classification.

The following is the paper’s structure: Discussion of different
models found in the literature for automatic diagnosis of CVD
fromPCG is given in Section 2. Details of sound features used
with the model for classification, classifier, an insight view
of the proposed model, and features of the phonocardiogram
signal dataset used for the training and testing of the designed
model are given in Section 3. Detail of the simulation envi-
ronment and result generated through the proposed model
are given in Section 4. Discussion and analysis of results are
presented in Section 5. It is endedwith the conclusive remarks
given in Section 6.

II. LITERATURE REVIEW
An overview of different types of automatic heart disease
diagnostic models from PCG signal along with datasets
used and accuracy level achieved by them is given below
in Table 1.

Though in the last five years, a lot of research has been
carried out in designing of automatic heart disease diagnosis
model from PCG signal, yet there are many more areas that
are yet to be explored. It has motivated us for the proposed
model given in section 3.

III. MATERIAL AND METHODS
This section presents a detailed overview of sound feature
extraction methods, classification model, the dataset used,
and proposed model utilized in this work.

A. MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCCs)
In audio or speech signal processing, The short-term power
spectrum of sound is represented by MFC. It is based on a
non-linear Mel frequency scale and a linear cosine transla-
tion of the logarithmic power spectrum. Collectively MFCCs
coefficients make up MFC. The feature extraction process of
MFCC is composed of the following steps [23], [24]:

1. Pre-emphasis: It amplifies high frequencies by passing
phonocardiogram signals from a high pass filter.

2. Framing: Phonocardiogram signals are separated into
overlapping frames. It is implemented to fetch local
spectral properties.

3. Windowing: It is implemented on frames for the mini-
mization of discontinuities around edges. An example of
a widely used technique is Hamming windowing.

4. Discrete Fourier Transformation: DFT is applied to the
sound signal after the third step to obtain the frequency
domain signal from the time domain.

5. Mel-Frequency Warping: It’s used to calculate the quan-
tity of energy that occurs in various locations of a fre-
quency domain. Mel in this case is a pitch unit. A pitch
of 1000 Mels is a pure tone at 1000Hz with a 40 dB
strength over the listener’s threshold.Mel-scale is used to
determine this non-linear frequency result, as presented
in (1).

M (f ) = 1125log
(
1+

f
700

)
(1)

Here, the frequency term is denoted by f, while the
Mel-scale frequency is denoted by M(f).

6. Discrete Cosine Transform and LogCompression: In this
step, the logarithmic function IFFT is applied on filtered
bank energies received in step 5. The DCT follows it.
Finally, MFCC(n) is computed as shown in (2).

MFCC (n) =
1
T

∑R

r=1
log [MF(t)] cos

[
2π
T

(
r +

1
2

)
n
]
(2)

where MFCC(n) is the nth MFCC coefficient derived from
specific audio sections using T triangular filters, and MF(t)
is the t-th filter’s Mel-spectrum. The heartbeat spectrogram
obtained by MFCC is shown in Fig. 1.

B. CONSTANT-Q TRANSFORM (CQT), VARIABLE-Q
TRANSFORM, AND HYBRID CONSTANT-Q TRANSFORM
(HCQT)
J.C. Brown, in 1988 has introduced CQT. It refers to a
technique that transforms a signal from time to frequency
domain. However, it is different from Fourier transforma-
tion as central frequencies are geometrically spaced, and
corresponding Q-factors are equal. CQT is defined as a
1/24 octave filter bank, but it is not restricted to 24 only; it
can be varied to 12, 36, or 48 bins per octave also. Unlike
DFT, central frequencies of analysis are not uniformly dis-
tributed but aligned with equally tempered scale notes; this
makes CQT suitable for the processing of sound [25], [26].
Furthermore, the frequency resolution of CQT has a con-
stant Q-factor, which effectively improves resolution accu-
racy in low-frequency regions. Under the N-th frame of
CQT, the frequency component of the K-th semitone can be
stated in (3).

