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ABSTRACT As a key pillar of smart transportation in smart city applications, electric vehicles (EVs) are
becoming increasingly popular for their contribution in reducing greenhouse gas emissions. One of the key
challenges, however, is the strain on power grid infrastructure that comes with large-scale EV deployment.
The solution to this lies in utilization of smart scheduling algorithms to manage the growing public charging
demand. Using data-driven tools and machine learning algorithms to learn the EV charging behavior can
improve scheduling algorithms. Researchers have focused on using historical charging data for predictions
of behavior such as departure time and energy needs. However, variables such as weather, traffic, and nearby
events, which have been neglected to a large extent, can perhaps add meaningful representations, and provide
better predictions. Therefore, in this paper we propose the usage of historical charging data in conjunction
with weather, traffic, and events data to predict EV session duration and energy consumption using popular
machine learning algorithms including random forest, SVM, XGBoost and deep neural networks. The best
predictive performance is achieved by an ensemble learning model, with SMAPE scores of 9.9% and 11.6%
for session duration and energy consumptions, respectively, which improves upon the existing works in the
literature. In both predictions, we demonstrate a significant improvement compared to previous work on
the same dataset and we highlight the importance of traffic and weather information for charging behavior
predictions.

INDEX TERMS Electric vehicles (EVs), charging behavior, machine learning, smart city, smart
transportation.

I. INTRODUCTION
Climate change has become a growing concern in recent years
with thirty-three countries jointly declaring a climate emer-
gency as of January 2021 [1]. Global energy consumption
is a major contributor to the climate crisis, and in particular,
the transportation sector accounts for over a quarter of the
global energy consumption [2]. The United Nations (UN)
projects that two thirds of the world’s population will reside
in urban areas by 2050 [3]. This would increase the demand
for urban mobility, leading to further energy consumption
and emissions of greenhouse gases. Studies have shown that
electric vehicles (EVs) have the potential to reduce carbon
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emissions by 45% compared to conventional internal com-
bustion engine (ICE) vehicles [4]. EVs were initially limited
by factors such as reliability and battery range, which have
significantly improved in recent years and led to an increase
in EV popularity [5]. As a result, the trust in EV reliability
has grown and satisfaction among EV owners are higher [6].
The driver flexibility has also increased with the addition of
charging stations in many parts of the world, often lead by
various government initiatives encouraging further adoption
of EVs. These factors have placed EVs to be in a pole position
with regards to providing a clean source of transportation.

There still remains a few challenges, most notably the
charging time and public charging needs, despite the promis-
ing potential. Although EV charging time has significantly
decreased over the years, it is still on average much higher
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than the refueling time for ICE vehicles. Emerging charging
technologies such as extreme fast charging [7] and wireless
charging [8] are promising but are still overcoming various
challenges and will require years before being adopted. The
constraints from charging infrastructure means that most EV
owners rely on public charging stations, which poses a strain
on power distribution grid due to the high-power require-
ments of the EVs [9]. To avoid power grid degradation and
failures, un-coordinated charging behavior must be avoided.
The optimal solution is to better manage the scheduling of
charging stations. The research on smart scheduling using
data driven approaches are plentiful and include optimiza-
tion [10] and metaheuristic [11] approaches. Furthermore,
psychological factors influencing charging behavior [12] as
well as transactions data and interviews with EV drivers [13]
have been used for charging behavior analysis. A compre-
hensive review of charging behavior analysis using machine
learning and data-driven approaches is presented in [14],
which concludes that machine learning based approaches are
more suitable to scheduling approaches with the ability to
provide quantification and more realistic representation.

A. RELATED WORKS
Although predictions of EV charging behavior can have var-
ious categories, the focus of this work will be on session
duration and energy consumption. Examples of other charg-
ing behavior include the prediction of whether the EVs will
be charged the next day [15], identification of the use of
fast charging [16], prediction of the time to next plug [17],
charge profile prediction [18], charging speed prediction [19]
and prediction of charging capacity and the daily charging
times [20]. These behaviors provide valuable insights, but
the prediction of session duration and energy time is more
valuable for scheduling purposes.

