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ABSTRACT Photovoltaic (PV) power prediction has a constantly evolving solutions landscapewith amyriad
of data-driven techniques. Each technique leverages a self-adaptive algorithm that must retrain in intervals,
be it each day, week, or season, to avoid the model generalizing poorly because of overfitting, underfitting,
or concept drift. This paper aims to improve the generalization capability of PV power predictors such
as autoencoders used widely in the industry by introducing feature-enhanced ensemble learning (FEEL)
after the feature selection step. This framework uses a combination of nonparametric regression and
generalized additive models, and an ensemble of weak regularized multilayer perceptron models. Once
trained, the framework can reliably generalize on test data across long time periods without any significant
degradation in performance. The proposed framework was validated against the baseline autoencoder-based
feature enhancement model on a real PV system from a smart neighborhood in Alabama for September 2019.
The FEEL framework performed three times better than the baseline, but when applied to the baseline, its
performance improved by two times on average. Furthermore, the framework generalized consistently better
than five other feature enhancement strategies. Despite fluctuations in weather, the FEEL framework’s R-
square score had a range of 8.1%, whereas that of the baseline was 48.3%. The mutual information and
Minkowski distance scores attempted to quantify concept and model drift, respectively. These scores show
that the FEEL framework generalized the ensemble learningmodels at least two times better than the baseline
across the different test days. These results form the first step toward decentralized intelligence for smart
grid applications that could free up resources for other expensive analytics in the field.

INDEX TERMS Feature enhancement, nonparametric regression, ensemble learning, generalized additive
model, concept drift, photovoltaic power prediction.

NOMENCLATURE
Unless otherwise specified, the following nomenclature is
applied throughout this paper.

AE Autoencoder, also denotes one of the
feature enhancement strategies

ARIMA Autoregressive integrated moving
average

ARIMAX ARIMA with extragenous inputs
ERM Ensemble of regularized multilayer

perceptrons
FEEL Feature-enhanced ensemble learning

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Prabaharan .

GAM Generalized additive model
LSTM Long short-term memory
MAE Mean absolute error
MLP Multilayer perceptron
PV Photovoltaic
PolyFit Non-parametric regression with

polynomial curve-fitting
PolyGAM PolyFit used in conjunction with GAM
PolyGAMAE PolyGAM used as inputs to autoencoder
RMSE Root mean square error
SARIMA Seasonal ARIMA
SARIMAX Seasonal ARIMA with exogenous inputs
SSE Sum of squared errors
SST Total sum of squares
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Constants
ε a constant to adjust the partial

dependency link function
N the number of independent feature vectors
n the length of a given feature vector
Functions
E{·} The expectation function
L(·) The loss function used by the models in

an ERM
fi(·) The function that models nonlinear

relationships between xi ∈ X and Y
g(·) The link function between the target and

the feature vectors
p(xi,Y ) Partial dependence between xi and Y
Indices
i an index ∈ [1,N ],Z+ to denote a

feature of interest
j an index ∈ [1,N ]− {i} to denote

features not of interest
Sets
Z+ a set of positive integers
X a multivariate set of N vectors in the

input feature space FS
Y a univariate set of the target vector Gen
Variables
X̂ , Ŷ Corresponding vectors of predicted X

and Y values
µ The mean of a given random variable
ρp Pearson correlation coefficient
ρs Spearman’s Rho
σ The standard deviation of a given

random variable
AP Air pressure, an input feature
AT Ambient temperature, an input feature
FS Input feature space
FSA Feature space updated using autoencoder
FSG Feature space updated using GAM
FSP Feature space updated using PolyFit
FSPGA Feature space updated using

PolyGAMAE
FSPG Feature space updated using PolyGAM
Gx Gini’s mean difference for vector x
Gen PV power output, the target variable
GIx Gini’s index for vector x
I Irradiance, an input feature
l Neural network layer of a model in an ERM
p Order of distance measure; p = 1

for Manhattan and p = 2 for Euclidean
R2 R-square score
RH Relative humidity, an input feature
WS Wind speed, an input feature
Xr , Yr ranked vectors corresponding to X and Y

I. INTRODUCTION
Prediction of photovoltaic (PV) power generation is a crucial
component in monitoring system behavior and planning
for on-demand dispatch [1]. Existing predictive techniques
can be categorized as physics-based, model-driven, data-
driven, or a combination thereof. Given how the generation

curve follows the sun’s diurnal cycles with intermittencies
due to cloud cover and changing regional weather patterns,
the prediction problem is challenging.

Recent works (elaborated in Section II) have demonstrated
the statistical significance of the input feature space FS—
which includes irradiance I (W/m2), ambient temperature
AT (◦F), wind speed WS (m/s), air pressure AP (bars),
and relative humidity RH (%) such that FS = X =
{I ,AT ,WS,AP,RH}—on PV power Gen. Distribution grid
networks are poised to adopt decentralized paradigms such
as the Internet of Things–enabled Edge or Fog computing,
which have allowed intelligence to partially shift from central
cloud-driven data centers to the field [2]. The sensitivity of
field data has also prompted the consideration of distributed
learning frameworks that preserve privacy and ensure security
by data abstraction. These emerging signs point to a future
in which distributed energy resources such as PV, and
even microgrids that encompass such distributed energy
resources, will engage in localized predictions that can then
be aggregated at the control center.