X cqtn (k) =
1
N

∑Nk−1

m=0
x(m)wNk (m)e

−j2πmQ/Nk (3)

where Q is a constant whose value depends on the number of
spectral lines of a single octave (β)

Q =
1

21/β − 1

The ability of the constant-Q transform to provide equal
frequency support to all semitones and a variable number
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TABLE 1. An overview of PCG signal based heart disease diagnosis models.

of bins among them is its main advantage. However, it has
drawbacks, one of which being the absence of consistent
temporal resolution at lower frequencies. This trade-off can
be alleviated by introducing variants of CQT i.e., VQT and
HCQT.When compared to the CQT transformation, the VQT
transformation provides better temporal resolution at lower
frequencies. A new parameter is introduced to allow for an
equitable drop of the bins’ Q-factors as they approach low

frequencies [27], [28].

Bk = αfk + γ

When γ = 0, the Q-factor in the constant-Q situation is
a constant. The additional parameter γ might be understood
as a Hertz offset, and it is normally set to be as low as
possible, e.g., around 30 Hz. Instinctively, γ has a stronger
relative influence at lower frequencies where the bandwidth
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FIGURE 1. (a): A sample waveform for normal phonocardiogram signal, (b): heat map visualization for MFCC of a PCG signal
segment. Sliding windows, x, and filter-bank frequencies, y, are represented on the horizontal and vertical axes. MFCC energy
information, Ex,y, is represented by pixel color in the heat map. The MFCC is generated with the number of frequency bins =

84 and hop length = 51.

FIGURE 2. (a): A sample waveform fo murmur phonocardiogram signal, (b-d): heat map visualization for CQT, VQT, and HCQT base
spectrograms, respectively. Sliding windows, x, and filter-bank frequencies, y, are represented on the horizontal and vertical axes. MFCC
energy information, Ex,y is represented by pixel color in the heat map. The MFCC is generated with the number of frequency
bins = 84 and hop length = 512.

is insufficient, but fades at higher frequencies. Hybrid CQT,
on the other hand, is made up of two CQT varieties. In the
temporal domain, the frameshift is thought to include L sam-
ples. Then, select the kc-th filter that fulfills the condition
N [kc] = 2L [29], [30].

High frequencies are those that exceed f_kc, whereas low
frequencies are those that are less than f_kc. The high-
frequency section of hybrid CQT uses the filter bank of
the high-frequency part of CQT to filter the short-term
Fourier transform-based spectrogram. The regular CQT is

used directly for the low-frequency section of HCQT. In com-
pared to CQT, HCQT is more computationally capable.
A visualized comparison of the CQT, VQT, and HCQT is
presented in Fig. 2.

C. CONVOLUTIONAL NEURAL NETWORK (ConvNet)
CNN has brought the revolution in the domain of computer
vision. It has remarkably achieved better results than the tra-
ditional classification algorithms. Deep learning is a sub-class
of machine learning which is based onDeepNeural Networks
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FIGURE 3. The architecture of convolution neural network and spectrogram-based phonocardiogram signal
classification model. Inputs are the spectrograms generated through MFCC, CQT, VQT, and HCQT, and output is
one of the five classes i.e., artifact, extrahls, extra-systole, murmur, and normal.

FIGURE 4. (a): A sample waveform for artifact phonocardiogram signal and (b): heat map plot of HCQT
power spectrogram for artifact phonocardiogram signal. The spectrogram is generated with the number of
frequency bins = 84 and hop length = 512.

(DNNs). Word deep indicates the presence of greater than
one hidden later in neural network architecture. CNN is one
such type of deep neural network, which is also known as
the ConvNet model. It is made up of primarily three layers:
a convolution layer, a pooling layer, and a dense layer (fully
connected layer) [31], [32]. The first layer i.e., the convolu-
tional layer, is an essential building block of ConvNet. This
layer performs the mathematical operation convolution. In a
continuous domain, the convolution of two functions f and g
is given as in (4):

(f ∗ g) (t) =
∫
∞

−∞

f (τ )g(t − τ )dτ

=

∫
∞

−∞

f (t − τ )g(τ )dτ (4)

