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ABSTRACT In the past few years, there has been a growth in Unmanned Aircraft Systems (UAS) numbers in
segregated airspace. However, although there is an interest in integrating large UAS in the National Airspace
System (NAS), safety challenges regarding this insertion arise from the inclusion of new ways of reaching
unsafe states. Although UASmay be used in different situations and brings several advantages to the airspace
(e.g., efficiency), it may bring uncertainties due to the lack of familiarity of Air Traffic Controllers (ATCos)
in these operations. Furthermore, the Terminal Maneuvering Area (TMA) is a critical control area generally
established at the confluence of Air Traffic Service (ATS) routes in which the aircraft tend to be closer to each
other. Besides, defining a final arrival segment for a set of aircraft in a complex environment is challenging.
Thereupon, the main objective of this research is to propose a parallel swarm-based method for optimizing
final aircraft arrival segment design (i.e., routes that connect the final sector to the Initial Approach Fix - IAF)
considering the presence of aircraft of multiple TechnologyMaturity Levels (TML) - including theUAS. This
is conducted from two perspectives: ATCo workload (which is related to safety) and sequencing duration
(which is related to efficiency). Furthermore, different phases of UAS integration are considered using the
Technology Maturity Levels (TMLs). Finally, the solutions consider airspace restrictions (e.g., minimum
separation between aircraft and bad weather conditions). The experiments conducted show that this approach
can build safe and efficient solutions, even in situations with many aircraft.

INDEX TERMS Evolutionary computing, particle swarm optimization, unmanned aircraft systems (UAS),
air traffic controller (ATCo), ATCo workload, airspace efficiency.

I. INTRODUCTION
Air transportation is essential for society, and it is increasing
steadily due to its importance [31]. The growth in flights
number leads to higher revenue despite making the airspace
more complex. In fact, there are many challenges to be
faced by authorities in the following years regarding safety
and efficiency of airspace. In this context, Air Traffic Con-
trol (ATC) plays a vital role in optimizing airspace, especially
considering that safety and efficiency are critical aspects of
airspace operation [15]. The ATC is divided into ATC units,
which represent ‘‘area control center, approach control unit or
aerodrome control tower’’ [19]. These units are organized to
accommodate all airspace users creating sectors. The role of
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controlling aircraft in each control sector is currently played
by Air Traffic Controllers (ATCo). The ATCo responsible for
a given sector must communicate with ATCos responsible
for other sectors to provide smooth conduction of aircraft
throughout their flights.

The ATCo aims to offer appropriate safety and effi-
ciency levels and solve issues present in complex situa-
tions. Moreover, ATC provides Air Traffic Services (ATS)
to flights through ATCo instructions. These services’ main
goals include avoiding mid-air collisions, collisions with
obstructions and optimizing and maintaining an orderly flow
of the air traffic [20]. The ATCo conducts the aircraft in
the sector or in the set of sectors he/she is responsible for,
applying techniques to improve safety and efficiency, such
as aircraft vectoring. Indeed, many of these professionals act
collaboratively on each flight. As these flights evolve through
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their plans and reach the sectors’ limits, new ATCos are
assigned for controlling them. However, a challenge currently
faced is to maintain the workload1 level below an acceptable
threshold.

Moreover, UAS plays an important role due to the advan-
tages they bring to the airspace (e.g., efficiency) [13]. These
systems have been considered a relevant topic in the engineer-
ing community [11] and are composed of subsystems. For
example, Unmanned Aerial Vehicle (UAV), payloads, control
station, and communications sub-systems [4], [11]. As there
are different types of UAS (e.g., Autonomous Aircraft - AA -
and Remotely Piloted Aircraft Systems - RPAS), there are
subsystems that compose some types but not others. For
example, the ground station at which the pilot communicates
with RPAS is not part of AA, which is a fully autonomous
aircraft.

The Terminal Maneuvering Area (TMA), which composes
the controlled airspace, is a critical control area generally
established at the confluence of Air Traffic Service (ATS)
routes in the vicinity of one or more major aerodromes [17] in
which the aircraft tend to be closer to each other. In general,
TMA is the most resource-constrained component of the air
transportation system due to the number of aircraft that can
operate simultaneously and the number of airports [23]. Its
complexity increases according to the airspace configuration
(e.g., traffic density and weather conditions). Thus, opera-
tions in this particular area are performed carefully, and stan-
dard procedures are established to achieve desirable safety
and efficiency levels. For example, the Standard Instrument
Departure (SID) and the Standard Terminal Arrival Route
(STAR).

However, there are situations inwhich such standard proce-
dures cannot be followed (e.g., in case of high traffic density).
In these cases, a highly challenging task due to complex
maneuvers constraints performed by theATCo is the sequenc-
ing of the aircraft during the approach, considering the arrival
segment and the final approach [1], [18]. To accomplish this,
the ATCo must conduct the aircraft in a manner to avoid
conflict, i.e., to avoid disrespect to the minimum separation
of aircraft, and to avoid flights through adverse weather con-
ditions (e.g., flight through cumulonimbus - CB -, which are
cloud formations that present a real impact on aviation [12]).
Finally, defining a final arrival segment leads a set of aircraft
from the final sector of the TMA to the final phase of their
landing procedures (i.e., the final approach), considering the
operation efficiency and safety.

Thereupon, the main goal of this research is to propose
a parallel swarm-based method for optimizing final arrival
segment design considering the presence of aircraft of mul-
tiple Technology Maturity Levels (TML) - including the
UAS. This optimization is conducted from two perspec-
tives: (1) ATCo workload (which is related to safety), and

1Workload can be defined as a metric that represents the difficulty of
ATCo in understanding a particular situation [32] and can be expressed in
terms of seconds.

(2) aircraft delivery duration (which is related to efficiency).
Besides, different UAS integration phases are considered,
i.e., from the early stages to a mature stage of its operation.
Finally, the solutions consider airspace restrictions such as the
minimum separation between aircraft and adverse weather
conditions, i.e., the presence of cumulonimbus (CB). Hence,
the main contributions of this research are (i) the adoption
of a novel approach to measuring the integration of UAS
in the National Airspace System (NAS), (ii) an optimization
method based on the Particle Swarm Optimization (PSO) for
designing landing trajectories considering the UAS presence,
and (iii) interfaces for applying the optimization model in
external applications.

This paper is organized as follows: Section II presents
the related works. Sections III shows the concepts related
to arrival sequencing and scheduling. After that, Section IV
presents the aspects of the Technology Maturity Lev-
els (TML) and the integration of the Unmanned Aircraft
System (UAS). Then, Sections V and VI highlight the Par-
ticle Swarm Optimization (PSO) and Final Arrival Segment
Optimization Model (FASOM), respectively. Thereupon,
Sections VII and VIII show, respectively, the case studies and
the discussions on the results achieved. Finally, Section IX
presents the conclusions of this research.

II. RELATED WORKS
The authors in [14] present a cooperative multi-aircraft Con-
flict Resolution (CR) method based on co-evolution. The
paths are composed of sub-populations considered in a Parti-
cle Swarm Optimization (PSO) implementation. The fitness
is evaluated by the cooperation among individuals from dif-
ferent sub-populations. This approach brings advantages as
fewer parameters and computation and faster convergence.
Note that each particle is seen as a point of D-dimension
space. Further, an encoding method with an adaptive search-
ing mechanism is introduced to improve the searching effi-
ciency. Compared with Genetic Algorithms (GA) currently
used for conflict resolution and path optimization, the results
from such approach higher system efficiency, which is a
manner to measure how similar a given path is to the smallest
possible path. Considering 2, 4, and 6 aircraft, the proposed
approach outperformed the GA approach.

