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ABSTRACT Under the perspective of carbon neutrality, the green electricity absorption target constrained by
the quota system policy plays a crucial role in reducing the carbon emission of the power industry. However,
the current green certificate policy has not achieved good results. On the premise of reducing the additional
market burden as much as possible, the policy parameters should take into account the influence of market
behavior to formulate better policy parameters in line with China’s carbon emission peak goal. This paper
constructs a combined hierarchical reinforcement learning with off-policy correction and multi-agent deep
deterministic policy gradient algorithm (HIRO-MADDPG). It realizes the benefit analysis of the existing
policy parameters joint with the solution of the optimal policy parameters. The algorithm solves the problem
that benefit analysis and parameter formulation cannot be jointly trained and improves the precision. The
results indicate: 1) HIRO-MADDPG algorithm can reach the highest policy benefits on the premise of
maintaining market fairness; 2) under the new optimal policy parameters, the income per kilowatt hour
of thermal power generator(TPG) and renewable power generator(RPG) can be maintained at 10% under
the condition of abolishing subsidies; 3) with the help of the new policy parameters, China’s power sector
will reach the peak of carbon emissions from coal-fired power plants in 2026 ahead of schedule, and reduce
carbon emissions by a further 11% by 2030.

INDEX TERMS Quota system policy, hierarchical multi-agent reinforcement learning, tradable green
certificate, carbon neutrality.

I. INTRODUCTION
Under the goal of carbon neutrality, China’s economic trans-
formation and structural adjustment have entered a critical
period [1]. Promoting the diversification, cleanness and low-
carbon energy supply, and the high efficiency, reduction
and electrification of energy consumption [2] are important
ways for the power industry to achieve the goal of ‘‘car-
bon peak’’ [3] and ‘‘carbon neutral’’ [4]. A consensus has
been reached that wind and solar energy and other renew-
able energy sources should continue to develop on a large
scale and with high quality [5]. Scientific top-level design
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of relevant systems has become a key scientific issue in
promoting clean and low-carbon energy supply in China.

Quotation system is a mandatory regulation on the market
share of renewable energy generation made by a country
or region. The implementation of quota system needs the
green certificate trading system to complement it. At present,
China is implementing renewable portfolio standard(RPS)
and tradeable green certificate(TGC) mechanisms, and the
main operation process is shown in the Figure 1:

At present, relevant scholars have carried out positive
research on the RPS system, which mainly includes three
aspects. 1) the impact of the RPS system on a country’s quota
structure and social welfare level. G. Liu et al evaluated the
conditional value-at-risk level of RPS system using different
ratios of the environmental, social, and governance index [6].
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FIGURE 1. RPS and TGC mechanisms in china.

Zhao et al constructed the social welfare function under RPS
system and simulates the social welfare under the basis of
the real quota situation of China [7]. Their findings suggest
that Reasonable RPS quota structure can effectively reduce
risks in the energy structure while improving social welfare.;
2) the influence of RPS system on the strategic behavior
of power producers. W. Chen et al examined the impacts
of cap-and-trade mechanisms on the decisions of a utility
firm when it invests in renewable energy and has an existing
conventional energy source [8]. X. Yu established system
dynamic simulation model and scenario design method to
improve sustainable development of Chinese power industry
considering the integration impact of the green certificate
market and the carbon emissions trading market [9]. X. Song
introduced data envelopment analysis (DEA) model and the
DEA-Malmquist index to measure the operational efficiency
of TGC markets [10]. Their synthesis of research show that
power plant business market behavior will produce tremen-
dous changes under different policy parameters which could
have significant impacts on the effect of RPS policy that
cannot be ignored; 3) The influence of RPS system on elec-
tricity market cost. S. Shayegh analyzed the impact of market
structure on RPS effectiveness by calculating the amounts
of subsidies needed to achieve RPS mandates [11]. S. Shen

deeply analyzed unit comprehensive cost of various energy
under tradable green certificates market and sensitivity of key
factors [12]. The results show that a rising of market costs is
inevitable side effect of RPS policies. But the adverse conse-
quences caused bymarket behavior can be greatly diminished
by effective policy parameter setting.

To sum up, the importance and problem facing by RPS
are well documented. In order to improve the consumption
of green power under the premise of reducing the additional
market burden as much as possible, it is necessary to com-
prehensively consider the different influence behaviors of the
electricity market on different policy parameters to formulate
the optimal RPS parameters. However, the existing researches
mainly focus on the influence of established policy parame-
ters on the comprehensive factors of all parties. Sensitivity
analysis is often used for policy-making suggestions. The
conclusions are too macroscopic and not detailed enough to
fully guide the development of future policies. The results
of policy benefit evaluation need to better serve to refine the
formulation of policy parameter.

In order to solve the above problems, the algorithm should
be able to achieve the joint optimization of policy making
and market behavior. The algorithm can be divided into two
parts: the first part is the reasonable response of market
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behavior under different policy parameters, the second part
the iteration of policy parameters after the feedback of current
market behavior.

For the first part, the subject can be simplified into the
non- cooperative game model of green power manufacturer,
thermal power manufacturer and power utility. The most
important difficulty is how to get the game solution under
different policy parameters which best accord with real-
ity. The existing strategies for solving this problem can be
divided into: 1) completely rational game [13], [14], that
is, it is assumed that the players of the game participate in
the decision that has the greatest benefit to their side from
the beginning to the end, such as Cournot model [15], [16],
Stark model [17], [18], etc.; 2) The bounded rational game
[19], [20], that is, the player of the game needs to continu-
ously learn the strategy rather than realize the optimal choice
at one time. Evolutionary game theory (EGT) [21], [22] and
neural network simulation [23], [24] are widely used classical
algorithms.