However, these developments must still address memory
and compute resource constraints to perform specific opera-
tions. One such operation that falls within the scope of this
paper is model retraining. Besides depending on additional
resource consumption, the frequency of retraining a model
depends on concept drift caused by changes in the data
distributions over time, model drift due to poor generalization
over time, data bias and variance, deployment and patching
costs, and the dynamism of measurement domain.

Although adding feature engineering techniques increases
computational burden, this paper aims to integrate two
lightweight techniques: nonparametric regression (PolyFit)
and generalized additive model (GAM) to capture both linear
and nonlinear partial dependencies between FS and Gen.
The generalization of the predictor should be significantly
improved by integrating these techniques in the feature
enhancement step. This claim is the first hypothesis of
this paper, HA. Second, the availability of big data and
the adoption of powerful machine learning libraries have
prompted utilities to retrain their predictive models daily,
weekly, or as often as each time FS is updated. However,
by using an ensemble of ‘‘weak’’ models to make an
ensemble of predictions—rather than a single predictor
that makes point predictions—that can then be averaged,
the improved generalization claimed byHA can be sustained
for longer test periods without having to retrain the models.
This claim, framed as the second hypothesis, HB, is also
validated by quantifying concept and model drift through
distance similarity measures such as mutual information and
Minkowski distances. By virtue of these hypotheses, the local
resources can be freed up for more mission-critical analytics.
For implementation, this paper uses data for the month of
September 2019 from a smart neighborhood in Alabama.

The overarching goal of this work is to develop a data-
driven framework that improves (HA) and sustains (HB) the
generalization of PV power predictors along with exhibiting
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a reduced risk of overfitting. The terms ‘‘models’’ and
‘‘algorithms’’ are used interchangeably unless specified
otherwise.

The key contributions of this work are that it.

1) Devises a feature-enhanced ensemble learning (FEEL)
framework using PolyFit and GAM that captures
linear and nonlinear partial dependencies in the data
to improve the generalization of a day-ahead PV
power predictor powered by an ensemble of regu-
larized multilayer perceptrons (ERM) and accept or
rejectHA;

2) Analyzes the trends in model performance over mul-
tiple test data after being trained on a single training-
validation set to determine if the improvement in
generalization is also sustained, thereby accepting or
rejectingHB;

3) Quantifies model drift by exploring the inherent
relationships between the predictors in FS using
pairwise correlations and between the actual and
predicted values of Gen using normalized Minkowski
distances;

4) Quantifies concept drift by exploring the mutual
information between the training-validation set and
each of the test days for the target vector Gen;

5) Delineates the partial linear and nonlinear dependen-
cies between each predictor variable and the target
to better profile the latent relationships between the
parameters and exploit those relationships during the
feature engineering stage

6) Compares the performance of FEEL framework with
similar day-ahead PV power prediction techniques
from the very recent literature; and

7) Provides a strategic roadmap for interested stakehold-
ers to enable better allocation of PV plants for smarter
operational planning and prioritizing resources for
improved reliability and availability.

Six feature enhancement strategies were used, each labeled
as a ‘‘case’’ and summarized in Table 1: (a) None: no feature
enhancement, andFS is fed into the ERM; (b)AE: considered
as the industry baseline, it consists of an autoencoder that
takesFS as its input to yield the encoded-decoded outputFSA,
which is fed into the ERM; (c) PolyFit: each vector from FS
is fed into a nonparametric regressor to yield a new space FSP
that is fed into the ERM; (d) GAM: all vectors in FS are fed
into a GAMmodeler that generatesGenG, which captures the
partial dependencies between FS and Gen; the new feature
space FSG = FS+GenG is fed into the ERM; (e) PolyGAM:
a combination of PolyFit and GAM; FSPG = FSP ∪ GenG;
and (f) PolyGAMAE: a combination of AE and PolyGAM;
FSPG is used by AE to yield FSPGA that is then fed into the
ERM.

The rest of this paper is organized as follows. Section II
summarizes the existing literature on the topic and highlights
key shortcomings and challenges. Section III presents the
proposed approach and formulated models. The results

TABLE 1. Cases based on the feature enhancement strategy used.

are presented in Section IV and discussed in Section V.
Conclusions and future work are documented in Section VI.

II. RELATED WORK
Different techniques in the literature address PV power
prediction, which is interchangeably used with the term
‘‘forecasting.’’ A simple numerical estimation approach com-
bining historical data and system characteristics is proposed
in [3], where the proposed method estimated values closer to
the real observations in comparison to state-of-the-art estima-
tors. Different variants of autoregressive integrated moving
average (ARIMA) models such as ARIMA with exogenous
inputs (ARIMAX), nonlinear autoregressive neural network
with exogenous inputs, seasonal ARIMA (SARIMA), and
SARIMA with exogenous inputs (SARIMAX) are used for
forecasting and compared in [4], where the authors used fore-
cast horizons of 1, 2, and 3 h. Mean absolute percentage error
was used to assess performance. In another approach [5],
the authors used SARIMAX, SARIMA, modified SARIMA,
and neural networks for short-term forecasting. In this study,
the power output horizon was classified into winter, spring,
summer, and autumn. The authors conclude that neural
networks, SARIMAX, and modified SARIMA were the best
models to meet the forecasting needs for winter, spring,
and autumn, whereas SARIMA performs better in summer.
ARIMAwas used to forecast global horizontal irradiance [6],
the assessment of which is done by measuring the root
mean square error (RMSE) and a coefficient of determination
such as R2. The best model recommended by this work
had an R2 of 0.89 and an RMSE of 0.729. In [7], a day-
ahead solar forecasting was done using a support vector
machine with different kernels, among which the radial basis
function performed best with an RMSE of 0.580 and a
mean absolute error (MAE) of 0.728. Neural networks were
used by [8] to forecast solar irradiance, combined with a
genetic algorithm to find the optimal array size and position
of the solar monitoring station to get the most accurate
forecast. Numerical weather prediction and convolutional
neural networks have also been used to forecast solar
energy [9]. In another study, the probabilistic forecasting of
solar power was done using multiple linear regression [10].
Short-term forecasting using the Mycielski algorithm was
done in [11] where a 60 W solar panel was used. Authors
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in [12] forecast irradiance using cloud motion and numerical
weather prediction.