Samà et al. [41] deals with the TMA aircraft scheduling
problem, which requires conflict-free schedules for all air-
craft while the overall aircraft delays are minimized. Fur-
thermore, this research also deals with the aircraft landing
trajectory optimization problem, which requires a landing
trajectory that minimizes the travel time or the fuel con-
sumption for each aircraft. In this context, a framework for
the lexicographic optimization of both problems is proposed.
It solves the two problems sequentially based on defined lexi-
cographic order of importance for the performance indicators,
i.e., themost important performance indicator defines the first
problem to be optimized. Note that the second problem is
solved considering some outputs of the solution of the first
problem. The experiments, performed with simulated Milano
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Malpensa airport instances and considering different opti-
mization lexicographic orders and performance indicators,
show performance gaps between the optimized indicators of
the two problems. This highlights the multi-objective nature
of the problem when different lexicographic optimization
approaches are considered.

Ahmed et al. [1] present an evolutionary method for opti-
mizing the aircraft path planning algorithm in Terminal
Maneuvering Area (TMA). This method, which provides
near-optimal aircraft arrival sequences, aims to deliver the
aircraft to the Final Approach Fix (FAF). The paths are built
to guide the aircraft from the Initial Approach Fix (IAF) to the
FAF considering intermediate waypoints called Intermediate
Fix (IF). Furthermore, conflict-free path planning to an Air
Traffic Controller (ATC) is also obtained. One should note
that conflict between any two aircraft is detected based on
their future arrival time at the waypoint. The results show
that the proposed approach provides a near-optimal solution
compared to the traditional GA-based algorithm, which does
not consider airspace constraints (e.g., speed).

In [40], the authors proposed mixed-integer linear pro-
gramming formulations to optimize, in real-time, the take-off
and landing operations at a busy Terminal Maneuvering
Area (TMA) in case of traffic congestion by investigating
the trade-off aspects between performance indicators of prac-
tical interest. This method also considers safety constraints
with high precision. As TMAs are becoming problematic
(e.g., in the major European airports) since there is a limited
possibility of building new infrastructures, alternative solu-
tions (e.g., optimization models) are desired. The real-time
problem of effectively managing aircraft operations is chal-
lenging, especially due to the inclusion of safety regulations
into the optimization model and several performance indi-
cators. This inclusion leads to the achievement of feasible
and reasonable solutions in terms of safety and efficiency,
even considering that there is no well-recognized objective
function and traffic controllers often use simple scheduling
rules. The experiments performed considering simulated sce-
narios in the twomajor Italian airports,MilanoMalpensa, and
Roma Fiumicino. In this context, a set of random landing and
take-off aircraft disturbances is built. In the optimization pro-
cess, practical-size instances are solved to (near) optimality
by employing a commercial solver. Finally, a computational
analysis enables selecting solutions that present consid-
erable quality in balancing the various Key Performance
Indicators (KPIs).

Alonso-Ayuso et al. [3] presents an approach that employs
amixed-integer linear approximation to aMixed Integer Non-
linear Optimization (MINO) model for the conflict resolution
problem in air traffic management, i.e., for providing aircraft
configurations in order to avoid conflicts, which is the loss
of the minimum separation between two given aircraft. The
problem is solved by considering an initial position of a
set of aircraft and applying changes to their position, veloc-
ity, and heading angles. Thus, a multi-criteria scheme and
a Sequential Mixed Integer Linear Optimization (SMILO)

approach are also presented. This is due to the achievement
of solutions in a short computing time. Furthermore, a com-
parison between the results from using the state-of-the-art
MINO solvers and SMILO performance in a broad testbed
is also considered, which showed that both presented similar
solutions, but the proposed approach requires a minimal com-
puting time. Finally, the authors highlight that for large-size
instances (e.g., above five aircraft), the computing time is
higher than the one required by real-life operational applica-
tions. Othermeta-heuristics canminimize the computing time
without deteriorating the SMILO solution as a future research
line. However, this research does not consider the operation
of UAS into the non-segregated airspace.

Marinakis et al. [30] deal with the Constrained Shortest
Path problem, which is a well-known NP-hard problem,
by proposing a new hybridized version of Particle Swarm
Optimization (PSO) algorithm, which is a population-based
swarm intelligence method, with Variable Neighborhood
Search (VNS), which is an algorithm applied in order to
optimize the particles’ position. Although a different equation
for the velocities update of particles is considered in the
proposed algorithm, and a new neighborhood topology is
employed, an issue of applying the VNS is the identification
of the suitable local searchmethod for a given problem. In this
sense, many continuous local search algorithms are used and
tested in many modified instances, and further comparisons
with classic versions of PSO. Finally, the experiments showed
that the proposed algorithm very satisfactory efficiency and
results. As future directions, the authors highlight the appli-
cation of this methodology to more difficult problems.

Although there are also initiatives dealing with complex
control problems in different fields (e.g., [16], [24], and [47]),
our primary goal is to propose a parallel swarm-based
method for optimizing final arrival segment design consider-
ing the presence of aircraft of multiple Technology Maturity
Levels (TML).

III. ARRIVAL SEQUENCING AND SCHEDULING
The sector in which the aircraft intercept the Initial Approach
Fix2 (IAF) is called the Final Sector (FS). All aircraft are
slower in this sector than in other sectors of the airspace
(about 180kts3). In fact, the height is reduced (around
6000ft4). In common operations, all aircraft are expected to
enter this sector with a considerable space between them,
enabling the ATC to conduct them more simply to the IAF.
Indeed, IAF is the fix the aircraft must reach to start the final
approach procedure.

However, in complex situations, this sector may receive
many aircraft at the same time and with nearly-minimum
separations. Also, the Final Sector (FS) may present chal-
lenges in weather conditions with cumulonimbus (CBs).

2Fix can be defined as a type of a point on the surface of the earth located
at a specific geographical location (i.e., at a specific position) that simplifies
the conduction of aircraft as well as the separation maintenance [19].

31kt = 1.852 kilometers/hour .
41ft = 0.3048m.
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These factors tend to turn the sequencing and scheduling
of these aircraft into a very challenging activity due to its
complexity and the need for quick solutions.

Regarding airspace operation, severe weather is an impor-
tant factor that results in flight delays [12], [25]. For example,
estimating the capacity of a set of sectors in a given airspace
region during weather events is an important part of air traffic
management [33]. In this context, the definition of trajectories
that avoid these adverse situations is desired. An important
player in bad weather conditions is the cumulonimbus (CB).

CB [9] is an exceptionally dense and vertically developed
cloud type that occurs as isolated clouds or as a line or wall
of clouds in the shape of mountains or towers. Furthermore,
CB is composed of water droplets and ice crystals and con-
tains nearly the entire spectrum of flying hazards, including
extreme turbulence, and are considered the ultimate manifes-
tation of instability in terms of airworthiness and should be
avoided at all times [9], [26].