In the discrete case, the same is expressed as in (5):

(f ∗ g) (n) =
∑∞

m=−∞
f (m) g (n− m) (5)

2-D convolution for a digital image can be extended as
in (6):

(f ∗ g) (x, y)=
∑M

m=−M

∑N

n=−N
f (x−n, y−m) g (n,m)

(6)

The function g represents a filter that is applied to the
input image f in this case. 2-D convolution works by applying

the convolution filter on the input image. The filter passes
over several pixels, which is called a stride. At each spatial
location, the convolution between the part of the image and
filter is attained. The outcome is a 2-D array which is called
a feature map. Softmax, Rectified Linear Unit (ReLU), Ran-
domized Leaky ReLU, and other non-linear activation layers
are used to pass this feature map. The pooling layer, also
known as the subsampling layer, is another major component
of ConvNet. Its purpose is to reduce the spatial size of the
activationmap to reduce the number of parameters needed for
further processing. It applies to all feature maps on its own.
Max pooling is the most effective method for the implemen-
tation of pooling.

At last, the result of the last pooling layer is received by a
fully connected layer and utilized to categorize images into
labels. It is the component of ConvNet where discriminative
learning is performed. It behaves like amulti-layer perceptron
model which can learn weights & identify image classes.

D. PROPOSED PCG SIGNAL CLASSIFICATION MODEL
USING ACOUSTIC FEATURES
The offered method for phonocardiogram signal classifica-
tion using ConvNet is depicted in Fig. 3. The raw data
provided is in Waveform Audio File Format (WAV) for-
mat, encoding phonocardiogram signals. To pass these sound

110714 VOLUME 9, 2021



S. Tiwari et al.: PCG Signal Based Multi-Class Cardiac Diagnostic Decision Support System

FIGURE 5. (a): A sample waveform for extrahls phonocardiogram signal, (b) heat map plot of HCQT power
spectrogram for extrahls phonocardiogram signal. The spectrogram is generated with the number of
frequency bins = 84 and hop length = 512.

FIGURE 6. (a): A sample waveform for extra systole phonocardiogram signal and (b): heat map plot of
HCQT power spectrogram for extra-systole phonocardiogram signal. The spectrogram is generated with
the number of frequency bins = 84 and hop length = 512.

FIGURE 7. (a) A sample waveform for murmur phonocardiogram signal and (b): heat map plot of HCQT power
spectrogram for murmur phonocardiogram signal. The spectrogram is generated with the number of
frequency bins = 84 and hop length = 512.

waves to ConvNet model, these phonocardiogram signals are
converted into an image, i.e. 2-D spectrogram. Spectrograms
are convenient for representing these heartbeat recordings
because they capture the intensity of the frequencies through-
out a given sound. Thus, these spectrograms are effective rep-
resentations of an audio recording. In this work, the authors
have proposed the use MFCC, CQT, VQT, and HCQT based
spectrograms for phonocardiogram signal classification.

E. PHONOCARDIOGRAM SIGNAL DATABASE
The authors have used the freely available open access dataset
on Kaggle [33], originating through the PASCAL heart
sounds classification challenge. Two datasets named A & B
were generated through the PASCAL heart sound classifica-
tion challenge [16]. Dataset A contains the variable-length

(varying from 1 to 30 seconds) sounds recorded through a
digital stethoscope in a real-time situation having background
noise. Dataset A was partitioned into four classes named
normal, extra heart sound, murmur, and artifact, while dataset
B was partitioned into three classes: normal, extra-systole,
and murmur. The authors have merged both datasets into a
single dataset consisting of all five classes in this work.

The number of phonocardiogram signals in normal, mur-
mur, artifact, extra-systole, and extrahls classes are 255, 114,
40, 37, and 16. Since the number of heartbeat signals in
each class is very low, audio augmentation is performed
over raw audio signals. We have applied noise injection,
shifting time, varying pitch, and speed to generate augmented
data for phonocardiogram signals. After audio augmentation,
the number of phonocardiogram signals in normal, murmur,
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FIGURE 8. (a) A sample waveform for normal phonocardiogram signal and (b): heat map plot of HCQT power
spectrogram for normal phonocardiogram signal. The spectrogram is generated with the number of frequency
bins = 84 and hop length = 512.