The work in [13] proposes to adjust the hyperparameters
of long short-term memory (LSTM) PV power predictors to
account for weight estimation and learning rate acceleration.
However, additional techniques are required to counter the
added computational complexity of their approach for online
forecasting. Extraction of latent features from observed (his-
torical) and forecast weather values was explored in a recent
study [14], which made day-ahead predictions similar to this
paper, but the proposed work differs from the cited study
by capturing the linear and nonlinear partial dependencies
between the predictors and the target. Another relevant
study modeled the linear and nonlinear relationships between
weather parameters and PV power using linear and ranked
correlations [15]. Although correlations capture the nature
of relationships between these variables, the causal depen-
dencies between them are not captured. The proposed work
adopts nonparametric regression for this purpose. A similar
study aimed to apply feature selection using correlations and
backward elimination [16], but it used linear regression to
capture what could entail even nonlinear relationship between
the variables. Deep learning architectures were applied to
improve the performance of PV power prediction in [16]–[18]
and in [19] for short-term electricity price forecasting, but the
computation complexity of deep networks against traditional
networks with enhanced features poses practical limits.

Several improvisations to long-term PV forecasting have
emerged. A feature-selective ensemble learning for months-
ahead forecast horizon in [16] compared the performances
of simple mean, LSTM, convolutional neural networks, and
their ensembles. The ensembles showed a consistently better
performance than the individual models for up to a horizon of
10 months ahead. The research in [20] combined the selective
point forecasts of autoregressive conditional heteroscedastic,
multiple linear regression, and random forests to improve
forecasting accuracy. Unlike the proposed work that averages
ensemble predictions, the authors of that work employed a
probabilistic predictionmechanism using quantile regressors.
The uncertainties quantified therein helped better interpret
the model’s results. Hence, this paper’s work will be
extended to include quantile regression mechanisms for more
explainable results.

The scopes of the following works with short-term
prediction horizons align with that of the proposed FEEL
framework. Therefore, the discussion in Section V will
address them. Reference [21] divided the target variable
into its regular and irregular components and used ARIMA
and improved deep belief network to independently predict
them for short-term horizons. The proposed FEEL framework
follows a similar process, but it captures linear and nonlinear
partial dependencies and uses them to modify the feature
space. The dynamic nature of weather and its influence
in the generated power was analyzed in [22]. The work
exploited deep learning techniques to extract the hidden
sequential patterns in PV power output using only the data

captured around sunrise and not any further meteorological
data. The authors in [23] also proposed an ensemble learning
method that combined deep learning with time correlation
principles. The ensemble framework was then evaluated
against its components independently. The authors of [24]
proposed an ensemble of autoencoder and LSTM to make
short-term day-ahead power predictions and compare the
results with other benchmarks such as persistent models
and simple feedforward neural networks for up to 1 week
ahead. Three other works [25]–[27] that proposed similar
ensemble approaches using deep learning for short-term
(mostly day-ahead) PV power forecasting are also included
in the comparative study.

III. PROPOSED APPROACH AND MODEL FORMULATION
Figure 1 shows a comprehensive overview of the FEEL
framework, its models, and how they interact with each other.
The following subsections will discuss and formulate each of
these models in detail. The section ends with the definition
of performance evaluation metrics: RMSE, MSE, MAE,
and R2 for ensemble-to-ensemble comparisons [28], mutual
information score for evaluating model drift [29], [30], and
Minkowksi distances for evaluating concept drift [31].

A. DATA PREPARATION
The system considered for framework validation is a
330 kW PV power plant in an Alabama smart neighborhood
that partially supports 62 homes as part of a community
microgrid [32]. Data from the PV system are subject to
exploratory analyses and cleaning as outlined in the authors’
prior work for similarly sized PV systems [33]–[37]. These
include imputing missing values [38] and statistical curve
fitting [39]–[41]. Time-series data on X = {I , WS, AT , RH ,
AP}, and Y = Gen from the month of September 2019 were
used for this study. These data were recorded in 0.5-s intervals
from multiple plant sensors. System-level measurements on
plant voltage, current, power, frequency, and power factor
were recorded by a revenue-grade meter at the plant’s
main switchgear. Additionally, regional weather data were
gathered from the weather station at the Birmingham-
Shuttlesworth Airport. The data points were available in
hourly intervals and were used to determine the type of a
given day (fair, cloudy, or rainy). In all the analyses conducted
hereon, the completeness and integrity of the data were
ensured.