As will be defined in the following sections, session dura-
tion is directly related to the departure time. It is the arrival
time, which is a known variable, minus the departure time.
Therefore, one can assume the prediction of either the session
duration or the departure time to have the same application.
Lee et al. [21] introduced a novel dataset for non-residential
EV charging consisting of over 30000 charging sessions.
They used Gaussian mixture models (GMM) to predict ses-
sion duration and energy needs by considering the distribu-
tion of the known arrival times. The testing dataset included
the month of December 2018 and the reported symmetric
mean absolute percentage errors (SMAPEs) were 14.4% and
15.9% for the session duration and energy consumption,
respectively. In this work, only historical charging data was
considered for obtaining the predictions. In [22], the authors
used support vector machines (SVM) for the prediction of
arrival and departure time for EV commuters in a univer-
sity campus. Using historical arrival and departure times
and temporal features i.e., week, day, and hour, the reported
mean absolute percentage error (MAPE) was 2.9% and 3.7%
for arrival and departure times, respectively. For compari-
son, a simple persistence model was used as reference and

SVM hyperparameter tuning was not addressed in the work.
Frendo et al. [23] predicted the departure time of EVs using
regression models. Historical charging data was utilized, and
eight features were used including, car ID, car type, week-
day, charging point, car park location, parking floor and
arrival time. For prediction, three regression models were
trained namely, linear regression, XGBoost and artificial
neural network (ANN). XGBoost achieved the best results
with mean absolute error (MAE) of 82 minutes. In [24],
ensemble machine learning using SVM, random forest (RF)
and diffusion-based kernel density estimator (DKDE) was
used for session length and energy consumption predictions.
For training, historical charging records from two separate
datasets were used, with one of them being public and the
other being residential charging. The ensemble model per-
formed better than the individual models in both predictions
and the reported SMAPEs were 10.4% for duration and 7.5%
for the consumption.

Xiong et al. [25] predicted the start time and session dura-
tion using mean estimation. Session duration was then used
to obtain energy consumption predictions using linear regres-
sion. The charging behavior predictions were integrated to
flatten the charging load profile and stabilize the power grid.
However, the prediction performances were not evaluated
quantitatively. In [26], several regression models were used
to predict the energy requirements from public charging sta-
tions data for the US state of Nebraska. Besides historical
charging data, parameters such as season, weekday, location
type and charging fees were used as input features. On the test
set, XGBoost model outperformed linear regression, RF and
SVM obtaining a R2 score of 0.52 and MAE of 4.6 kWh.
The authors in [27] used k-nearest neighbor (k-NN) to predict
the energy consumption at a charging outlet using data from
a university campus. The problem was formulated as time-
series forecast whereby energy consumption prediction for
the next day (next 24 hours) was made using energy con-
sumption of previous days. The highest SMAPE was 15.3%
using k value of 1 (1-NN) and a time-weighted dot product
dissimilarity measure. Similarly, Majidpour et al. [28] also
predicted the next day energy needs of a charging station
based on previous days energy consumption using various
algorithms including SVM and RF. They also experimented
with pattern sequence-based forecasting (PSF) [29], where
clustering is first applied to classify the days and predictions
are made for that day. The PSF-based approach provided the
most accurate results with average SMAPE value of 14.1%.
Table 1 provides a summary of the related works in the
literature.

B. OBJECTIVES
Although the above works from the literature have success-
fully applied machine learning for the prediction of session
duration and energy consumption, they have mainly focused
on utilizing historical charging data. In some cases, addi-
tional derived features such as vehicle information, charging
location information and seasonal information were used.
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TABLE 1. Summary of related works.

This has motivated us in this work to investigate the use of
additional input features including weather, traffic and local
events and observe its impact on the accuracy of charging
behavior predictions. The key contributions of this work are
the following:

1) We propose a novel approach in EV charging behavior
prediction that utilizes weather, traffic, and local events
data along with historical charging records.

2) We use several machine learning algorithms including
RF, SVM, XGBoost and ANN for predictions of ses-
sion duration and energy consumption on the adaptive
charging network (ACN) dataset.

3) We empirically show that the use of additional data
has a positive impact on the accuracy of predictions
and significantly improves upon the previous work on
the same dataset that used only historical charging
information.