The completely rational game method can accurately cap-
ture the theoretical optimal economic solution of each game
subject, but the result is too ideal. And it faces the conflict
between process rationality and result rationality [25]. The
strategy learning process from the game subject to the stable
state under bounded rationality is more consistent with the
reality. However, the existing bounded rational games have
great constraints on the action space and cannot get the high-
precision game solution, which will affect the iteration of
policy parameters.

For the second part, to determine the optimal policy param-
eters of quota system, the feedback of policy benefits should
be iterated continuously. In the relative stable environment
which can be mathematically expressed, the traditional opti-
mization problem can be optimized by many different ways
to get the optimal solution.

M. K. AlAshery et al established stochastic models to
ensure that programming for the risk of the selected objective
function distribution does not exceed a certain limit [26].
Bilevel optimization method is usually a good choice when
faced with a comprehensive solution of multi-level or multi-
party interests [27], [28]. Traditional back propagation parti-
cle swarm optimization (BPPSO) and reinforcement learning
algorithm with action-reward incentive method [29] are also
widely used optimizationmethod to realize the process. How-
ever, there are few researches in this field at home and abroad,
which are mainly faced with two difficulties: computational
complexity and feedback accuracy. Since there is some uncer-
tainty in the game result under bounded rationality, more
than 10,000 times of repeated iteration are often needed in
the optimization process to find the law. However, the neural
network itself needs a long fitting time, and the computation
complexity is too high in the case of two-layer model nesting,
which is not feasible in practice. Although the evolutionary
game algorithm converges faster, it can only solve the prob-
lem of the group’s preference for the discrete decision but
cannot realize the precise continuous decision. The policy

parameters fed back by the algorithm have defects in the
efficiency precision of the optimization, which constraints the
upper limit of the optimization of the policy parameters.

In order to solve the above problems, HIRO-MADDPG
algorithm based on hierarchical multi-agent reinforcement
learning method is proposed in this paper. The MADDPG
algorithm is composed of neural networks representing dif-
ferent market players, and continuous behavior decisions can
be realized through the output layer of the neural network.
The updating of neural network parameters approximates the
bounded rational process of the game and ensures the game
process is close to the reality. The improved hierarchical
reinforcement learning method uses MADDPG to replace
the ordinary reinforcement learning network as the lower
layer, accepts the policy parameters output by TD3 reinforce-
ment learning algorithm from the upper layer, and carries
out the market game under the fixed policy parameters. The
improved HIRO algorithm can update the upper and lower
neural networks at the same time, so that the game process
and policy parameters can be learned simultaneously. While
the computational complexity of the algorithm is greatly
reduced, the accuracy of the lower layer game results is
improved, which helps to find out the policy parameter solu-
tions that are most in line with the policy objectives of quota
system.

II. TRADING MECHANISM MODEL
A. THE EVOLUTION MECHANISM OF QUOTA SYSTEM
AND MARKET AGENT STRATEGY
There are four participants in this study: the government,
RPG, TPG, and electricity power utilities [30]. The frame-
work of the interaction is shown in Figure 2: the govern-
ment establishes scientific and reasonable system parameters
and rule constraints, which mainly include: quota target,
transaction cost, unit penalty for failing to fulfill quota tar-
get [31]–[33], etc. In addition, the government carries out
dynamic supervision on the electricity and energy market and
the green certificate market and adjusts the parameters and
rules of the system through the feedback of market informa-
tion and the implementation of quota targets.

As shown in Figure 2. RPG, TPG and electric power utility
decide their participation strategies in the electric energymar-
ket and green certificate market under the rules and param-
eters established by the government. Electricity utility, who
are obligated to bear the quota, must consume a minimum
proportion of electricity generated from renewable sources.
According to the historical transaction prices of renewable
energy, conventional energy and green certificates, power
utilities dynamically decide the ratio of renewable energy to
conventional energy, green certificate and penalty, so as to
achieve the goal of minimizing the electricity cost and quota
completion cost.

RPG determines the prices of electricity it can sell in the
electricity market, which in turn determines the upper limit of
its supply of green certificates in the green certificate market.
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FIGURE 2. Operation principle of market participants.

RPG decides the supply of renewable energy electricity and
green certificates in the market, and then influences the price
of green electricity and green certificates, so as to maximize
the income from electricity sales and green certificates.

TPG decides the supply of the conventional energy elec-
tricity and the price of it and accepts the green certificate
price information of the market. When the market price of
green certificates is low and the price of renewable energy
electricity is high, TPG can purchase certain green certificates
to endow the electricity with green properties and sell them
bundled to power utility.

B. ASSUMPTIONS
Hypothesis 1: The market participants are all bounded ratio-
nal. Due to the limited cognitive ability of the market sub-
ject, the incomplete information of the market transaction
and the large amount of uncertainty in the transaction process,
the market subject cannot be completely rational.

Hypothesis 2: When both parties choose to trade green cer-
tificates, both parties will share the transaction cost equally,

and the cost allocation coefficient is 50%. To simplify the
operation, the transaction cost of the total TGC is set as a
single transaction volume multiplied by the unit transaction
cost.

Hypothesis 3: The electricity transaction in this paper is
mainly carried out through bilateral negotiation, and the user
has full autonomy to choose the electricity of different nature.
The electricity energy market and the green certificate market
will organize a monthly transaction, and the validity of the
green certificate is one year.

Hypothesis 4: there is no difference in power generation
quality between different types of power generators, and they
are connected to the grid with their respective electricity
prices.