B. AUTOENCODER AS THE BASELINE
Autoencoders are lossy data compression models that use
self-supervised learning and comprise encoder and decoder
layers built using neural networks. These networks are
typically single layers of neurons that match the input
dimensions but are separated by a latent space that represents
the compressed version of the feature space. Their ability
to effectively capture nonlinear dependencies inherent in
the data and to represent original feature space despite
the noise and aberrations in a compressed data set make
them viable in the industry for feature enhancement or
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FIGURE 1. Flowchart summarizing the proposed approach for feature enhanced prediction.

for prediction itself. Recent advancements have resulted
in the emergence of different variations to the original
model, such as denoising and contractive autoencoders
for feature extraction, and variational autoencoders for
cases in which a greater control over the latent space is
required. Typically, the AE model comprises an encoder
and a decoder with the latent space between them. This
work uses AE as a feature-enhancement step. The encoder
compresses the FS to generate the encoded latent space,
which is then taken by the decoder to generate FSA that
carries forward the useful representations and dependencies
in FS. Given the prominence of fully connected autoen-
coders in the literature for this use [42]–[44], [44]–[46],
an autoencoder was considered as a baseline model in this
paper and used in two cases (AE and PolyGAMAE) as shown
in Table 1. Algorithm 1 summarizes the model.

C. NONPARAMETRIC REGRESSION (POLYFIT)
Unlike parametric regression that exploits a known, predeter-
mined relationship, nonparametric regression discovers the
relationships through curve-fits that minimize a prescribed
error measure, RMSE in this case. Different models exist,
such as local averaging [47], local regression [14], kernel
smoothing [48], [49], and wavelet transforms [50]–[53].
The proposed approach summarized in Algorithm 2 applies
polynomial fitting with up to 9◦ to capture dependencies, and
the degree with the lowest error score is used as the best fit.
These minimized scores are shown in Table 3.

D. GAM
GAM has been applied on time-series data for forecast-
ing [54]–[56], which can be represented as semi-parametric

Algorithm 1 Autoencoder for Cases AE and PolyGAMAE
to Respectively Generate FSA and FSPGA
1: Inputs: {XTr , XV , XT e} from FS; DimFS , dimension of
FS; DimEN , dimension of latent space

2: Define AE with layers [L1 := DimFS , L2 := DimEN , L3
:= DimFS ]

3: DefineAEwith activations [Between L1 and L2 := Tanh,
between L2 and L3 := Tanh]

4: Set parameters P := [Optimizer, epochs, loss function]
5: Compile AE with P
6: Train AE with XTr and update AE
7: Validate AE with XV
8: FSA := AE(XTe)
9: Save AE for future use

10: Return FSA to be used for ensemble predictions

functions of the form g(E{Y |X}) ← ε +
∑N

i=1 fi(Xi), where
Xi, i ∈ [1,N ],Z+ is a set of N independent variables in
X ∈ FS linked to Y , the dependent target variable, through
the link function g(·). ε captures a constant. The set of feature
functions fi(·) model the nonlinear relationships between X
and Y from B splines.

This stage also conducts a partial dependence analysis
to explore the influence of each vector in X on Gen with
a confidence interval of 95% [57]. The influence can be
monotonic, linear, or nonlinear. If FS denotes the input
feature space that comprises Xi, the feature of interest,
then Xj denotes the features not of interest such that Xi ∪
Xj = FS. A partial dependence function p(Xi,Y ) captures
the causal relationship between Xi and the target Y , which
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Algorithm 2 Nonparametric Regression for Cases PolyFit,
PolyGAM, and PolyGAMAE to Respectively Generate FSP,
FSPG, and FSPGA
1: Inputs: {XTr , XV , XTe} from FS; {YTr} from Gen; D :=

[1, 9], the set denoting the degree search space
2: for i in 1 : D do
3: Fit a least squares polynomial on [XTr , YTr , i]
4: Set W := weights from the fitted polynomial
5: Build the function PF s.t. YTr ← PF(XTr , W )
6: X̂Tr ← PF(XTr )
7: Compute RMSEi between X̂Tr and PF(XTr )

Set optimal degree, d := degree ∈ D with min(RMSE)
Set PF := function with weights mapped to the degree d

8: Validate PF with XV
9: FSP := PF(XTe)

10: Return FSP to be used for ensemble predictions

is marginalized over the set Xj. In doing so, the average
marginal effect of a given feature on the target can be
intuitively understood. This study, however, assumes little or
no correlation between Xi and Xj.

E. ERM TO PREDICT PV POWER
Prediction models can be designed to deliver results in point
predictions, ensemble predictions, or quantile predictions.
Point predictions are subject to the inconsistencies and
randomness inherent in the measurement domain, the data
acquisition process, and the randomness in the models during
the intialization of parameters. Ensemble predictions employ
‘‘weak’’ models in parallel to train and validate on the same
or subsets of training and validation data. The individual
predictions of these weak models are either banded together
within a confidence interval or consolidated into point
predictions using simple or weighted mean. Compared with
point predictions, ensemble predictions better account for
the model randomness and other inconsistencies. Therefore,
this study employed an ensemble of 10 weak regularized
multilayer perceptrons (MLPs), all of the same architecture
training and validating the same sets of data. A simple mean
of the results are regarded as the final predictions. Quantile
predictions, which are better capable of capturing nonlinear
dependencies between predictors and the target, are out of this
work’s current scope but will be explored in the future.