The size of these cloud formations may vary widely. How-
ever, the CB is faced as a circle in a 2D environment with a
radius of 2 Nautical Miles (nm). This size is adopted once
it is a reasonable size for a CB, according to specialists
consulted. Moreover, this value is intended to be changed
during the fine-tuning process of future works. Furthermore,
in this research, we consider the clouds to be fixed in a
specific position since, during the initial phase of the aircraft
approach, there are small variations in their positions.

Thereupon, the components of the problem faced in this
research are illustrated in Figure 1. The black point represents
the aircraft from a macro perspective. The blue circle repre-
sents the minimum separation of the aircraft - if any other
aircraft does not respect this separation, the provided solution
is unfeasible. The red circle illustrates the cumulonimbus -
i.e., a restricted region due to its severe weather con-
dition. The green square represents additional Vectoring
Points (VPs) that can be assigned to the aircraft. Finally,
the red square illustrates the Initial Approach Fix (IAF),
i.e., the aircraft’s final objective point.

IV. TECHNOLOGY MATURITY LEVEL (TML) AND
UNMANNED AIRCRAFT SYSTEM (UAS)
The Technology Readiness Level (TRL) is a ‘‘systematic
metric/measurement system that supports assessments of the
maturity of a particular technology and the consistent com-
parison of maturity between different types of technology.’’
It has been used in NASA space technology planning and
NASA Management Instruction [28]. This scale measures
how far a given technology is from its operation in the
airspace and is appropriate for supporting the integration of
new technologies smoothly by identifying at which develop-
ment level a particular technology is. From this standpoint,
new and disruptive technologies tend to present an additional
cognitive workload for ATCo due to the lack of familiarity.
The increase in the time spent on cognitive activities may
lead to an increase in the planning process. Furthermore,
the additional cognitive workload may also affect the time

FIGURE 1. Components of the problem faced in this research.

spent in surveillance. For example, UAS is a disruptive tech-
nology that lacks operation in the National Airspace System
(NAS), which leads to a lack of liability, social acceptance,
and operational experience.

The Technology Maturity Level (TML) is a systematic
metric/measurement system that supports assessments of the
familiarity of a particular aircraft with ATCos and the consis-
tent comparison of familiarity with the ATCo between differ-
ent types of aircraft proposed by the authors [5], [37]. This
scale is based on three main factors that represent barriers
for autonomous vehicles in general to operate [2], [5], [10]:
(i) Liability; (ii) social acceptance; and (iii) operational expe-
rience. The levels vary from 0 up to 10 and represent famil-
iarity, which may increase throughout the years of aircraft
operation (i.e., considering the increase of liability, social
acceptance, and operational experience). Thus, the aircraft
may be referred to as its TML to simplify the workload eval-
uation. TML is related to the uncertainty of operations and
the fragility is a product of complexity by uncertainty [29].
In this context, TML is related to the uncertainty in operation,
whereas fragility is related to impacts on the ATCo workload
and, ultimately, on safety levels.

For example, a particular case of the TML concept appli-
cation relies on the insertion of the Unmanned Aircraft Sys-
tem (UAS) in the National Airspace System (NAS). The
UAS represents a vital business direction considering its
potential and applications [11]. This is a system composed
of sub-systems (e.g., Unmanned Aircraft Vehicle (UAV),
payload, control station, and communications sub-systems
[4], [11]) and has been employed in different scenarios. Many
advantages can also be achieved from the UAS operation
(e.g., reducing the operation risks) [13], and some mission
requires its insertion in the National Airspace System (NAS).
However, this integration may present issues such as impacts
on safety levels. Thereupon, the ATCo workload is defined
and measured by the interaction of several factors [35], [37]
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and represents the difficulty of ATCos in dealing with a par-
ticular situation [32]. Indeed, elevating the ATCo workload
might lead the airspace to unsafe states [7], [27], [48].

V. PARTICLE SWARM OPTIMIZATION (PSO)
Particle Swarm Optimization (PSO) is a method for
optimization of continuous nonlinear functions related to arti-
ficial life (A-life), bird flocking, fish schooling, and swarm-
ing theory [22]. This research adopts the PSO due to its
high-performance and flexibility. This method has become
a candidate for many optimization problems with successful
applications [6], [42], [45]. The movement of each particle
during the PSO execution considers their current velocity,
the current best solution found by the particle (cognitive influ-
ence, i.e., the influence of the experience of the particle itself),
and the current best solution found by the swarm (swarm
influence, i.e., the influence of the experience of the whole
set of particles) [6]. In this context, two attributes drive the
PSO operation: pbest (particle best), which is an attribute of
each particle and represents the current best solution achieved
by that particle, and gbest (global best), which is an attribute
of the PSO and represents the current best global solution,
i.e., the best solution achieved by all particles. Thus, the con-
cept of fitness, employed in all evolutionary computation
paradigms, is adopted [22].

The process of updating the velocities and the positions
of each particle are respectively presented in Equations 4
and 5 [43]. To update the velocity for a given decision variable
of a given particle pi, three aspects are considered: inertia
(Equation 1), cognition (Equation 2) and the social aspect
(Equation 3). In this sense, parameter i identifies which
particle is being considered, whereas the d represents the
dimension of the particle considered.5 Note that rand() rep-
resents a function that generates a random number between
0 and 1 from an uniform distribution.

λid = w× vid︸ ︷︷ ︸
Inertia

(1)

αid = c1 × rand()× (pbestid − xid )︸ ︷︷ ︸
Cognitive

(2)

θid = c2 × rand()× (gbestd − xid )︸ ︷︷ ︸
Social

(3)

vid = λid + αid + θid (4)

xid = xid + vid (5)

The solutions exploration process is illustrated in Figure 2.
These approach uses special features alongside the tradi-
tional PSO version. The first state considers all aircraft flying
directly to the IAF - i.e., a solution without searching. In this
context, a generation is a set of states composed of the same
number of decision variables in total. The first state composes

5As the position of the particles is composed of a vector different values,
d represents which value is being considered in the updating process. For
example, if a particle in set in a three dimensional space, the vector that
describes the position of a given particle is composed of three element and,
consequently, d varies from 1 to 3.

the generation 1, which does not present decision variables.
If this is a feasible solution in terms of airspace constraints
(minimum separation and CBs), the PPSO execution is fin-
ished with an optimal solution.

FIGURE 2. State generations and their decision variables.

In a situation where the position of the CB forces the
aircraft to consider an alternative trajectory, additional VPs
are required. The new generation (generation 2) is composed
of three elements. All the states of generation 2 present two
decision variables to be considered in the PPSO operation.
Along with the parallel processing of critical steps within
the PPSO execution, the evaluation of each state is also
performed in separate threads. Hence, the algorithm creates
new state generations considering the limit of the VPs and the
search execution within each state must respect a time limit,
i.e., if the deadline for a given state is reached, the search
process stops and starts again considering a different state.

Furthermore, the position of the particle is updated (Equa-
tion 5). The current position xi of particle pi is added to
the new velocity vi,6 considering all the components of this
vector, i.e., this sum is conducted considering all decision
variables d . The execution of PSO is based on the follow-
ing steps: Firstly, the required parameters are set. Secondly,
the initial positions and velocities of each particle are ran-
domly generated, and the iteration count (g) is set to 0. Then,
if the current solution is non-dominated7 considering the
objective function, this is added to the Pareto-optimal solu-
tions set. This step is optional andmay vary widely depending
on the objective function. For example, one may consider
all feasible solutions to be added to analyze the proposed
solutions further. Finally, if the integration count (g) equals
the iteration limit, the set of solutions found is returned.