C. TWO-LAYER MODEL
a: UPPER-LAYER TARGETS
(1) In order to realize the competition between RPG and TPG
and promote the healthy operation of the market, one of the
objective functions in this paper is to minimize the difference
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between RPG and TPG’s earnings per kWh.

min

∣∣∣∣∣π re/ 12∑
i=1

Qri − π
f /

12∑
i=1

Qfi

∣∣∣∣∣
π re/

12∑
i=1

Qri + π
f /

12∑
i=1

Qfi

(1)

Qri is the electricity sold by RPG in ith month. Qfi is the
electricity sold by TPG in ith month.
(2) In order to ensure that TPG does not lose too much due

to the implementation of quota system, the objective function
is to minimize the change of TPG’s income per kilowatt hour
before and after the implementation of quota system.

min

∣∣∣∣∣
(
π f /

12∑
i=1

Qfi − rkwh

)
/rkwh

∣∣∣∣∣ (2)

rkwh is the income per kWh of TPG before the implementation
of the quota system

b: LOWER-LAYER TARGETS
i) REVENUE OF RPG

In the ith step, the RPG maximizes its benefits by deciding
the prices of electricity and green certificates.

maxπ re =
12∑
i=1

(
Qri
(
pri − cr

)
+ qri p

g
i − ∂λq

r
i p
g
i

)
(3)

pri is the transaction price of renewable energy in the ith
month; pgi is the sale price of green certificate in the ith
month; λ is the transaction cost rate; cr is the renewable
energy generation cost; ∂ is the transaction cost allocation
coefficient.

ii) REVENUE OF TPG
In the ith round of the game, TPG maximizes its benefits π f

by making decisions on the price of electricity to be sold pfi
and the amount of green certificate to be purchased qfi .

maxπ f =
12∑
i=1

(
Qfi
(
pfi − c

f
)
− qfi p

g
i − ∂λq

f
i p
g
i

)
(4)

pfi is the transaction price of TPG in the ith month; pgi is the
purchase price of green certificate in the ith month; cf is the
power generation cost of TPG.

iii) THE COST OF POWER UTILITIES
In the ith round of the game, power utilities minimize their
electricity costCu bymaking decisions on the amount of elec-
tricity purchased from renewable energy Qri , conventional
energy Qfi and green certificates qui .

minCu
=CB + CP (5)

CB=
12∑
i=1

(
Qri p

r
i + Q

f
i p
f
i + p

u
i q
u
i + ∂λp

u
i q
u
i

)
(6)

CP=χ

(
γ

(
12∑
i=1

(
Qri +Q

f
i

))
−

12∑
i=1

(
Qri +q

u
i
))

pp (7)

γ is the target of the quota, pp is a unit penalty, χ is a 0-1 deci-

sion variable, when γ

(
12∑
i=1

(
Qri + Q

f
i

))
−

12∑
i=1

(
Qri + q

u
i

)
≥

0, χ = 1; Otherwise χ = 0.

c: CONSTRAINTS
i) CONSTRAINTS OF THE NUMBER OF GREEN

CERTIFICATES

3∑
j=1

12∑
i=1

(
ταiQri + e

b
i,jG

b
i − e

s
i,jG

s
i

)
≥ τ

12∑
i=1

γQri (8)

3∑
j=1

12∑
i=1

(
ebi,j + e

s
i,j

)
≤ 1 (9)

τ is the number of green certificates obtained per unit of green
electricity produced, τ = 1piece/ (MWh).αi is the proportion
of renewable electricity consumption in the ith month.Gbi ,G

s
i

are respectively the number of green certificates purchased
and sold in the ith month. ebi,j, e

s
i,j are the state variables of the

purchase and sale of certificates by the market entity j in the
ith month. For market entity j, ebi,j = 0, esi,j = 1 represents sell
green certificates in the ith month; ebi,j = 1, esi,j = 0 represents
purchase green certificates in the ith month; ebi,j = 0, esi,j = 0
indicates that there is no green certificate transaction in the
ith month.

ii) QUANTITY OF ELECTRICITY SOLD CONSTRAINT
The amount of electricity sold by RPG should be less than the
maximum generating capacity of unit.

0 ≤ Gsi ≤ G
max
i (10)

Gmax
i is the maximum number of green certificates held by

power generation enterprises in the ith month.

iii) TRADE BALANCE FOR GREEN CERTIFICATES
The total amount sold by each market member in the green
certificate trading market shall be equal to the total amount
purchased.

3∑
j=1

12∑
i=1

Gsi =
3∑
j=1

12∑
i=1

Gbi (11)

iv) PRICE CONSTRAINTS
Because of the randomness of machine learning algorithms,
when the model is not adequately trained, the quotation
of the agent is easy to appear extreme value. In order to ensure
the rationality of the game and accelerate the convergence of
the model, the price of TPG and RPG is constrained between
0.5 times and 1.5 times of the average price of a month in the
market history.
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The price constraint is released after 10,000 rounds of
model training to more realistically simulate the real power
market game.

0.5pfi,avg ≤ pfi ≤ 1.5pfi,avg (12)

0.5pri,avg ≤ pri ≤ 1.5pri,avg (13)

pfi and p
r
i are the actual electricity prices of TPG and RPG in

each month, pfi,avg and pri,avg are the average prices of TPG
and RPG in each month.

III. PROPOSED METHDOLOGY
A. BACKGROUND
In this study, reinforcement learning (RL) model was used
as the benchmark algorithm of upper and lower layers, and
the model training process of each benchmark algorithm was
similar. In each time step t , agents composed of strategy
network µ interact to generate actions at ∼ µ (st) , at ∈
Rda to act on the environment by observing the environment
st ∈ Rds . Agent will harvest the reward value Rt according to
its unknown reward function R (st , at), and obtain the state
sT+1 of the next environment or terminate at the current
environment state sT . The goal of agents is to maximize their
discounted expected returnEs0:T ,a0:T−1,R0:T−1

[∑T−1
i=0 γ

iRi
]
,

where 0 ≤ γ < 1 is a user-specified discount factor [34].