The ERM was designed to predict PV power Gen using
a range of features that were dictated by the feature
enhancement case as seen in Fig. 1. Depending on the case,
five or six dimensions of features were considered. The
ERM’s architecture was designed with a combination of
hyperparameters that yield the most accurate predictions.
These parameters are summarized in Table 4. Each model in
the ensemble comprises 1 input layer representing features
FS, 4 hidden layers with 20, 15, 10, and 5 units, and an
output layer with 1 unit, the power Gen. Each layer, l, has

a specific activation function, with weights initialized to
samples drawn from Xavier uniform distribution [58]: tanh
activation [59] for l2 and l4, sigmoid [60] for l3 and l5, and
softplus [61] for l6. Mean square error (MSE) is used as
the loss function, defined as L(Ŷ (l),Y (l)) = 1

n

∑n
i=1(Ŷ

(l)
i −

Y (l)
i )2, where l ∈ {l1, l2, l3, l4, l5, l6}, n is the number

of samples, Y is the vector of observed values, and Ŷ is
that of the predicted values. Adaptive stochastic gradient
with momentum (Adam) improves the traditional stochastic
gradient descent by calculating individual adaptive learning
rates from the first and second moment estimates of the
gradients for each parameter [62]. Hence, it was used to train
and validate the ensemble, and the resulting ensemble was
reused during the testing phase as shown in Algorithm 3.

Algorithm 3 ERM Model to Predict Gen Given a Feature
Vector Matrix FS
1: Inputs: X denoting FS; Y denoting Gen; P denoting the

model parameters
2: Split X into [XTr , XV , XTe], Y into [YTr , YV , YTe]
3: Set layers L := P. Li, i ∈ [1, 6],Z+
4: Set dropouts D := P. Dij, i ∈ [1, 5], j ∈ [2, 6], i 6=
j, (i, j)Z+

5: Set activations A := P. Aij, i, j defined as above
6: Set Ensembles, E := 10; loss function LF ←MSE(·)
7: Build model ERM←MLP(L, D, A)
8: Build forward propagation function FProp(MLP)
9: for e in 1 : E do

10: for each epoch in 1: 150 do
11: Ŷ eTr := ERM(XTr )
12: loss := LF(Ŷe, Y )
13: Back propagate ERM(·) to update weights
14: Ŷ eV := ERM(XV )
15: Save ERMe for future use
16: Ŷ eTe := ERM(XTe)

17: Compute error scores for training, validation, and
testing sets

18: Return ERMi, i ∈ [1, 6],Z+; error scores

Algorithm 4 Distance Scores to Quantify Model Drift
1: Input: X and Y , the two vectors of variables that are to

be compared
2: Define n, the total number of data points in X and Y
3: Define k ∈ [1, n]
4: Normalize X and Y to the range [0, 1]
5: Set matrix minkist := [0]1,6
6: for each case c in [AE, PolyGAM, PolyGAMAE] do
7: manhattan-dist[c] := [

∑n
k=1(|X

c
k − Y

c
k |)]

8: euclidean-dist[c] :=
√
[
∑n

k=1(|X
c
k − Y

c
k |)

2]

9: Return manhattan-dist and euclidean-dist

F. EVALUATING DATA SIMILARITY
RMSE, MSE, and MAE were used as defined in [28]. R2

scores, which determine the statistical closeness of the fitted
predictions Ŷ to the real observations Y , each of length n,
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TABLE 2. A summary of the high-level statistics on each predictor variable and the target variable from the raw input feature set FS.

were computed using Eq. (1), where SSE denotes the sum of
squared errors.

SSE =
n∑
i

(Yi − Ŷi)2, SST =
n∑
i

(Yi − Ȳ )2,

R2 = 1−
SSE
SST

(1)

A general representation of the Minkowski distance
between two vectors X and Y of length n each is given by
minkdist = (

∑n
i=1(|Xi − Yi|)p)1/p where p ≥ 1. In this

work, Manhattan and Euclidean distances (with p = 1 and
p = 2, respectively) are used. The usage of the two distance
measures is further summarized in Algorithm 4, wherein both
distance measures are calculated for each of the six cases
and averaged across all sets (training, validation, and testing).
These two distances were also normalized to ensure side-by-
side comparison across the cases. The larger the values of
these distances, the more dissimilar the data. By computing
these distances between observed and predicted values for
different sets, model drift is quantified.

Another metric, mutual information MIX ,Y , computes the
statistical dependence between two random variables X and
Y as a mutual information score as defined in information
theory. This metric was used to quantify concept drift of the
raw input data, where X is the training set and Y denotes the
testing set from a specific date.

IV. RESULTS
This section presents results from the execution of the
FEEL framework on a training set spanning 4 days from
September 1 through 4, a validation set spanning 3 days from
September 5 through 7, and testing on the rest of the month,
all from 2019.