FIGURE 9. (a): Evolution of classification accuracy with the training & validation image datasets
throughout the training of ConvNet-MFCC model. Accuracy increases abruptly for the first 200
repetitions & becomes stable after 250 repetitions. (b): Evolution of classification loss with the
training & validation image datasets throughout the training of ConvNet-MFCC model. Loss decreases
abruptly for the first 200 repetitions and becomes stable after 250 repetitions.

FIGURE 10. (a): Evolution of classification accuracy with training and validation image datasets
throughout the training of ConvNet-CQT model. Accuracy increases abruptly for the first 200
repetitions and becomes stable after 250 repetitions. (b): Evolution of classification loss with training
and validation image datasets throughout the training of ConvNet-CQT model. Loss decreases
abruptly for the first 200 repetitions and becomes stable after 250 repetitions.

artifact, extra-systole, and extrahls classes are 2555, 1146,
400, 378, and 158, respectively. The augmented dataset is par-
titioned into training and testing datasets with an 80:20 ratio.
A spectrogram represents the PCG signal waves, as shown
in Fig. (4-8), that presents five types of HCQT spectrograms
for the artifact, extrahls, extra-systole, murmur, and normal

in that order. Red shades described the amplitude of a PCG
signal in a spectrogram. The spectrogram of a normal PCG
signal is a strong sequence of amplitude, i.e., lub dub. It dis-
plays a noise sequence of amplitude in the murmur PCG
signal greater than normal and extra-systole PCG signals. The
amplitude of a PCG signal is greater than the normal PCG
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FIGURE 11. (a): Evolution of classification accuracy with training and validation image datasets
throughout the training of ConvNet-VQT model. Accuracy increases abruptly for the first 200
repetitions and becomes stable after 250 repetitions. (b): Evolution of classification loss with training
and validation image datasets throughout the training of ConvNet-VQT model. Loss decreases
abruptly for the first 200 repetitions and becomes stable after 250 repetitions.

FIGURE 12. (a): Evolution of classification accuracy with training and validation image datasets
throughout the training of ConvNet-HCQT model. Accuracy increases abruptly for the first 200
repetitions and becomes stable after 250 repetitions. (b): Evolution of classification loss with training
and validation image datasets throughout the training of ConvNet-HCQT model. Loss decreases
abruptly for the first 200 repetitions and becomes stable after 250 repetitions.

signal but lesser than the murmur PCG signal in the extra-
systole PCG signal.

IV. EXPERIMENT & RESULTS
Four separate ConvNet models termed ConvNet-MFCC,
ConvNet-CQT, ConvNet-VQT, and ConvNet-HCQT are
designed with MFCC, CQT, VQT, and HCQT spectrograms,
respectively. To build the proposed ConvNet models, Keras,
an open-source Python library, has been used that can run on
top of different machine learning libraries like TensorFlow.
In addition, the Librosa library in Python is used for generat-
ing MFCC, CQT, VQT, and HCQT spectrograms.

ConvNet models used in this phonocardiogram signal clas-
sification model using these spectrograms have four con-
volutional layers. The first convolution layer has a size of
32-5×5, the second convolution layer has a size of 64-5× 5,
the third convolution layer has a size of 64-5 × 5, and the
last layer has a size of 32-5 × 5. A subsampling layer using

max-pooling follows the first two convolution layers. The
size of these max-pooling layers is 2 × 2 with a stride of
size 2 × 2. The final layer of the ConvNet model is a fully
connected layer with a softmax non-linear activation function
with five units. These five units in the last layer are essen-
tial for this five-class phonocardiogram signal classification
problem.