B. FRAMEWORK OF IMPROVED
HIERARCHICAL-MULTI-AGENT RL
Based on the hierarchical reinforcement learning algorithm
structure of HIRO, this paper extends the general reinforce-
ment learning algorithm into a two-layer structure including
the lower strategy networkµlo and the upper strategy network
µhi. The upper-layer policy operates at a coarser layer. The
lower-layer policy interacts directly with the environment.
The upper-layer policy instructs the lower-layer policy via
upper-layer actions, or goals, gt ∈ Rds which it samples anew
every c steps.
The traditional HIRO algorithm uses parameterized reward

functions to specify a limitless set of lower-layer policies,
each of which is trained to match its observed states to a
desired goal, and trains on the premise of the unity of the
overall target direction of the upper and lower layers [35].
Different from the traditional HIRO algorithm, the upper

layer of this paper uses the same continuous control RL
algorithm as HIRO algorithm to form the strategy network
µhi to output policy parameters, but the lower layer of the
strategy network µlo is replaced with the MADDPG multi-
agent networkmodel representing the tripartite game between
RPG, TPG and power utilities, and the unity of the interests
of the upper and lower layers is cancelled. After the lower
layer receives the policy target of the upper network output,
the three parties aim to gain the most from their respective
electricity market transactions. The lower-layer policy will
store the experience (st , gt , at , rt , st+1) for off-policy train-
ing, using a fixed parameterized reward function r , with an

intrinsic reward rt = r (st , gt , at , st+1) and a bounded ratio-
nality competitive game with a month as time dimension. The
HIRO-MADDPG algorithm framework is shown in Figure 3:

After each round of game at the lower layer, the upper-layer
policy independently calculates the policy benefits Rt , and
stores the upper-layer transition (st:t+c−1, gt:t+c−1, at:t+c−1,
Rt:t+c−1, st+c) for off-policy training at every c time steps.
The improved HIRO-MADDPG algorithm transforms the

leadership relationship between the upper and lower layers of
the traditional HIRO-MADDPG algorithm into the seduction
relationship. Instead of cooperating with the upper network
to achieve the goals of the upper network, the lower network
considers how to maximize its own interests under the goals
set by the upper network. The transformation of this model is
more in line with the relationship between the government
and the market transaction subject in the current Chinese
electricity market. The government needs to take full account
of the profit-seeking of market members in order to work
out the optimal policy parameters in line with the incentive
compatibility principle.

C. MULTI-AGENT GAMING FOR LOWER-LAYER TRAINING
The multi-agent algorithm of the lower layer MADDPG
adopts the framework of decentralized execution and central-
ized training to achieve their respective game objectives [36].
As shown in Figure 4, the algorithm allows the policy to
use global information to simplify training, as long as this
information is not used during testing.

After receiving the policy parameters of the upper network,
we expect the lower algorithms to run competitive games
under the following constraints:

(1) The learned strategies can only be executed using only
local information (their own observations).

(2) It does not need to know the differentiable dynamic
model of the environment.

(3) There is no communicationmethod between agents (we
assume there is no discernible communication channel).

Specifically, consider a game with three agents whose
policy is parameterized by θ = {θ1, θ2, θ3}, and the set of
all agent strategies is π = {π1, π2, π3}. The gradient of the
expected payoff of agent i, J (θi) = E[Ri] is as follows:

∇θjJ (θi) = Es∼pµ,ai∼π i[∇θilogπi(ai|oi)Qπi (x, a1, a2, a3)]

(14)

Qπi (x, a1, a2, a3) is a centralized action value function,
which takes the action and state information x of all agents
as input and outputs Q of the agent i, x = (o1, o2, o3)
contains the observed values of all agents. Since each Qπi
learns separately, the agent can have any kind of reward.

The above ideas can be extended to deterministic strate-
gies. If N strategies µloθi are considered and the parameter is
θi (abbreviated as µlo

i
), the gradient can be written as:

∇θ iJ (µloi ) = Ex,a∼D[∇θ iµloi (ai|oi)∇aiQ
ulo
i

× (x, a1, a2, a3)|ai = µloi(oi) ] (15)
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FIGURE 3. The design and basic training of HIRO-MADDPG.

FIGURE 4. Overview of multi-agent gaming approach.

The experience replay buffer D contains tuple (x, x ′, a1,
a2, a3, r1, r2, r3), which records the experience of all agents.
The action value functionQu

lo

i in the set is updated as follows:

L(θi) = Ex,a,r,x′[(Q
µlo

i (x, a1, a2, aN )− y)2] (16)

y = ri + γQ
µ′lo

i (x′, a′1, a
′

2, a
′

3)|a
′
j = µ

lo′
j (oj) (17)

µlo′ = {µloθ1′, µ
lo
θ2′
, µloθ3′} is the target policy set with the delay

parameter θ ′i .
In order to eliminate the assumptions of other agent strate-

gies in(16), each agent can keep an additional approxima-
tion µ̂lo

φj
related to the real strategy µloj of agent j, φ is the

parameter of the approximation, µ̂lo
φj

is abbreviated as µ̂loj ).
This approximation strategy learns by maximizing the loga-
rithmic probability of the actions of agent j and an entropy
regularization term:

L(φji ) = −Eoj,aj[logµ̂
lo
j (aj|oj)+ λH (µ̂loj )] (18)

H is the entropy of the strategy distribution. y can be
replaced by the approximate value ŷ calculated as follows:

ŷ = ri + γQ
µ′
i (x′, µ̂lo′1 (o1), µ̂lo′2 (o2), µ̂lo′3 (o3)) (19)

µ̂lo′ is the target network of approximate strategy j. Before
updatingQui , the most recent sample of each agent j is fetched
from the replay buffer and a gradient step is performed to
update φji .