Moreover, the Parallel Particle Swarm Optimization
(PPSO), or Synchronous PPSO, is a method based on the

6Note that, in PSO, the velocity represents how a particle changes its
position in a given iteration and is an abstraction of the physical velocity,
i.e., as this is a dimensionless value, it can be summed to the current position.

7A given solution xi is non-dominated if there is not a solution xk that (1)
is better than xi all objectives or (2) solution xi is not strictly better than xk
in at least one objective [36].
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traditional PSO but considers parallel processing for reducing
the execution time [46]. This manner of implementing the
PSO is adopted herein once there is a need for short response
times in the problem faced. As it may take some time to
process all particle characteristics, especially if the number
of particles is large, parallel processing enables the search to
be performed quickly. In this sense, the achievement of the
benefits provided by parallel execution depends on the com-
puter’s processing power, i.e., a computer that cannot process
multiple threads may not present significant improvements in
performance if executing a parallel application. To implement
parallel algorithms in Java language, one should consider
using the Java Threading Application Programming Interface
(API) [38]. This API enables the user to build and process
different threads (using Thread class) in a parallel fashion.

The PPSO execution process is very similar to the tradi-
tional PSO implementation. However, two steps are executed
in parallel: (i) the quality (or fitness) evaluation (‘‘Objec-
tive value evaluation’’) and (ii) the positions and velocities
update (‘‘Get the new positions and velocities of particles’’).
These two stages are bottlenecks of the PSO execution and
the employment of multiple threads for conducting inde-
pendent computations in parallel may reduce the algorithm
response time considerably. Finally, other architectures can
be explored in future works, such as parallel processing
islands.

VI. FINAL ARRIVAL SEGMENT OPTIMIZATION MODEL
(FASOM)
In this Section, we introduce the Final Arrival Segment
Optimization Method (FASOM) for optimizing aircraft
sequencing in the final sector, considering the UAS pres-
ence and different Technology Maturity Levels (TMLs).
Firstly, considerations on the Final Arrival Segment Opti-
mization (FASO) are presented. Secondly, the architecture of
the FASOM is shown. Finally, a discussion on topics related
to the solution selection module is presented.

A. CONSIDERATIONS
In this section, we present the considerations that must
be highlighted regarding the optimization process. Firstly,
we present the problems that may occur in the airspace and,
consequently, should be avoided in the solutions provided in
the optimization process. Finally, the definitions of feasible
and infeasible solutions are provided.

1) THE PROCESS OF OPTIMIZING AIRCRAFT SEQUENCING
The main goal of the optimization process is to provide safe
and efficient solutions for given situations in the airspace.
Figure 3 shows the characteristics of the problem faced.
Firstly, the aircraft may enter the sector from different points.
After that, all aircraft have objective positions to reach (IAF)
at a time interval (deadline). In some cases, the final sector
may have more than one IAF and aircraft coming from dif-
ferent directions may be assigned to different IAFs.

FIGURE 3. Sequencing in the final sector.

Figure 4 depicts the difference between two given scenar-
ios that might be faced in the airspace. The first is composed
of four aircraft that share the same IAF. The second case
presents a more complex environment. The number of air-
craft is increased to seven and a there is a CB nearby the
IAF. These scenarios become complex due to the number of
aircraft and the factors that harden the their delivery to the
highlighted IAF.

Considering that the minimum separation must be
respected and that the aircraft are not allowed to fly through
CBs, there aremany possiblemanners to solve the sequencing
problem. Possible solutions for both scenarios can present
different levels of ATCo workload depending on the Tech-
nology Maturity Level (TML) of each aircraft.

In fact, the priority of each aircraft presents a considerable
impact on sequencing solutions. From the ATCo workload
standpoint, the TML of each aircraft indicates which of
them must be prioritized. For example, if an aircraft presents
a lower TML (e.g., UAS currently operating in the NAS)
and the situation presents other aircraft with higher TML
(e.g., Manned Aircraft operating nowadays), the best solu-
tions in terms of workload is assigning a direct final arrival
segment to the aircraft with lower TML and establishing
vectoring points for the others, which present a higher TML.
Establishing additional VPs for aircraft with higher TMLs
tends to present a lower ATCo workload than establishing
additional VPs for aircraft with lower TMLs. Indeed, this
observation is taken from the workload perspective, i.e., the
balance between sequencing duration and workload level
may change the most appropriate solution depending on the
priority assigned to the workload and the efficiency (respect-
ing the safety constraints, such as minimum separation).

2) SOLUTION DEFINITION
In order to build feasible solutions, respecting the airspace
constraints is essential. Despite the challenges these restric-
tions bring to the final arrival segment design, vectoring
points must be assigned to the aircraft to define the paths,
i.e., the final arrival segments are defined in terms of vector-
ing points.

VOLUME 9, 2021 112377



E. C. Pinto Neto et al.: Swarm-Based Optimization of Final Arrival Segments Considering UAS Integration in NAS

FIGURE 4. Comparison between two scenarios of different complexities.

Moreover, the representation of solutions in these envi-
ronments can be expressed as in Equations 6, 7 and 8. The
sequencing solution, i.e., the set of final arrival segments,
is presented in Equation 6. A final arrival segment for a
given aircraft can be defined as a collection of Vectoring
Points (VPs) that guides the aircraft from the final sector’s
entry to the IAF.

S = [segment1, segment2, . . . , segmentm], (6)

The segments are defined in terms of the number of aircraft
in the situation, i.e., m represents the index of the last aircraft
and, consequently, the number of aircraft. The segments are
presented in Equation 7. The segment of a given aircraft k ,
which varies from 1 up to the total number of aircraft m,
is composed of a list of vectoring points given that 1 ≤
k ≤ m, nk > 0, vpknk = IAFk . Each vectoring point is
expressed as a tuple (x,y) into the Cartesian plane and the last
vectoring point assigned to each aircraft (vpknk ) represents the
IAF assigned to it.

Segmentk = [vpk1, vp
k
2, . . . , vp

k
nk ] (7)

Finally, Equation 8 represents the state of a given solution,
i.e., the number of vectoring points assigned to each aircraft.
Note that each aircraft receives at least one vectoring point,
which guides it to the IAF.

state = [n1, n2, . . . , nm] (8)

An effective manner for representing the number of VPs
assigned to all aircraft is by using states, which can be defined
as a collection of the number of VPs (including the IAF)
composing the aircraft segment in a given situation. Each
element of the state refers to the number of VPs assigned to
each aircraft. In this context and from theworkload evaluation
standpoint, it is reasonable to consider IAF as VP since the
ATCo must act, communicate with, and monitor the aircraft
conducted to the IAF. In fact, in vectoring, the ATCo must
guide the aircraft to this point using an additional VP.

Finally, the problem faced in this research considers that:
(1) pilots (human or not) are capable of executing the
instructions provided by the ATCo; (2) one important metric
apart from ATCo workload is the sequence duration; (3) the
airspace constraints are respected. This problem can thus
be faced as a machine schedule problem, which has been
proved to be NP-hard in [44]. Furthermore, it is reason-
able to consider that our proposal deals with an NP-hard
problem [21], [30], [39].