Additionally, two dropout layers are also used to avoid
overfitting with a 0.4 drop rate. The size of the MFCC
spectrogram images is 128 × 130. The model is compiled
after design. The optimizer is the gradient descent algorithm
based on ‘Adam’ optimizer and cross-entropy loss to calcu-
late the prediction error rate. The values 0.0001 are used as the
learning rate. This optimizer uses backpropagation to update
the weights of the neurons. It computes the derivative of the
loss function regarding each weight and deducts it from the
weight. A categorical cross-entropy loss function is utilized
due to the multi-class nature of the problem, which has the
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FIGURE 13. Confusion matrix of ConvNet models on the test subset (a) ConvNet-MFCC model,
(b) ConvNet-CQT model, (c) ConvNet-VQT model and (d) ConvNet-HCQT model.

form given by (7):

LCE = −
1
N

∑N

i=1
log

eW
T
yi
xi+byi∑n

j=1 e
W T
j xi+bj

(7)

W = weight matrix, xi = ith training sample, yi =
class label for the ith training sample, b = bias term, N =
sample count, Wj, and Wyi are the jth and ythi column of
W. 300 epochs with batch size 128 are used for training.
Fig. (9-12) shows the accuracy and loss curves for the train
and test set during the training of ConvNet models. The
shape and dynamics of these learning curves are studied to
diagnose the behavior of a ConvNet model. Three common
dynamics observed in these learning curves are under-fitting,
overfitting, and optimal fitting. From these plots, it can be
verified that the ConvNet-HCQT model has offered optimal
fit in comparison to other models.

Fig. 13 offers the results for these experiments in terms of
the confusion matrix. Confusion Matrix is a N × N matrix,
in which rows represent the true categories and the columns
represent the classified category by the model. The number
ni,j at the intersection of i-th row and j-th column is iden-
tical to the number of cases from the i-th phonocardiogram
signal class which have been categorized as belonging to
the j-th phonocardiogram signal class. It is extremely useful
for measuring precision, recall, F-score, accuracy, and most
importantly AUC-ROC curve. All these performance metrics
are computed and presented in the next section to compare all
four models.

V. RESULT ANALYSIS AND DISCUSSION
Statistical performance measures, namely precision, F-score,
sensitivity, and accuracy, are computed from the confusion
matrix as given in Section 4 to evaluate the performance
of all four models, i.e., ConvNet-MFCC, ConvNet-CQT,
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FIGURE 14. ROC curve obtained using acoustic features demonstrating AUC for the artifact, extrahls, extra-systole,
murmur, and normal classes separately, micro average and macro average performance measures (a) ConvNet-MFCC
model, (b) ConvNet-CQT model, (c) ConvNet-VQT model, and (d) ConvNet-HCQT model.

ConvNet-VQT, and ConvNet-HCQT. These measures are
defined in (8-11) [34].

Precision(P) =
T+

(T+ + F+)
(8)

Sensitivity(S) =
T+

(T+ + F−)
(9)

F− Score =
(2 ∗ P ∗ S)
(P+ S)

(10)

Accuracy =
(T+ + T−)

(T+ + T− + F− + F+)
(11)

where T+, T−, F+, and F− are the truly projected positive,
truly negative cases, false-positive cases, and false-negative

cases, respectively. The results in terms of the above perfor-
mance measures are offered in Table 2. The results clearly
show that ConvNet-HCQT beats other models. The aver-
age accuracies achieved using HCQT is 96%, whereas it
is 93%, 94%, and 94%, respectively, for ConvNet-MFCC,
ConvNet-CQT, and CovNet-VQT models. The performance
of ConvNet-CQT and CovNet-VQT models is the same
but superior to ConvNet-MFCC. MFCC features are widely
used features in the past for heartbeat sound classification.
In comparison to earlier work, the experimental results show
that the proposed strategy achieves good outcomes. The
proposed method outperforms the PhysioNet/Computing in
Cardiology Challenge2016’s stated best accuracy of 0.86 for
normal/abnormal binary classification. Table 3 provides
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FIGURE 15. Performance comparison in terms of precision, recall, F-score, and accuracy of the HCQT-based ConvNet model
with others.