Relevant parameters of the model are shown in the Table 1:

D. OFF-POLICY CORRECTIONS FOR
UPPER-LAYER TRAINING
Although a two-layer HRL architecture has been proposed
before the HIRO algorithm, in previous work such a design
usually requires on-policy training. This is because the chang-
ing behavior of the lower layer policy creates non-stationary
problem policies for the upper layer policy, and the old
off-policy experience may show different changes under the
same goal conditions. However, for HRLmethods to be appli-
cable to real-world, they must be valid samples. Off-policy
algorithms will usually show significantly better efficiency
than on-policy actor-critic or policy gradient variants.
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TABLE 1. Parameter list.

A policy may be learned efficiently from state-action-
reward transition tuples (st , at ,Rt , st+1) collected from
interactions. TD3 learning algorithm [37] is utilized for
upper-layer training, a variant of the popular DDPG algorithm
for continuous control [38]. TD3makes several modifications
to DDPG’s learning algorithm to yield a more robust and
stable procedure. Its main modification is using an ensemble
over Q-value models and adding noise to the policy when
computing the target value.

In TD3, a deterministic neural network policyµφ is learned
along with its corresponding state-action Q-function Qθ by
performing gradient updates on parameter sets φ and θ . The
Q-function represents the future value of taking a specific
action at starting from a state st . Accordingly, it is trained
to minimize the average Bellman error over all sampled
transitions, which is given by:

ε (st , at , st+1)=
(
Qθ (st , at)−Rt−γQθ

(
st+1, µφ (st+1)

))2
(20)

The policy is then trained to yield actions which maximize
the Q-value at each state. That is, µφ is trained to maximize
Qθ
(
st , µφ (st)

)
over all st collected from interactions with

the environment.
The upper layer transition tuples (st:t+c−1, gt:t+c−1,

at:t+c−1,Rt:t+c−1, st+c) is used, where xt:t+c−1 denotes
the sequence xt , . . . , xt+c−1, which are collected by the
upper-layer policy and convert them to state-action-reward
transitions

(
st , gt ,

∑
Rt:t+c−1, st+c

)
that can be pushed into

the replay buffer of any standard off-policy RL algorithm.
However, since transitions obtained from past lower-layer

controllers do not accurately reflect the actions (and therefore
resultant states st+1:t+c) that would occur if the same goal
were used with the current lower-layer controller, a correction
that translates old transitions into ones that agree with the
current lower-layer controller has to be introduced.

The main observation is that the goal gt of a past upper-
layer transition

(
st , gt ,

∑
Rt:t+c−1, st+c

)
may be changed to

make the actual observed action sequence more likely to
have happened with respect to the current instantiation of
µlo. The upper layer action gt which in the past induced
a lower-layer behavior at:t+c−1 ∼ µlo (st:t+c−1, gt:t+c−1)

may be re-labeled to a goal g̃t which is likely to induce
the same lower-layer behavior with the current instantiation
of the lower-layer policy. Thus, the off-policy issue by re-
labeling the upper-layer transition

(
st , gt ,

∑
Rt:t+c−1, st+c

)
with a different upper-layer action g̃t chosen to maximize
the probability µlo (at:t+c−1 |st:t+c−1, g̃t:t+c−1 ) is proposed
to remedy. In effect, when the lower-layer policy µlo is modi-
fied, the question should be answered: for which goals would
this new controller have taken the better actions as the old
one?

Most RL algorithms will use random action-space
exploration to select actions, which means that the
behavior policy is stochastic and the log probability
logµlo (at:t+c−1 |st:t+c−1, g̃t:t+c−1 ) may be computed as:

logµlo (at:t+c−1 |st:t+c−1, g̃t:t+c−1 )

∝ −
1
2

t+c−1∑
i=t

∥∥∥ai − µlo (si, g̃i)∥∥∥2
2

(21)

To approximately maximize this quantity in practice,
we compute this log probability for a number of goals g̃t , and
choose the maximal goal to re-label the experience.

IV. CASE ANALYSIS
A. TEST SYSTEM AND IMPLEMENTATION
In this paper, the multi-agent game strategy of TPG and RPG
is discussed without considering hydroelectric power, and the
evolution of policy parameters is simulated. The composition
of China’s electricity in 2020 is shown in the Table 2:

This study is based on data from the National Energy
Administration for 2020 and excludes energy types that are
not affected by the weight of absorption liability.

Only coal power and grid-connected renewable power
(solar, biomass, wind, etc.) are considered. According to
the Notice on Establishing and Improving the Guarantee
Mechanism of Renewable Energy Consumption (2019) issued
by the National Energy Administration, the average quota
of non-hydropower renewable energy consumption in China
is 10.5%. In order to ensure that the penalty for failure
to complete the target has a restraining effect, the indirect
penalty is set at 1.5 times the current price of TGC in this
study. The benchmark for transaction costs is set at about
10% of the TGC price. The above parameters are the baseline
environment parameters of the game function of the lower
layer of MADDPG algorithm.