B. ARCHITECTURE
To appropriately achieve the desired results in the optimiza-
tion process, different responsibilities should be assigned to
different modules. For example, the optimization process is
different from the process of input reading and should be per-
formed in different parts of the system. In order to accomplish
this, Figure 5 depicts the FASOM architecture.

The following three subsections respectively present the
Airspace Building Module, the Optimization Module, and
the Solution Selection Module. Each module is discussed in
an in-depth approach, considering the implementation of the
functions.

1) AIRSPACE BUILDING
The first module of FASOM is theAirspace BuildingModule.
Its main goal is to receive external data and transform it into
a format the Optimization Module can understand, i.e., this
module acts as an interface. Firstly, a JSON file is provided
with the data needed to build the airspace (i.e., the JSON file
describes the scenario), considering the positions of aircraft,
CBs, and IAFs. Finally, this data is converted into a Java
object (airspace) that is further accessed and manipulated by
the Optimization Module.

2) OPTIMIZATION
The second and intermediate module is the Optimization
Module, in which the actual optimization process is executed.
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FIGURE 5. Architecture of the final arrival segment optimization model
(FASOM).

It aims to offer feasible solutions in terms of aircraft sequenc-
ing, considering the input data provided. The optimization
method adopted in this research, the Parallel Particle Swarm
Optimization (PPSO), is employed to achieve this set of feasi-
ble solutions considering parameter variation. This method is
adopted due to its high-performance in several applications
(optimization tasks) and its advantages in comparison to
other techniques, such as Evolutionary Algorithms (EA) and
Genetic Algorithms (GA) [6], [8], [43], [45]. Indeed, PSO has
presented good results, but this depends on the characteristics
of the problem and the parameters’ configuration. In some
problems, EA and GA may outperform the PSO in terms of
the solution’s quality and search efficiency.

In order to apply the PPSO into the Final Arrival Segment
Optimization (FASO) problem, adjustments and abstrac-
tions must be considered. Firstly, we include the additional
parameters:

• Search Duration: Limits the duration execution in mil-
liseconds of the search within a state. This enables the
particles to move around different areas into the search
space. Note that this parameter represents the stopping
criteria of the search process;

• Iteration Slice: iterations for particle shuffling;
• Vectoring points per aircraft: Limit for the path build-
ing in terms of VPs.

One suitable manner of performing the optimization pro-
cess is using states, which are collections of the number of
VPs composing the aircraft segments in a given situation,
as presented in Section VI-A2. Regarding a state-driven opti-
mization process, the search must consider a different state
at the time, i.e., the number of VPs assigned to each aircraft
must remain the same during part of the PSO execution. For

example, considering the state [1, 2] for a situation with two
aircraft, different solutions (feasible or not) can be provided.
In this sense, we search for solutions maintaining the state
according to a time interval. If at least one feasible solution
is provided in the search considering a given state, the search
process stops after the time interval. However, other states are
considered in the search if there are no solutions provided by
the method. There is a need for a short response search to
explore different states to find feasible solutions. Apart from
the time spent in the processing of each state, there is a need
for a short response time in the problem faced in this research,
i.e., defining a specific deadline is necessary to ensure unsafe
states are not reached due to latency in the solution provision.

Thus, the first additional parameter is the duration of
search in a given state, which limits the duration execution
in milliseconds of the search within a state. This parameter is
considered for all the states explored. The second parameter is
the iteration slice, representing the number of iterations of the
PSO for shuffling the positions and velocities of all particles.
The traditional PSO and PPSO do not include this shuffling
process, but we include it to avoid local optima. Sometimes,
reasonable solutions may retain particles around a specific
region into the search space. However, better solutions may
also be found in other regions. For example, suppose all
particles are located around an area distant from 0 in all
the axes with a set of good solutions. In that case, even if
much better solutions are located around the beginning of all
axes (i.e., an area near to 0 in all axes), the cognitive factor,
the inertia, and the social factors tend to act in a manner to
retain the particles within that area. The shuffling process
prevents the particles from moving around a limited region in
the search space and facilitates exploring different areas (that
may present better solutions than those already discovered).
This process consists of changing the position and velocities
of the particles considering random values. Thus, the particle
tends to search in different regions of the search space.

Furthermore, the search space is limited to the boundaries
of the final sector, i.e., the PPSO aims to suggest VPs inside
a geographically limited area. Thus, the shuffling method is
stochastic, i.e., particle positions and velocities are random.

The optimization process evolves accordingly to the pro-
cess depicted in Figure 2. In this case, the feasibility and
quality of the proposed solutions are evaluated by the FSST,
as illustrated in Figure 5. For each solution provided, ver-
ification of its quality and feasibility is performed. This
figure shows the PPSO approach within an orange box. This
indicates that the PPSO could be replaced by other methods
(e.g., Genetic Algorithms). This highlights that extensions
of this research might consider different techniques. Finally,
a set of feasible solutions is provided in appropriate data
structures to the next module (i.e., the solution selection
module).

C. SOLUTION SELECTION
In order to select one solution within a set, an order must be
defined. Indeed, an important metric in this definition is the
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sequencing duration, which is related to efficiency. However,
including the UAS into the National Airspace System (NAS)
may make the controlling process more difficult, impacting
the workload and, ultimately, the safety levels. Thereupon,
safety (represented by the ATCo workload) and efficiency
(represented by the sequencing duration) are the metrics con-
sidered to measure the quality of different solutions.

In this context, Equations 9 and 10 shows the objective
functions (f1 and f2) adopted in this research. The former
indicates the minimization of the ATCo workload as a goal.
The index i of the aircraft varies from 1 to the total number
of aircraft m. Function f1 is thus defined in terms of the
numbers of VPs (nVPi) assigned to the aircraft (i) and the
workload associated with the VP definition for a particular
aircraft (WTMLi ), which varies according to the TML of the
aircraft i.

Min f1 =
m∑
i=1

nVPi ×WTMLi (9)

The latter refers to the sequencing duration. Function f2 is
defined in terms of distance dl traveled by the last aircraft
delivered l. A speed of 180 knots is considered for all aircraft
since the operation takes place within the final sector.

Min f2 =
dl

180kts
(10)

Finally, the process of ordering the solution in the solu-
tions set and then picking the most appropriate solution is
conducted considering Equation 11. In this equation, α and
β respectively represent the weight associated with the mini-
mization of f1 (workload) and the weight associated with the
minimization of f2 (duration). These values vary from 0 to
1 (α + β = 1). Besides, these values are defined by the
user of the optimization tool, i.e., the end-user may priori-
tize workload or efficiency in the solution selection. Finally,
the f3 enables to choose one solution combining Equations 9
and 10. Furthermore, the value of f1 and f2 of a given solution
instance k as independent variables are normalized using the
Min-Max normalization method [34] to be used in the same
equation. Note that weights α and β are assigned by the user
of our proposal, i.e., this method is adaptable to situations in
which safety is prioritized, to situations in which efficiency
is prioritized and, finally, in situations in which both have the
same priority (in the case in which α = β = 0.5) and an
adaptation of the Min-Max normalization method (which is
characterized by the sum of 1 to the denominator) in order
to prevent the result from being infinite in cases in which the
maximum value is equal to the minimum value.