The rest of the paper is organized as follows. Background
information including key concepts in machine learning is
provided in Section II. This is followed by a detailed expla-
nation of the methodology, including dataset description, and
experimental setup in Section III. Section IV presents and
discusses the results of this work. Future research directions
are provided in SectionV, and SectionVI concludes the paper.

II. BACKGROUND
This section summarizes the background information includ-
ing the algorithms used in this work and the evaluation met-
rics for predictions.

A. SUPERVISED MACHINE LEARNING
The main objective in machine learning (ML) is to develop a
learning framework that can learn from experience, i.e., the
training dataset, without explicit programming. Primarily,
ML algorithms are classified as either supervised learning or
unsupervised learning. In unsupervised ML, the training data
is not labeled, and the goal of the algorithm is to group similar
data points. Conversely, in supervised learning, the models
are trained from labeled dataset that contains the specified
output or target variable, i.e., the variable to be predicted. The
representation between the input and target variable is learned
iteratively by optimizing a specific objective function. In this
work, the target variables, i.e., the session duration and the
energy consumption are both labeled, and thus supervised
learningwill be used. Furthermore, since both target variables
are continuous values, we are going to use regression models
as opposed to classification models which deals with cate-
gorical target values. The four regression models used in this
work are RF, SVM, XGBoost and deep ANN. The following
paragraphs describe each of them briefly.

A decision tree (DT) can be used to separate complex
decisions into a combination of simpler decisions using split
points from the input features. Leaf nodes are the points
where no further split is made whereas a decision node is
the point where decisions take place. Predictions are made
by taking the average value of all the items in the leaf node
in regression. Although simple to implement, a single DT
is prone to overfitting. To overcome this problem, multiple
DTs can be aggregated, and this is the essence of a random
forest (RF) algorithm. Bagging method is used in this case
where the trees are created from various bootstrap sample
which is sample with replacement. The average value of the
predictions across all the trees are taken as the final prediction
for regression problems [30].

Similar to a RF, a gradient boosting algorithm [31] makes
use of multiple DTs. However, in this algorithm each tree is
built sequentially and as a result the errors made by previ-
ous trees are taken into consideration which often leads to
superior performance. XGBoost [32] is a more recent varia-
tion of the gradient boosting algorithm. XGBoost has gained
popularity over the last few years for its success in machine
learning competitions mainly due to it being effective in
dealing with the bias-variance tradeoff [33]. This means that
the algorithm is able to avoid overfitting on the training data
while at the same time maintaining enough complexity to
obtain meaningful representations.

A support vector machine (SVM) [34] is used for both clas-
sification and regression problems. It is sometimes referred
to as support vector regression [35] when exclusively applied
to regression problems. SVM separates the classes with the
best hyperplane that can maximize the margin between the
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respective classes. The key objective is to map the inputs
to high dimensional feature spaces where they are linearly
separable. This is achieved using kernels such as linear, poly-
nomial, and radial basis function (RBF). SVM is not suitable
for larger datasets due to its long training time.

Deep learning-based models contain a large amount of
composition of learned functions. Using layered hierarchy of
concepts, complex concepts are defined in terms of simpler
concepts andmore abstract representations are gathered using
less abstract ones [36]. Variations of deep learning algorithms
include convolutional and recurrent neural networks, which
have been successful in image and audio classification tasks.
In this work, we consider artificial neural networks (ANN),
often referred to as a multilayer perceptron (MLP). MLPs uti-
lize non-linear approximation given a set of input features and
can be used for both regression and classification. An MLP
consists of input layer which is fed with a given set of input
features, the hidden layers which learns the representations
and the output layer which makes the final predictions. When
the number of hidden layers is two or more, the model is
referred to as deep ANN.

FIGURE 1. Illustration of ensemble learning.

In ensemble learning, set of individually trained classifiers
are combined and then used to predict new instances, often
providing more accurate predictive performance than the
individual classifiers [37]. Figure 1 illustrates the concept of
ensemble learning. Both RF and XGBoost are examples of
ensemble learning, where individual models (in these cases
DTs) are first evaluated and then integrated into a single
model. The motivation behind such approach is similar to
asking multiple experts about an opinion, and then taking
their votes to make the final decision [38].