According to the State Grid Energy Research Report
(2020), the long-term average cost of thermal power gener-
ators is 270 yuan /MWh, and the long-term average weighted
cost of green power generators is 500 yuan /MWh. At the
present stage, China adopts the policy of choosing a policy
of alternative-green permits or subsidies. According to the
data ofChina Green Power Certificate Subscriptions Trading
Platform, it can be found that the transaction price of green
certificate is generally not lower than the amount of the policy
subsidies (the average cost difference between thermal power
and green power). Based on the market supply and demand
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TABLE 2. China’s electricity composition in 2020 (TWh).

data, the three parties play the multi-agent game according to
their cost parameters and public policy information, so as to
achieve the goal of maximizing their respective benefits. The
results of the game will be used as the reward of the upper
HIRO algorithm for iterative training.

The reinforcement learning model in the experiment is
implemented by Python TensorFlow 2.3. The constraints
in the formula are calculated using the Python interface
in Gurobi. The experimental computer was a quad-core
2.60-GHz Intel Core i7-6700HQ processor with 16GB of
RAM. In order to accelerate the convergence of the model,
the lower layer of MADDPG algorithm adopts China’s cur-
rent policy parameters to carry out 10,000 rounds of game
pre-training.

B. PERFORMANCE COMPARISON OF
POLICY DECISION ALGORITHM
In order to verify the effectiveness of the proposed HIRO-
MADDPG algorithm, a total of 30,000 rounds of game sim-
ulation were carried out. The game cycle is 12 months in the
simulation environment. The three parties of the game for-
mulate price and electricity purchase strategies respectively
and give feedback on the transaction situation and respective
income results of each game cycle under different policy
parameters. The results are shown in the Figure 5.

FIGURE 5. Episodic average difference for the examined methods.

This section is mainly used for algorithm comparison, so as
to verify the effectiveness of hierarchical reinforcement learn-
ing HIRO-MADDPG algorithm proposed in this paper based
on multi-agent game. This study mainly compares the policy
effects of reinforcement learning TD3-EGT algorithm and

traditional particle swarm neural network BPPSO-EGT algo-
rithm based on bounded rational group evolutionary game.
The EGT algorithm solves the strategy evolution trend by
optimizing the annual comprehensive returns of different
populations. The TD3/BPPSO algorithm at the upper layer
receives the convergent strategy solutions at the lower layer
to calculate the reward/loss value under the corresponding
policy parameters and carries out 30,000 rounds of policy
parameter iteration.

Figure 5 and Table 3 show the convergence trend of policy
benefits under different algorithms and the mean value µ,
variance of benefits σ and training duration t(h) between
different training rounds are presented. The policy benefit
under different algorithms increases steadily with the training
rounds, while the volatility decreases steadily. All the three
algorithms can effectively improve the rationality of pol-
icy parameter formulation. However, the HIRO-MADDPG
algorithm proposed in this paper obtained the highest pol-
icy benefits. The average policy benefit of HIRO-MADDPG
algorithm is 38.7% higher than that of TD3-EGT algorithm,
and 65.7% higher than that of traditional BPPSO-EGT algo-
rithm. Although the volatility of the algorithm proposed in
this paper is larger than that of the other two algorithms,
the worst result of HIRO-MADDPG algorithm is 0.532 under
the 95% confidence interval, which is still better than the
optimal result under the 95% confidence interval of the other
two algorithms. In order to calculate more advantageous
policy parameters, HIRO-MADDPG algorithm takes about
3 days in total, 1.42 and 2.09 times longer than the other
two algorithms. Since the policy parameters will not be mod-
ified within a short period of time once they are formulated,
the radiation effects of the policy parameters on a long time
scale need more precise calculation to determine the most
appropriate policy parameters.

Compared with multi-agent reinforcement learning, EGT
model, as an algorithm of the lower layer game, is supe-
rior to HIRO-MADDPG algorithm in terms of operation,
convergence speed and volatility. However, due to the high
speed and low volatility of the strategy convergence of
the EGT algorithm, its convergence is only in the macro
direction of the strategy, and it is unable to achieve the
refinement and overall decision optimization of the subdi-
vision environment in the unit of month, so the upper limit
of the effect of the policy benefits it can achieve is rela-
tively poor. TD3 reinforcement learning as a model of upper
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TABLE 3. Mean (µ) and standard deviation (σ ) of average difference and time spending for the examined methods.

layer policy parameter optimization is better than the tradi-
tional BPPSO neural network optimization algorithm. The
TD3 reinforcement learning algorithm improves the explo-
ration of the strategy space by exploring the combined opti-
mization of the operation mechanism, multiple strategies and
action networks, and under the disadvantage of the fluctua-
tion within the acceptable range and the convergence speed.
HIRO-MADDPG algorithm replaces the evolution of EGT
population strategy trend with the result of multi-agent rein-
forcement learning game, which provides more accurate and
refined reward for the upper reinforcement learning network,
further improves the upper limit of algorithm solution, and
obtains the optimal algorithm effect.

C. ANALYSIS OF REWARD COMPONENT FOR
HIRO-MADDPG ALGORITHM
The perspective of quota policy is to enable RPG to compete
fairly and healthfully with TPG in the electricity market after
the policy subsidies are abolished. Therefore, the objective
function of HIRO-MADDPG is to reduce the loss range of
thermal power revenue due to the influence of policy while
keeping the income ratio of TPG and RPG as close as possible
under the policy parameters output by the algorithm.

Figure 6 shows the respective benefit ratios of the dual
objectives in the algorithm training process and the variation
of the income of different power producers. It can be found
that in the first 5000 rounds of the game, the revenue per
kWh of TPG greatly decreased and then recovered, and then
stabilized at a decrease of about 35%.Meanwhile, the revenue
per kWh between TPG andRPGdecreased steadily in the first
10000 rounds, and the revenue per kWh fluctuated around
10% in the subsequent training, and the profitability of RPG
increased with the help of the policy.