A. DATA PREPARATION
The complete process of model building and execution was
conducted on a single 64-bit machine with 16 GB RAM
powered by an x64-based i7 processor. All scripts were
built on Python 3.9 with a PyCharm integrated development
environment editor. A pairwise linear correlation analysis
was conducted on the FS to determine any inter-feature
correlations that might negate the assumption of mutual
independence by the partial dependence computed by GAM
in Stage 4. The correlation matrix, computed using Eq. (2)

FIGURE 2. Pairwise Pearson correlation to explore linear relationships
among FS and with Gen.

from [63] is visualized in Fig. 2. As expected, there is a
strong positive correlation of 0.98 between I andGen because
both follow a diurnal trend. However, the relationships
between other feature vectors and Gen vary as expected. For
instance, there is a strong correlation of −0.86 between AT
and RH , implying that a rising trend in relative humidity
exists alongside a dropping trend in ambient temperature,
which is indicative of rain conditions. Similarly, RH is
negatively correlated with Gen. A correlation coefficient of
0.07 between AP and Gen indicates that these variables
are nearly independent of each other. Therefore, the ERM’s
predictive performance would not change significantly if
AP were to be removed from FS. Except AT and RH ,
no other pair of vectors within the feature space exhibit
strong linear correlations, which implies that FS can be fit
within the general assumption of GAM’s partial dependence
computations discussed in Section IV-D.

ρp =
n(

∑
XiYi)+

∑
Xi

∑
Yi√

n
∑
X2
i − (

∑
Xi)2

√
n

∑
Y 2
i − (

∑
Yi)2

(2)

Table 2 shows the standard statistics on each input vector
in X as well as the target vector Gen over the entire data set.
Two parameters in this exploratory analysis are of specific
interest. Gini’s mean difference (GMD) is computed using
Eq. (3) from [64], where GX denotes the mean difference
for the vector X with n observations. GMD measures the
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FIGURE 3. The trends in (a) RMSE, (b) MSE, (c) MAE, and (d) R-square values for the ERM across test days (September 8–30, 2019) categorized into cloudy
(red circle), fair/sunny (green triangle), and rainy (blue square) days. The trends denote a periodicity in performance irrespective of the feature
enhancement strategy.

inequality in a given vector of distribution. This metric is
considered superior to variance as a measure of inequalities
in a non-normal distribution [65], [66]. Gini index, GIX ,
calculated from GX by Eq. (3) better captures the inequality
within a vector X . Unlike GMD, Gini index has a range
of [0, 1], and a larger index implies greater inequality.
Table 2 shows that wide-ranging attributes such as I and
Gen have higher Gini indices. Furthermore, their indices are
comparable given the similarity between their distributions.
Predictors with a concise range such as AT and AP have
indices closer to 0, where an index of 0 implies no inequality.
The variety of spread in data observations can be construed
as a result of the inherent intermittency in the weather,
and thus power output. The second parameter of interest
is Spearman’s Rho, ρs, computed using Eq. (4) from [67].
Unlike pairwise correlations that use raw data, rhos uses
ranked vectors Xr and Yr corresponding to the raw vectors
X and Y given the repeating observations. ρs measures the
monotonic relationships between the variables and has a
range of [−1, 1] like ρp, which measures linear relationships
as shown in Eq. (4).

GX =
n∑
i=1

4×
i− (n− 1)
2n(n− 1)

× sort(Xi − mean(X ))

GIX =
GX
2µ

(3)

ρs =
n(

∑
XriYri)+

∑
Xri

∑
Yri√

n
∑
Xr2i − (

∑
Xri)2

√
n

∑
Yr2i − (

∑
Yri)2

(4)

B. AUTOENCODER AS THE BASELINE
Table 3 summarizes error measures for the optimal AEmodel
selected after running a grid search of its hyperparameters.
The same AE model architecture, with its hyperparameters,
was used for both feature engineering cases, AE and
PolyGAMAE. The only difference between these cases
is in the input data fed into the encoder part of the
model.

C. NONPARAMETRIC REGRESSION
Table 3 shows RMSE values of the optimal PolyFit
models of first order. Higher-order polynomials for each
vector in X with Gen yielded larger RMSE values as
illustrated by Fig. 3. Given the nonparametric regressors
capture hidden relationships between features and the target,
first order polynomials were fitted to yield correspond-
ing feature space FSP comprising five regressor features.
The same feature space FSP is used in cases PolyFit,
PolyGAM, and PolyGAMAE to ensure the results are
comparable.

D. GAM
Figure 4 shows how each vector in X , normalized to [0, 1],
affects Gen through the partial dependence plots. These plots
can be studied in conjunction with the linear correlation plot
in Fig. 2. The red dashed lines represent the confidence
interval of the partial dependencies, and Fig. 4a shows
that I has the strongest influence on Gen and with very
high confidence. This finding corresponds with the high
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FIGURE 4. The partial dependence trends between each predictor variable (a) I , (b) WS, (c) AT , (d) RH , and (e) AP and the target variable Gen.
Subfigure (f) shows all the curves side-by-side for easier comparison of relative trends.

TABLE 3. Error measures for optimal AE and PolyFit models.

positive correlation between I and Gen. Parameters such
as wind speed and air temperature are influenced indirectly
by irradiance. Higher wind speeds result in faster-moving

clouds, which can cause greater intermittencies in generation.
Higher irradiance might cause a rise in air temperature, but
PV module efficiency tends to lower at high temperature
ranges. This effect is shown in Fig. 4c as a plateauing of
the influence score. Air pressure has the widest confidence
interval among all dependencies given its very small range
of values as shown in Table 2. The general trend as shown
in Fig. 4e demonstrates a positive partial dependence between
each predictor and the target variable.