B. EVALUATION OF REGRESSION MODELS
To assess the performance of predictions made by regression
models, numerous metrics are used as discussed in [39].
In this work, we will define and use four measures that were
commonly used in related works. Equations (1)-(4) defines
the metrics that will be used in this work:

Root mean square error (RMSE):

RMSE =

√∑n
i=1 (yi − ȳi)

2

n
(1)

Mean absolute error (MAE):

MAE =
1
n

n∑
i=1

|yi − ȳi| (2)

Coefficient of determination or R2:

R2 = 1−

∑n
i=1 (yi − ȳi)

2∑n
i=1 (yi − µ)

2 (3)

Symmetric mean absolute percentage error (SMAPE):

SMAPE =
1
n

n∑
i=1

|yi − ȳi|
(|yi| + |ȳi|) /2

∗ 100% (4)

where y represents the actual value, ȳ is the predicted value,
µ is the average of the actual values and n represents the
groups of values in the dataset. Generally, lower scores of
RMSE, MAE and SMAPE indicate accurate predictions, and
this occurs when the predicted value, ȳ is very close to the
actual value y. The R2 value is a measure of goodness of fit
for regression and is usually a score between 0 and 1. A score
of 1 indicates perfect predictions and generally a higher value
represents better performance. We do not consider mean
absolute percentage error because it is inconvenient when the
actual value y is close to 0, therefore creating a bias. Rather
we consider SMAPE which is more suitable for EV charging
prediction because both the original and the predicted values
are in the denominator [24].

III. METHODOLOGY
In this section, we define the approach used for the prediction
of charging behavior. We formulate the problem, describe
the dataset, highlight the preprocessing steps, and discuss the
methods for training the learning models.

A. EV CHARGING BEHAVIOR
Assuming tcon represents the connection time when the car
first plugs in, tdiscon represents the disconnection time when
the car plugs out and leaves the station and e represents the
energy delivered to the car during the session, we consider
the session charging behavior Bsession as following:

Bsession , (tcon, tdiscon, e) (5)

Based on the above, we can define the length of charging
session or the session duration, Sdur , as follows:

Sdur = tdiscon − tcon (6)

In this work, we predict both the session duration and the
session energy consumption of an individual charging record
and assume that the connection time is known.

B. DATASET DESCRIPTION
Besides the charging dataset, we also make use of weather,
traffic, and local events data in order to predict the charging
behavior. We will briefly describe the datasets used and high-
light their attributes.
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Scheduling of EV charging is more significant in public
charging structures due to the unpredictable nature of the
charging behavior, especially in places like shopping malls.
The ACN [21] dataset is among the few publicly available
datasets for non-residential EV charging and will be uti-
lized in this work. The dataset contains charging records
from two stations in the university campus, namely JPL
and Caltech. Unlike the Caltech station, which is open to
public, the JPL station is only accessible to employees and
therefore will not be considered in this work. Registered
users can manually enter additional details, such as their
estimated departure time and requested energy, by scanning
a QR code through their mobile applications. The dataset
can be accessed from [40] by either a web portal or python
application programming interface (API).

Although there is a small weather station located at the
Caltech campus [41], we did not consider it for this work
due to missing values and irregular interval recordings for the
wind variable. Additionally, this station did not record vari-
ables such as rainfall and snowfall which could potentially
impact charging behavior. We therefore used the weather
data from NASA’s Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) [42]
which provides data for the precise location of the charging
station. The accuracy of satellite weather data in comparison
to ground stations has been compared in [43]. Although it
has been shown that given a specific location some weather
parameters may be more accurately detected using ground
stations, for the purpose of this work we do not require a
high level of accuracy but rather a more general perception
of the impact of weather on charging behaviors. For example,
we are interested in observing how the charging behavior is
impacted during heavy rainfall as opposed to drier conditions.