TABLE 2. Performance measures for phonocardiogram signal classification using MFCC, CQT, VQT, and HCQT features in terms of precision, sensitivity,
F-score, macro, weighted and average accuracy.

the overall accuracies for the best models presented in
PhysioNet Computing Cardiology challenge [35]. Accu-
racies provided by these models are very much infe-
rior to the proposed multi-class classification model
using HCQT.

To further confirm the robustness of these phonocardio-
gram signal classification models, ROC curves are also plot-
ted in Fig. 14. The false-positive rate on the x-axis and the
true positive rate on the y-axis is plotted on ROC curves. This
implies that the top left corner of the plot is the ‘‘perfect’’
point where a true positive rate of one and a false positive rate
of zero. It means that a larger AUC is generally superior [36].
It is evident from the ROC curves that the ConvNet-HCQT
model performs better than other models, which the AUC
of these ROC plots confirms. For the MFCC-based Con-
vNet model, the micro-average area and macro-average area
are 1.00 and 0.99, respectively. With the HCQT-based Con-
vNet model, which is 1.00, the metric macro-average area is
slightly improved. The area under the curve for the artifact,

extrahls, extra-systole, murmur, and normal classes are 1.00,
1.00, 0.99, 1.00, and 0.99. It can be noticed that AUC is
slightly improved for these classes with HCQT based features
in comparison to other features.

Commonly used time-frequency transformations and fea-
tures such as DFT, DWT, and MFCC have extensively sup-
ported various acoustic recognition systems. Though they
are appreciated for most acoustic analyses, they are still not
customized to any particular problem. So, it may be valuable
to investigate features from other time-frequency transforma-
tions such as CQT, VQT, and HCQT. CQT is a dominant fea-
ture in acoustic signal processing analysis. CQT transforms
a series of time-domain signals to the frequency domain
signal. It is similar to the Short Term Fourier Transform
(STFT) and almost identical to the complex Morlet wavelet
transform. Hybrid CQT is a more computationally efficient
version of CQT. It utilizes the pseudo-CQT for higher-order
frequencies where the hop length is larger than half the filter
size and full CQT for the lower frequencies. The findings
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TABLE 3. Selected results from the 2016 PhysioNet computing in
cardiology challenge [35].

of the experiments show that HCQT is more effective than
traditional CQT and variable CQT.

In this study, an effort is made to suggest the best
acoustic features for phonocardiogram signal classification.
Fig. 15 presents the comparison of the HCQT-based Con-
vNet model with others. Results have proved that HCQT
outperforms other acoustic features of the time-frequency
domain. It would be fascinating to investigate a larger number
of architectural configurations and filter banks, as well as
hyperparameter sets, in the future.

VI. CONCLUSION
Diagnose at an early stage is the only way to decrease the
mortality rate occurring due to CVD. However, due to a lack
of awareness for routine health checkups and unavailability
of all resources at low cost, there are major hurdles in the
early diagnosis of CVD. The situation worsens in developing
countries where population density is high, and a doctor
is not available in remote locations. To target these issues,
the authors have offered a design of a decision support system
that utilizes the PCG signals for the early diagnosis of CVD.
PCG signals can be captured by a small, low-cost hand-
held device called a stethoscope. In this work, a multi-class
phonocardiogram signal database with five classes, namely,
extra heart sound, artifact, extra-systole, normal, and murmur
heartbeat, are used to design the phonocardiogram signal,
classification model. The authors have designed a PCG sig-
nal classification model with a new acoustic feature HCQT.
HCQT has been formed by combining two CQTs consisting
of dissimilar resolutions for treating the high-frequency bins
of the conventional CQT. Analysis of results has proved that
HCQT is a superior feature that generally applies acoustic
features like MFCC, CQT, and VQT. Through the proposed
work, the authors have achieved an accuracy of 96% in the
multi-class classification of PCG signals.

In future work, authors have planned to ensemble multiple
spectrograms to get more discriminative stacked features.
Also, classification accuracy may further be improved by
using other deep learning architecture like Recurrent Neural

Network (RNN). Moreover, the authors have also planned
to use an ECG signal with the PCG signal to design the
multimodality model using these acoustic features.
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