Min f3 = α
f k1 − min(f1)

1+ (max(f1)− min(f1))

+β
f k2 − min(f 2)

1+ (max(f2)− min(f 2))
(11)

VII. CASE STUDIES
This Section presents the experiments conducted in this
research. The case studies show the applicability of our

approach in different situations, which may include a
considerably high number of aircraft and bad weather
conditions. The proposal presented herein can solve sev-
eral situations in the final sector, considering the airspace
constraints. For all the case studies, the objective function
illustrated in Equation 11 is used.

As we aim at adopting the optimization process in a bal-
anced way, in which α and β are set to 0.5, i.e., they have
the same priority for the solution selection.8 This approach
is considered for achieving solutions with good results in
both objectives, but these values can be adjusted according
to the user’s preferences (e.g., regulatory authorities). Thus,
f1 is related to the ATCo workload, whereas f2 is related to
the sequencing duration. For example, if two solutions are
proposed, and both present the same workload, the solution
with the lowest duration is selected. Similarly, considering
that two solutions are proposed, and both present the same
duration, the solution with the lowest workload is selected.

However, the goal herein is to show the applicability of
the proposed strategy. Thus, parameters c1, c2 and w of PSO
are all set to 1. This highlights that all aspects have the same
priority during the particles’ position and velocity update.
Besides, the influence of each PSO parameter is also in the
scope of future works. Moreover, the number of particles
within the swarm increases by 50 for each additional decision
variable.

The evaluation of the solutions provided is performed using
the Final Sector Simulation Tool (FSST) [37]. This simula-
tion platform aims to evaluate the ATCo workload and effi-
ciency in aircraft sequencing in the final sector considering
the UAS presence. This tool also considers the Technology
Maturity Level (TML) for measuring the workload related
to each aircraft, which is evaluated based on the number of
Vectoring Points (VPs) assigned to each aircraft and its TML.
Furthermore, the feasibility of the solutions is also verified,
considering the minimum aircraft separation requirements
and CB avoidance. In this research, the minimum aircraft
separation adopted is 5NM, and the CB is considered to be
a circle in a 2-dimensional space with a radius of 2NM.

The evolution of TML throughout ages is presented
in Table 1. Each age represents a specific era in terms of UAS
acceptance, i.e., this does not represent one single year, but a
period reasonably longer than that. The values present in this
Table are parameters to our method validated with specialists,
i.e., in future works, these values may be precisely adjusted
(e.g., by regulatory authorities).

Finally, 800ms is the time limit searching for each state,
which seems to be a reasonable response time once the
aircraft in this time interval change their position slightly
from the perspective of the whole final sector. Indeed, this
reduced and feasible value is compatible with the need
for real-time solutions. The experiments are performed in

8This approach aims to show the applicability of our method in a balanced
scenario, in which efficiency and safety present the same priority. The
analysis of the differences in the solutions provided considering variations
in α and β is a future direction of this research.
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TABLE 1. Ages (in terms of TML evolution) considered in this research.

a High-Performance Computer (32 virtual CPUs 2.2Ghz,
128GB RAM).

The first case study presents a simpler scenario in which
the weather conditions are favorable and considers three air-
craft. The second case study aims to show the applicability
of our proposal in a more challenging situation, in which
the number of aircraft increases in comparison to the first
case study (4) and the weather presents adverse conditions.
Finally, the third case study focuses on showing the applica-
bility of our proposal in a complex environment, composed
of 5 aircraft operating in the airspace with adverse weather
conditions.

A. CASE STUDY I
The first case study of this research considers a simple sce-
nario illustrated in Figure 6. In this scenario, three aircraft are
considered (MA, RPAS, and AA). The RPAS is set in position
(5, 25), whereas the MA and the AA are respectively set in
the positions (15, 15) and (5, 5). Finally, the Initial Approach
Fix (IAF) is set at (5, 15).

To build the final arrival segments for these aircraft,
FASOM is employed. Considering age 1, the feasible solution
provided by this optimization method is illustrated in Table 2.
In this solution, the MA (aircraft 1, TML10) is assigned to
an additional VP, which is set in the position (9.19, 20.7),
as well as the RPAS (aircraft 2, TML6), which is assigned to
an additional VP in position (11.8, 28.5). Finally, the aircraft
with the lowest TML (aircraft 3, which is an AAwith TML 0)
is not assigned to an additional VP, i.e., this aircraft flies
directly to the IAF.

TABLE 2. Description of the solution provided by FASOM in case study I
(age 1).

Considering age 2, the solution (described in Table 3) is
similar to that proposed considering age 1, i.e., aircraft 1
(MA, TML 10) and aircraft 2 (RPAS, TML 10) are assigned
to an additional VPs ((6.5, 19.79) and (6.5, 29.11), respec-
tively), whereas aircraft 3 (AA), which still presents the
lowest TML (6), flies directly to the IAF.

The solution provided at age 3 (depicted in Table 4) for
this scenario is different. Aircraft 3 (AA) achieved the highest
TML (10) and is assigned to an additional VP set in the
position (11.2, 10.2), whereas aircraft 2 (RPAS) presents a

FIGURE 6. Scenario adopted in case study I.

TABLE 3. Description of the solution provided by FASOM in case
study I (age 2).

reduction in its TML (6) and is assigned to an additional
VP set at (7.61, 27.75). In turn, aircraft 1 (MA), which also
presented a reduction in the TML (6), is not assigned to an
additional VP, i.e., this aircraft flies directly to the IAF.

TABLE 4. Description of the solution provided by FASOM in case
study I (age 3).

The solutions presented for all ages (highlighted
in Tables 2, 3 and 4) presented the results, in terms of duration
(of delivering all aircraft to the IAF), workload and elapsed
time (of processing time) presented in Table 5. These results
are similar in terms of processing time, whereas the duration
varies slightly.

TABLE 5. Results from case study I.

Moreover, the solutions adopted in this experiment con-
sidering TML age 1 delivered the aircraft with the lowest
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TML (AA, TML 0) with higher priority. However, the second
aircraft to be delivered (MA) presents a higher TML (10) in
comparison to the third aircraft to be delivered (6). This is
because the optimization process is not conducted in terms of
the sequence in which the aircraft will be delivered. Instead,
the optimization process considers the number of additional
VPs each aircraft is assigned to. In this case, regardless of
the sequence in which the aircraft are delivered, the solutions
focus on reducing the number of VPs assigned to each aircraft
(prioritizing the aircraft with lower TMLs). Indeed, the same
sequencing is achieved, even considering the differences in
TMLs between these two ages. Finally, the solution provided
for TML age 3 considered a different sequence due to the
changes in the TML of each aircraft. The MA (TML 6) is
the first to be delivered, followed by the AA (TML 10)
and the RPAS (TML 6). Regarding the results from Case
study I, presented in Table 5, the workload levels are similar
at all ages. This illustrates that, regardless of the TML age
(i.e., regardless of the aircraft’s TML variation), the solu-
tions provided maintained the workload level stable. Finally,
the elapsed processing time is considerably short for real-time
applications once the highest duration presented (4.6s) rep-
resents a short distance traveled by aircraft, i.e., all aircraft
do not move dramatically in 4.6s, highlighting this is a short
response time.