It can be seen from the changes in the profits of both
parties that during the training process, TPG’s early profit loss
fluctuates greatly. The income of the lowest kilowatt-hours is
reduced to 0, while RPG’s early profit rises more, exceeding
0.2 yuan/kWh at the most, which is about three times the
revenue per kWh before the thermal power quota system
policy.

FIGURE 6. Reward component for HIRO-MADDPG algorithm and
Revenue(CNY/kWh) for different generators.

Table 4 shows the changes of mean and variance of kWh
earnings of TPG and RPG under different training rounds.
It can be seen that the kWh earnings of TPG and RPG grad-
ually converge to 0.069 yuan and 0.065 yuan. The average
income of RPG is slightly lower than that of TPG, but the
standard deviation of the income of RPG is 4.5 times that
of TPG because of the income subsidy of green certificate
policy. It can be seen that in the training process of the
algorithm, the policy parameters avoid any party from gaining
higher additional benefits or suffering losses due to excessive
policy influence, thus maintaining the stable operation of the
market.

D. ANALYSIS OF POLICY DECISION RESULT FOR
UPPER LAYER ALGORITHM
In order to achieve the desired policy effect in the lower-
layer multi-agent game, the upper-layer algorithm will
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TABLE 4. Mean (µ) and standard deviation (σ ) of revenue(CNY/kWh) for different generators.

dynamically adjust the formulation of policy parameters
according to the reward returned by the lower-layer multi-
agent game in the current round. The result of the decision is
to float up or down a certain proportion coefficient according
to the benchmark policy parameters. Figure 7 shows the
changes in the output results of the three policy parameters
of quota, transaction cost and penalty during the training
process.

FIGURE 7. Episodic average difference for the policy decision output.

Due to the low proportion of the initial quota, there is
a big gap between the income of per kWh of RPG and
TPG. In order to improve the competitiveness of RPG, in the
first 5000 rounds of algorithm training, the average policy
parameter value is 1.6 times of the current quota and 0.7 times
of the current transaction cost. Fines fluctuate wildly between
about 0.5 times and 2 times. It can be seen from Figure 7 that
the revenue per kWh of RPG increases rapidly under the high
policy benefits, and they get much higher revenue per kWh
than TPG.

The algorithm gradually corrected the excessive influence,
and the policy parameters converged to 1.4 times of the
current quota ratio after 20,000 rounds of iteration, so that the
excess income obtained by RPG was reduced to a reasonable
layer again. In order to ensure the stability of the profits
of RPG, the penalty rapidly converges to twice the current
penalty ratio after the high fluctuation in the early stage.
The transaction cost plays a role of slightly adjusting the
profit difference between TPG and g RPG per kilowatt hour.
During the whole training period, the convergence rate is

slow, and the transaction cost gradually increases from the
low transaction cost to 1.08 times of the transaction cost.

E. ANALYSIS OF MULTI-AGENT BIDDING RESULT FOR
LOWER LAYER ALGORITHM
Under the influence of different policy parameters in each
round, the results are shown in Figure 8.

FIGURE 8. Episodic average load and price for the different generators
after policy change.

Due to the small volume of RPG, when the policy parame-
ters fluctuate greatly in the early stage, the load of RPG fluc-
tuates sharply between 20%-100%, which is 9.4 times that
of TPG. Due to the large size of TPG, the drastic fluctuation
of quota keeps the fluctuation range of TPG within 10% and
rapidly converges. Finally, under a reasonable quota, RPG
can absorb nearly 100% of the power generation, and the load
of TPG has steadily decreased by 5% from about 90% at the
beginning.

In terms of pricing, TPG, in order to actively respond to
the policy, continuously tested and offered different layers of
low prices in the first 5000 front round game, with the average
price reduced by 10%.With the stabilization of policy param-
eters, the price has picked up to a certain extent and finally
stabilized at 92.6% of the benchmark price.
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TABLE 5. Penalty condition and mean contribution for GC between TPG and power utility.

TABLE 6. Mean (µ) and standard deviation (σ ) of load and price for the different generators after policy change.

Although the fluctuation of electricity quantity and green
license quotation strategy of green electricity generators is
slightly larger than that of TPG, the average price of the
quotation is relatively stable. The price of green electricity
was slightly reduced by 3% in response to the reduction
of thermal power, while the price of green certificates was
increased by 11%, which did not affect the consumption
of green certificates. Under the latest policy parameters,
the quota has reached 100 percent completion rate, and the
maximum penalty per round has been reduced to 0 yuan from
265 million yuan.

As shown in Figure 9, with the increase in the proportion
of fines and the decrease in the price of green certificates
during training, users are more inclined to purchase green
certificates by themselves rather than by TPG to avoid high
fines. Table 5 shows that the contribution ratio of users to the
green certificate market increased from the initial 81.6% to
94.7%, an increase of 16.1%, while the contribution ratio of
TPG decreased from 18.4% to 5.3%, a decrease of 71.2%.

FIGURE 9. Episodic average GC criterion and contribution between TPG
and power utility.

F. ANALYSIS OF MONTHLY BIDDING RESULT
UNDER BEST POLICY PARAMETER
The average value of the parameter solutions in the last 5000
rounds of training was taken as the policy input of the lower
layer game. Among them, the quota proportion is 14.8%, the
transaction cost is 10.8%, and the fine is 690 yuan /MWh.
Table 6 shows the cumulative completed RPS indicators
and the average corresponding indicator demand in different
months. Figure 10 shows themonthly quotation decisions and
transaction results of different power producers.

As shown in Table 6, power utilities tend to guarantee a
higher quota completion rate over the course of a year in
order to avoid penalties and improve fault tolerance. RPS
completion rates consistently exceed average monthly quota
proportional allocations and exceed a maximum of 15% of
linear monthly proportional allocations.