The slightly negative correlation between RH and Gen is
shown more clearly in Fig. 4f, where an optimal value of
RH is shown to have the greatest influence on Gen. In other
words, very low relative humidity corresponds with lower
power output, but the influence score increases proportionally
until an optimal point. Beyond this value, PV power continues
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TABLE 4. Parameters used in the FEEL framework modeling after grid
search.

to decrease as the relative humidity rises (which might be
linked with rainy weather).

E. ERM TO PREDICT PV POWER
As discussed in Section III-E, an ensemble approach to pre-
dictions yields better averaged results than point predictions
that could be influenced by the randomness in the initializers
used by the models, and by the inherent system settings.
Table 5 summarizes the execution times of the different
feature enhancement modes. Training and validation take
longer than generalization. However, when this information
is viewed in conjunction with the ensemble prediction results
in Table 6, it is clear that despite an increase in computation
steps, the net overhead in execution time is not high.

The anticipated trade-off between generalization and
retraining is overfitting and underfitting. Overfitting is caused
by a high degree of variance, wherein the model performs
well on training set but generalizes poorly on the validation
and testing sets. Underfitting is caused by high inherent
bias, where the model has not learned the full trends in
the feature space and hence, makes poor predictions on the
testing set. Figure 5 shows the variation of the loss function
during the training and validation of the ensemble models
for 150 epochs, averaged across the 10 of them for easier
visualization. The close agreement between the losses during
training and validation indicate a low degree of overfitting.
Furthermore, across all six cases, the validation loss per epoch
is slightly lower than the corresponding training loss, which
is indicative of a good model fit. The loss curves also tend to
stabilize over the epochs without any continuing significant

TABLE 5. Execution time of the different feature enhancement modes
subject to the system characteristics defined in section IV-A.

decline, indicating that the model has sufficiently learned the
inherent trends and thus, the risk of underfitting is low.

Table 6 summarizes errors for the six feature enhancement
cases. The model is trained on days 1 through 4 and validated
on days 5 through 7 of September 2019. The results are shown
for specific types of data observed within the entire data set.
First, errors for the training and validation sets are presented.
The case that yields the best results is shown in bold-faced
text for each data set. A consistent pattern emerges where AE,
this study’s baseline, performs poorly compared to the other
cases. PolyFit and GAM individually perform decently, with
the variance among their errors fairly low despite the trends
in data such as varying weather. As stated in Section I,HA is
that PolyGAM shows a significant improvement in the gen-
eralization of ERM compared to the baseline AE. From these
results, the consistency in PolyGAM’s performance even
in unfavorable weather conditions validates the hypothesis.
In addition, PolyGAM also improves the performance of AE
when combined, as seen in the demonstrable improvement
from AE to PolyGAMAE.

The bar chart in Fig. 6 is similar to Fig. 5, but in Fig. 6,
the bar charts show the variations in the average RMSE,
MSE, and MAE scores computed between the actual and
predicted PV power values during the training (the errors

111908 VOLUME 9, 2021



A. Sundararajan, B. Ollis: Regression and Generalized Additive Model to Enhance Performance

FIGURE 5. Flowchart summarizing the proposed approach for feature enhanced prediction.

FIGURE 6. Variations in RMSE, MSE, and MAE for the training and validation sets when the ensemble learners use each of the six feature
enhancement cases.

are labeled with a prefix ‘‘T’’) and validation phases (the
errors are labeled with a prefix ‘‘V’’). If the model is not
overfitting or underfitting, the errors across training and
validation sets should be comparable. This is true for all six
feature enhancement cases, but comparing their magnitudes
across the cases deduced that PolyGAM (in contention with
GAM) has the lowest errors among them all.

Another way to ensure the model has fit best to the data and
has the potential to generalize well is to plot the R2 scores of
training and validation against each other. Ideally, a best-fit
model should have its scores align perfectly with the diagonal
reference line. If the model fits better with validation set,
the plotted values tend to be above the line. Figure 7 shows
that except AE, the ensemble learners that use other feature
enhancement cases either have similar scores (PolyGAM and
GAM) or do better with the validation set (None, PolyFit, and
PolyGAMAE). Although this is not indicative of the model’s
generalization performance, the figure suggests low overfit
and underfit.

The Manhattan and Euclidean distances measured on
normalized data are shown in Table 7 for AE (baseline),

FIGURE 7. Plot of the R-squares between the training and validation sets.

PolyGAM (proposed approach), and PolyGAMAE (a hybrid
of the two) cases. The model performances across each
case seen earlier are reflected here too, with distance values
being the least for PolyGAM on each data set. Furthermore,
the distance values keep rising for the other two cases and
have a range of 18 units for AE and 9 units for PolyGAMAE
across different test day types. However, the distance values
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FIGURE 8. Trends of (a) RMSE, (b) MSE, (c) MAE, and (d) R-square values for the ERM across test days
(September 8–30, 2019) categorized into cloudy (red circle), fair/sunny (green triangle), and rainy (blue square)
days. The trends denote a periodicity in performance irrespective of the feature enhancement strategy.

remain relatively consistent for PolyGAM with a range of 6
units across the test day types. This would not be the case if
model drift occurred over time, in which the distances would
show a significant, continuously rising trend.

V. DISCUSSION OF RESULTS
The consistency of PolyGAM as seen in the previous section
suggests that the ERM, once trained using features enhanced
by PolyGAM, can sustain a good order of predictions better
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TABLE 6. A summary of errors for different data: training set, validation
set, and three different testing sets (one for each weather: fair, cloudy,
and rainy).