B. CASE STUDY II
The second case study of this research considers a more
challenging scenario illustrated in Figure 7. In this scenario,
four aircraft are considered (MA, RPAS, and two AA). The
two AA are set in positions (23.9, 35.34) and (20.5, 29.95),
respectively. The RPAS is set in position (19.6, 1.2) and the
MA is set in the position (24.55, 4.7). The IAF is present in
the position (4.6, 14.9). This scenario also considers the pres-
ence of two cumulonimbus (CBs) with centers at positions
(14.95, 21.3) and (14.8, 8.15).

FIGURE 7. Scenario adopted in case study II.

The solution provided by FASOM for this scenario, con-
sidering TML age 1, is described in Table 6. In this feasi-
ble solution, aircraft 2 (AA with TML 0) flies directly to
the IAF, whereas the other three are assigned to one extra
VP each. Aircraft 1 (AA, TML 0), 3 (RPAS, TML6) and 4
(MA, TML 10) are assigned to VPs set, respectively, in posi-
tion (23.0, 35.3), (14.7, 16.9) and (23.0, 18.5) before going
to the IAF.

TABLE 6. Description of the solution provided by FASOM in case study II
(age 1).

The solution presented in age 2 is detailed in Table 7.
Aircraft 2 (AA, TML 6) goes directly to the IAF. However,
aircraft 1 (AA, TML 6) is assigned to one additional VP set
at (15.5, 12.0). Similarly, the aircraft 3 (RPAS) and 4 (MA)
present the highest TML (10) and are assigned to one addi-
tional VP each, set, respectively, in positions (20.0, 13.7) and
(26.1, 19.4).

TABLE 7. Description of the solution provided by FASOM in case study II
(age 2).

Considering the TML age 3, the solution provided is con-
siderably different. In this solution, described in Table 8, both
AA (TML 10) are assigned to additional VPs before going to
the IAF, set in positions (26.6., 14.4) and (6.28, 37.9), as well
as the MA (TML 6) with the additional VP set at (19.0, 0.8).
Finally, the RPAS (TML 6) is conducted directly to the IAF.

TABLE 8. Description of the solution provided by FASOM in case study II
(age 3).

The results from the solutions provided in this case study,
considering TML ages 1, 2 and 3, are illustrated in Table 9.
Thus, all metrics are similar considering the different ages,
i.e., the optimization method proposed herein can adapt the
search for finding solutions with reduced ATCo workload
regardless of the age considered (which changes the ATCo
workload related to each aircraft).
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TABLE 9. Results achieved in case study II.

Furthermore, the solutions change considerably in terms
of the TML age variation. In fact, in this scenario, there is the
possibility of delivering only one aircraft without additional
VPs9: the RPAS or one of the AA. In this sense, considering
TML ages 1 and 2, one AA is delivered without additional
VPs due to its low TML (0 and 6 for the respective ages), and
the other aircraft are delivered considering additional VPs.
However, in TML age 3, the TMLs of AAs (10) are higher
than the TML of the RPAS (6). This leads the RPAS to fly
to the IAF without any additional VPs, differently from the
other aircraft. The experiments conducted in Case study II
(Table 9) illustrate the similarity in terms of workload levels
that the solutions present considering the TML age variation.
This shows that FASOM provided feasible solutions main-
taining the workload levels and considering similar solutions
duration. Finally, the processing time is a bit higher, achieving
up to 10.014s, because this scenario is more challenging than
the scenario presented in the case study I.

C. CASE STUDY III
The last case study of this research consider a complex
scenario, illustrated in Figure 8, in which five aircraft (two
MA, two RPAS and one AA) are present. The two RPAS
are set in positions (27.5, 27.95) and (17.45, 29.95), whereas
the two MA are set in (16.2, 0.6) and (16.5, 15.05), respec-
tively. The only AA present is this scenario is set in position
(27.35, 2.25). Furthermore, the IAF is set at (1.55, 14.95),
whereas there are CBs in positions (8.9, 14.2), (14.95, 21.8)
and (24.6, 13.95).
In order to deliver the set of aircraft presented in this sce-

nario, considering TML age 1, FASOMproposed the solution
described in Table 10. In this feasible solution, aircraft 2
(AA, TML 0) and 4 (RPAS, TML 6) flies directly to the IAF.
Aircraft 1 (RPAS, TML 6) is assigned to position (16.5, 1.4)
before going to the IAF. Similarly, aircraft 3 and 5 are respec-
tively assigned to positions (12.9, 21.8) and (7.4, 19.9) before
reaching the objective point (IAF).

The solution provided considering TML age 2, illustrated
in Table 11, selected aircraft 2 (AA) and 3 (MA) to fly
directly to the IAF. The two RPAS present in this scenario,
aircraft 1 and 4, respectively fly to positions (35.5, 24.0) and
(33.5, 27.1) before going to the IAF. Finally, the aircraft 5,
which is a MA, is directed to the additional VP located in
position (21.3, 28.1).

9If both aircraft are delivered without one additional VP, the solution is
not feasible once the separation of these two aircraft in the region near to the
IAF is lower than 5nm.

FIGURE 8. Scenario adopted in case study III.

TABLE 10. Description of the solution provided by FASOM in case study
III (age 1).

TABLE 11. Description of the solution provided by FASOM in case study
III (age 2).

Finally, the last experiment, which considers TML age 3,
considers the solution described in Table 12. In this solu-
tion, the AA (aircraft 2) and one of the MA (aircraft 3) are
guided to the IAF directly. In this context, both RPAS (air-
craft 1 and 4) are conducted indirectly, i.e., to additional
VPs located in positions (13.7, 38.0) and (20.7, 2.7). Thus,
the other MA (aircraft 5) flies in the direction of position
(6.2, 31.2) before going to the IAF.

TABLE 12. Description of the solution provided by FASOM in case study
III (age 3).
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The quality of the solutions proposed by FASOM for this
case study, considering the TML age variation, is depicted
in Table 13. Similarly to case studies I and II, each metric’s
results (duration, workload, and elapsed time) are similar
considering all ages.

TABLE 13. Results from case study III.

Moreover, this experiment provided different solutions
throughout the TML age variation. In this scenario, the solu-
tion leads two out of three aircraft (one of the RPAS, one
of the MA, and/or AA) to the IAF without additional VPs.
At TML age 1, theAA (TML0) and one of the RPAS (TML6)
are conducted directly to the IAF, whereas the others are
assigned to one additional VP. However, considering TML
ages 2 and 3, the AA (TMLs 6 and 10) and one of the
MA (TMLs 10 and 6) are chosen to be delivered directly.
Finally, the other aircraft are assigned to additional VPs.
In terms of the results from Case study III, although the
workload is similar throughout the TML ages, a certain level
of instability is verified compared to the results of the other
case studies (i.e., differences regarding the workload level).
This is because this is a more complex scenario in which
changes in the TML of the aircraft may change the sequence
considerably. Finally, the elapsed time reached up to 10.4s,
which is similar to the elapsed time achieved in case study II.
Note that in 10.4s, the aircraft fly approximately 0.05NM
whether the speed is close to 180kts. This highlights that
this is a feasible calculation time once the aircraft will not
dramatically change its position in this period.

VIII. DISCUSSION
The duration of the solution, considering the TML ages
variation, for each case study, is illustrated in Figure 9.
This chart shows that the results from different case studies
are considerably different, but considering the age varia-
tion, each case study presented slight differences in each
experiment.