Among them at the beginning of a year and the end of the
green electricity trade is the most active.

As shown in Figure 10, the highest amount of RPGwinning
the bid in the first 5 months of a year can reach 14% of that of
TPG, and the average amount of winning the bid is 1.07 times
of that in the next 7 months. The total trading volume of the
first 5 months of the green certificates exceeded the sum of
the next 7 months by 27%. The strategy adopted by RPG is to
adopt lower prices of green electricity and green license in the
first five months to guarantee the basic income, and increase
the green electricity price by 2% on average and the green
license price by 10% on average in the next seven months.
TPG’s trading strategy is the opposite, after the middle of the
year to carry out appropriate price cuts. The volume of green
electricity transaction and the proportion of thermal power
gradually decreased after the middle of the year. At the end
of the year when quota indicators need to be assessed, power
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FIGURE 10. Monthly trading condition for different generators.

utilities make up for the lack of indicators, and the proportion
of trading volume has increased to a certain extent.

Under the modified policy parameters, power utilities have
a strong willingness to fulfill quota driven by quota index
and fine. Power utilities conducted sufficient green electricity
transactions at the beginning of the year and the end of
the year, avoiding the low turnover in the green certificate
market at the end of 2020, ensuring the consumption of green
electricity and the reasonable per-kilowatt income of RPG,
which can effectively promote the fair competitiveness of
RPG in the electricity market.

G. ANALYSIS OF THE TREND OF CARBON EMISSION
FROM THERMAL POWER UNDER OPTIMAL POLICY
PARAMETERS DURING 2021-2030
The setting of RPS policy parameters will greatly affect the
power generation behavior of power sector. The appropri-
ate policy parameters, which correspond to China’s future
energy demand and power producer installation plans, can
help China achieve the carbon peak goal in the electric power
industry more efficiently and quickly.

According to China’s Energy Outlook 2030, total energy
demand will grow at an average annual rate of 2.4 per-
cent to 5.3 billion tons of standard coal by 2030. Among
them, the installed scale of non-water renewable energy will
reach 1.24 billion kilowatts, accounting for 39% of the total
installed capacity. The expected annual variation of thermal
power and green power installed capacity is shown in Table 7:

Assuming that the KWH cost of TPG and RPG remains
unchanged, the installed capacity values of each year are
taken as different environmental parameters for training,

TABLE 7. Installed capacity on the power side.

FIGURE 11. Optimal quota ratio and carbon emissions of TPG in the next
10 years.

and the quota ratio and thermal power carbon emissions to
2030 are obtained, as shown in Figure 11.

From 2022 to 2030, the proportion of renewable
energy quota will gradually increase, reaching a maximum
of 28.76%. Regardless of the quota policy, carbon emissions
from thermal power plants are expected to rise steadily, reach-
ing 4.64 billion tons in 2030, in the face of continued growth
in installed capacity. Under the optimal quota parameters cal-
culated by HIRO-MADDPG algorithm, the carbon emission
of thermal power units will reach the peak of 4.043 billion
tons in 2026, which realizes the carbon peak of the power
industry in advance. It was further reduced to 3.598 billion
tons in 2030, 22.5% less than the no-quota policy, making a
great contribution to achieving carbon neutrality.

V. CONCLUSION AND FUTURE IMPLICATIONS
Taking into full consideration the influence of the flexibility
game results on the policy parameters under the tripartite
bounded rationality of green power generators, thermal power
generators and power utilities, this paper solves the problem
of setting the optimal policy parameters to ensure the fair
competitiveness of green power generators in the electricity
market after the subsidy policy is cancelled. Different from
the traditional rough policy sensitivity analysis, this paper
adopts the combination of layered and multi-agent reinforce-
ment learning, and through the synchronous update of upper
and lower layer reinforcement learning network, it realizes
the formulation of the optimal and refined policy combi-
nation. The results show that the benefit of policy scheme
solved by HIRO-MADDPG algorithm in this paper is 38.7%
and 65.7% higher than that of traditional EGT algorithm
combined with TD3 single agent reinforcement learning and
traditional BPPSO algorithm, respectively.
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The algorithm deals with the dilemma of increasing the
revenue of green electricity and reducing the new market
cost in a more balanced way. In the case of reducing the
net profit of thermal power by 35%, the competition result
of green power from no market competitiveness to about
10% difference with the profit of thermal power per kilowatt-
hour is realized, and the market competition ability of green
power generators is guaranteed after the cancellation of pol-
icy subsidies.

The algorithm results show that under the policy combi-
nation of 1.4 times the current quota ratio, 1.08 times the
current transaction cost and 2 times the current fine, the aver-
age and optimal policy benefits can be obtained. Under this
policy, green electricity can guarantee no less than 98% of the
consumption proportion and 100% of the quota completion
rate. At the same time, power utilities will be more active to
participate in the green certificate market driven by quotas
and fines, which will avoid the phenomenon that the green
certificate transaction volume is rare and the cost gap between
generators is small under the current quota policy system in
China in 2020.

The algorithm effectively and reasonably realizes the pos-
sibility that green power generators and thermal power gen-
erators can compete on the same stage, so that green power
generators can still maintain development through reason-
able profit before the technology is mature. This will fur-
ther ensure that China can achieve a steady increase in the
proportion of green power installed in the future, to ensure
that the carbon peak target and carbon neutral vision can be
successfully achieved.

In the future, we will continue to track the changes of the
actual input data and make real-time adjustments to the input
and training of the model, so as to ensure the true closeness
between the model and the reality and provide real-time
progressive reference for the actual decision-making of the
government and the basis for the game of various market
entities.
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