TABLE 7. Manhattan (M) and euclidean (E) distances to quantify model
drift through data similarity evaluation.

than when it does not use PolyGAM-enhanced features. This
finding is further reinforced in Fig. 8 where the test error
scores and R2 values are shown across the test dates for
each case. The type of weather prevalent in each day is
also reflected, with solid green triangles for fair, solid red
circles for cloudy, and solid blue squares for rainy conditions.
The results presented in the figures and tables of Section IV

FIGURE 9. The variation in averaged mutual information scores between
actual and predicted PV power across all test dates.

are in agreement with Fig. 8. Looking at the variations in
error valuemagnitudes, PolyGAM shows the least deviations,
followed by PolyFit, GAM, None, PolyGAMAE, and finally
AE. The error values are consistently higher for cloudy and
rainy days compared with fair days. Likewise, the R2 values
dip when the weather is unfavorable. This demonstrates that
although the ERM is resilient in handling patterns ahead in
time, there is room for improvement. Further investigation
will be conducted in the future.

Therefore, ERM can be leveraged to make retraining
less frequent than if PolyGAM were not used. However,
the resulting feature space FSPG and the ERM must retain
their generalization as the gap between the testing date
and training-validation dates increases. The generalization
of a model is measured in how effectively it adapts to
previously unseen data. Because of the reasons outlined
in Section I when introducing the concept of model
drift, retraining becomes an essential part of the predictor
life cycle.

Two metrics are leveraged to quantify drift, which is the
sole criterion within the scope of this paper. Figure 9 depicts
the mutual information score between actual and predicted
PV power for each of the test dates, averaged across all
observations for the day. A high score indicates a greater
agreement between the observations. The score is highest
for September 8, the date that follows the training-validation
set dates. The score is the lowest for September 14, 20,
and 27. The first two dates correspond to cloudy days and
the third to a rainy day. The score is relatively low except
for September 9, 13, 16–18, 22, and 30. All of these dates,
except for September 13, experienced fair weather. Thus,
the intricate relationship between mutual information scores
and the day’s weather is reflected in the FEEL framework
performance. However, overall, the score remains consistent
and does not taper close to 0, which would indicate a
disagreement between observations.

Some of the most recent works in the literature that
proposed and validated techniques similar in scope and con-
tribution to this paper are used for one-on-one comparison of
performance, the results of which are summarized in Table 8.
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TABLE 8. Comparison of the performance of different methods proposed in the literature against the proposed FEEL framework.

The FEEL framework exhibits comparable performance to
each of these techniques. The error measures, redesigned in
accordance with the metrics used by each of these works,
show that the FEEL framework has lower RMSE scores
than that of the reference frameworks in six of the seven
evaluations. This is shown by the bold-faced text in the RMSE
column. Differences in hardware specifications, validation
system and parameter initializations, PV plant(s) considered,
time of the year, and inherent model randomness must be
acknowledged as factors that might reduce the interpretability
of these results, but despite those factors, the performance
of the FEEL framework reinforces HB, that the model can
improve but also sustain the generalization of the PV power
predictors.

VI. CONCLUSION AND FUTURE WORK
This paper formulated and implemented a FEEL framework
that uses a combination of PolyFit and GAM to capture linear
and nonlinear partial dependencies between the feature set
FS = [I , WS, AT , RH , AP] and the target variable Gen.
The work also defined five other feature enhancement cases:
no enhancement (None), AE (the baseline), only PolyFit,
only GAM, and PolyGAMAE. The 6 cases were individually
applied to a 10-model ensemble of regularized MLP models
whose predictions of Gen were aggregated to yield the final
predictions. By training and validating the FEEL framework

on a training set (September 1–4, 2019) and a validation set
(September 5–7, 2019) for each case, the models were tested
for the rest of the month that include days with fair, cloudy,
and rainy weather conditions. Results show that PolyGAM-
enhanced features FSPG consistently perform better on test
days of all three weather types. Additionally, when PolyGAM
was integrated with the baseline AE model, the collective
performance dramatically improved across all test days.
Thus, HA cannot be rejected. By virtue of minimal concept
drift between the testing set and the training-validation set
demonstrated by the Minkowski distance values, and the
reduced risk of overfitting and underfitting as illustrated in
Section IV,HB cannot be rejected.
The FEEL framework, deployed and field-validated on

an Edge-compute node, will be significant for PV power
prediction in high-penetration scenarios of both distribution
and transmission grids. Towards achieving this goal, the work
can be expanded in the future by the following means:

1) Instead of selecting hyperparameters through grid
search, optimization techniques can be devised to make
the selection more robust and dynamic.

2) Although the model formulation stages in Section III
can be replicated, the most effective feature enhance-
ment strategy might vary depending on the location
and mission profile of the PV plant. Future work could
apply the proposed strategy on data from PV plants
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across different geographical locations over multiple
seasons to determine latent patterns.

3) The proposed strategy can be extended by taking
forecasts (from physics-based techniques).

4) The framework’s explainability can be improved by
augmenting probabilistic and quantile regression-based
predictors alongside the ERMs.

5) Considering the emerging paradigm that will shift
computational intelligence partially to the grid-edge,
the FEEL framework can be migrated from a
batch train-and-validate environment to a time-series
sequence environment in which online learning can be
integrated tomake the frameworkmore lightweight and
robust.
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