The workload of case studies II and III are similar, as illus-
trated in Figure 10. At TML age 1, the workloads of both
cases are very similar and they start to spread out throughout
the TML age variation. Furthermore, the case study I presents
a lower workload level. The variations of the results achieved
within the same case study are slight, i.e., the optimization
method proposed can adapt the search for finding solutions
with reduced ATCo workload regardless of the age consid-
ered (which changes the ATCo workload related to each
aircraft).

Finally, Figure 11 shows a comparison of the elapsed
time achieved in each case study considering the TML age
variation. This chart shows that the elapsed time of case

FIGURE 9. Comparison of the sequencing duration achieved in case
studies I, II and III considering the TML age variation.

FIGURE 10. Comparison of the ATCo workload achieved in case studies I,
II and III considering the TML age variation.

FIGURE 11. Comparison of the elapsed time achieved in case studies I,
II and III considering the TML age variation.

studies II and III are very similar due to the complexity faced
in both scenarios, which is different from the elapsed time
achieved in the case study I (i.e., the case study I represents a
simpler scenario). The results showed that the FASOM pro-
vided feasible and good solutions, which are adapted accord-
ing to the TML of each aircraft to maintain the workload and
duration levels stable. This stability is also illustrated in the
comparison of the results from each case study.
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IX. CONCLUSION
Since air transportation is essential for society, it is steadily
increasing, and new technologies (e.g., UAS) are being pro-
posed and integrated into the National Airspace System
(NAS), making methods for optimizing their operation and
enabling a smooth integration important. In this context,
in order to introduce the UAS into challenging scenarios
(e.g., those which consider adverse weather conditions), it is
reasonable to consider that the ATComay be not familiar with
this technology and may be careful, which tends to increase
the workload level and, ultimately, impact the safety levels of
the airspace.

In fact, controlling aircraft in TMA considering adverse
weather conditions and the UAS presence is a complex task.
To overcome this challenge, supporting tools must consider
airspace restrictions, different aspects of each aircraft, and the
role of the ATCo in this context. This research proposed a par-
allel swarm-based method for optimizing final aircraft arrival
segment design considering the UAS presence, performed
from the ATCo workload and sequencing duration stand-
points. The main contributions presented are (i) the adoption
of a novel approach to measuring the integration of UAS in
the National Airspace System (NAS), (ii) an optimization
method based on the Particle Swarm Optimization (PSO) for
designing landing trajectories considering the UAS presence,
and (iii) interfaces for applying the optimization model in
external applications. The solutions consider airspace restric-
tions (e.g., minimum separation between aircraft and adverse
weather conditions) and are provided at short response times
(e.g., 4.6s in case study I, 10s in case study II, and 10.4s in
case study III in our experiments).

Although this work aims to address specific topics toward
the UAS operation, there are many possibilities of extending
this effort. Some future directions are:
• Performing several experiments to highlight the opti-
mization boundaries: One possible direction is to per-
form several experiments (e.g., thousands of scenarios)
using a high-end data center and considering different
parameters (e.g., different speed intervals and different
sectors of the airspace). This will highlight the patterns
that compose simple and challenging situations. This
would also support the airspace complexity evaluation;

• Analysis of the trade-off between workload and effi-
ciency: This refers to the further investigation on how
the efficiency and workload levels are affected if differ-
ent weights are assigned to each metric. This will high-
light the thresholds between efficiency and workload as
well as identify the appropriate interval for the weight
assignment procedure;

• Measuring the TML evolution of different aircraft
types throughout the years: In this research, TML
ages are considered in the experiments. Although the
ages are different from each other, one challenge and
future direction is how to measure the evolution of
the TML throughout the year from many perspectives
(e.g., operational and regulatory);

• Measuring the impacts of parameters changes in the
FASOM results: As the focus of this research is to
propose a method for optimizing the operation of UAS
in the Final Sector, one future direction is to analyze the
parameter variation in order to find the best parameters
combination for each scenario. This variation considers
the parameters of PPSO, such as the number of particles
and values of c1 (cognitive aspect), c2 (social aspect) and
w (inertia);

• Employing different architectures of optimization in
FASOM: As FASOM supports the implementation of
different meta-heuristics (e.g., Ant Colony Optimization
and variations of Genetic Algorithms), other architec-
tures may be employed in future work, such as the
combination of meta-heuristics (e.g., an implementation
of different meta-heuristics that act in parallel);

• Applying variations in airspace constraints and
parameters: Another future direction is the develop-
ment of flexible structures, such as: variable CB sizes
and shapes; CB movements; and changes in the min-
imum separation of the aircraft depending on their
types as well as on the characteristics of airspace
(e.g., complexity);

• Arrival Segment Design Considering Failures in the
C2 Link: This research considers the RPAS presence
but does not include failures in the C2 link, which
are failures in the communication between the remote
pilot and the aircraft. According to the contingency
operations proposed by ICAO, considering a failure in
the communication within the final sector, conducting
all aircraft considering the presence of an independent
aircraft (i.e., an aircraft that cannot be controlled) is
a challenge. Thus, one of the future directions of this
research lies in how the set of aircraft can be guided
to the IAF considering this issue. The optimization of
arrival segments considering a problematic aircraft in the
final sector is a challenging task;

• Priority Establishment of UAS sequencing in the
National Airspace System (NAS) Airspace: Our opti-
mization approach, in the safety context, is driven by
the number of VPs assigned to each aircraft. However,
an alternative approach may be considered, such as
conducting the aircraft to the IAF with different prioriti-
zation rules. Instead of controlling aircraft from famil-
iarity (TML), one alternative approach is to consider
the priority level. One example of prioritized aircraft is
the emergency aircraft. Furthermore, a challenge is to
identify the priority of the UAS in the context of the
list of priorities assigned to the aircraft types currently
employed;

• Optimization of UAS operation in TMA: Although
our proposal is developed to be applied to the final sec-
tor, which is part of the TMA, there are several situations
faced in larger scenarios that may be considered in future
works. For example, as the area is considerably larger,
it is reasonable to consider many aircraft. Examples of
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applications are airspace resilience (e.g., problems in
airports) and impacts of weather conditions in a long
period (e.g., decades). The main idea is to extend the
research conducted in the final sector to a larger and
more complex area, the TMA;

• Automation of Air Traffic Control (ATC): One of
the challenges of the future directions of this research
is the automation of the ATC and ATCo. For exam-
ple, approaches such as ATC Maturity Level (AML),
which represents the level of maturity and autonomy
of a system in terms of acting in controlling manned
and unmanned aircraft (e.g., different approaches for
modeling the relationship between the autonomous ATC
with UAS and between the autonomous ATC and MA
can be developed).

• Non-linear scaling for Vectoring Points (VPs) defini-
tion: In this investigation, the workload associated with
the definition of VPs for a given aircraft is the same
regardless of the number of VPs. However, future works
could also focus on different models that compute differ-
ent workload levels depending on the configuration of
the airspace (e.g., number of VPs, weather conditions,
and number of aircraft);

• Optimization of final arrival segments for UTM and
Urban Air Mobility (UAM): The application of the
proposed approach in a critical task has the potential
to support the future decision-making process in the
airspace. Similarly, this concept can be extended to dif-
ferent contexts, e.g., UTM and UAM.
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