Obtaining historical traffic data for specific roads and
regions is challenging. Conventional traffic collection meth-
ods include intrusive approaches such as road tubes and
piezoelectric sensors and non-intrusive approaches including
microwave radar and video image detection [44]. With most
of these approaches, scalability is an issue, and in most
cases, specific roads are not covered. For instance, the city of
Pasadena (where the charging data originates from) provides
an open data site [45] for the traffic count around the city.
However, for most roads in the city it contains traffic count
for some period of time and therefore is not usable in our
case where we require regular interval data. Additionally, not
all roads and streets are covered. As a result, we decided to
use traffic data from Google maps, which has also been used
in previous machine learning applications [46]. The data is
collected by recording the location data from the commuter’s
mobile devices provided they use the application and have
agreed to share their location. The data collected from indi-
viduals is anonymized and aggregated to address any privacy
concerns [47]. The Google maps distance matrix API can
be used to retrieve the data. Given a source and destination
coordinates, the travel distance and the time taken is returned
for a given departure time. We retrieved historical trip time

for 9 of the closest roads and streets which one must take to
access the charging station.

Since the charging station is located in the Caltech uni-
versity campus, we decided to include campus events and
find out if the number of events have an impact on the
charging behavior. The number of events in an hour were
obtained from the Caltech university website calendar [48].
For simplification, we decided to round the minutes to the
nearest hour, therefore if an event started at 10.20 am, it was
counted as an event starting at 10 am.

C. DATA PREPROCESSING
Cleaning and preprocessing the dataset is vital to ensuring
the quality of the predictive models. These include removing
faulty records and outliers.

The presence of outliers can negatively impact the model
performance. A common technique of graphically detecting
outliers is boxplots [49]. The boxplots for both target vari-
ables contained outliers, as shown in Figure 2. We notice that
the outliers for both variables are not consistent, i.e., we have
far too many outlier points for energy consumption than the
session duration. It is possible that certain vehicles consume
far greater amount of energy even if the session duration is
not too long.

FIGURE 2. Boxplots of energy consumption (left), session duration (right).

As a result, we opted to perform multivariate outlier detec-
tion using the isolation forest algorithm which constructs
an ensemble of iTrees for a given data set. The outliers
are those instances which have short average path lengths
on the iTrees [50]. By randomly selecting a variable and
a split value between the minimum and maximum of the
selected variable, the observations are ‘isolated’. Partitioning
of observations are repeated recursively until all of them have
been isolated. After the partitioning, observations that have
shorter path lengths for some particular points are likely to
be the outliers. Figure 3 illustrates the process in detecting
the outlier of the target variables, with the axes normalized for
both response variables. A total of 697 outliers were detected
which accounts for 4% of the total observations.

For the charging data, we only considered charging
records that were registered, i.e., contained user IDs, and
this accounted for 97% of the records. For the weather
data, the time of recording was in universal time and we used
the pytz [51] library in python to convert the time zone to
be the same as that of the charging records. We also converted
the temperature units from kelvin to degrees Celsius. Then for
each given hour, we also computed average of the previous
7 hours of weather and the average of the next 10 hours,
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FIGURE 3. Outlier detection using isolation forest.

experimentally determined to provide accurate representa-
tion. This would allow us to understand how the previous
weather and the weather after charging impacts charging
decision. For instance, heavy snowfall in the previous hours
may account for shorter charging duration and so on. We also
had to convert the time zone from coordinated universal time
for the traffic data. We then aggregated the traffic for each
hour across the nine selected roads and streets. It must be
noted that we considered the average trip time as well as the
maximum trip time as estimated by Google maps. Finally,
we aggregated the total events in the campus for each hour.

To merge the various data, the time-series fields were
converted to date-time objects using pandas [52] library.
Then to obtain weather, traffic, and events for a particular
charging record, we first obtained the nearest hour that the
connection time belongs to. For example, the connection time
of 22:11 belongs to 10 pm. This allows us to easily extract the
other information. Instead of simply selecting the traffic level
for a given time, we selected the total traffic after arrival until
the end of the day. If a vehicle arrived at 2 pm, for instance,
we accumulated the traffic from 2 pm until the end of that
day. This would allow the model to learn how the traffic level
impact the charging behavior. Similarly, we considered the
total events after arrival until the end of the day.

D. FEATURE ENGINEERING
Feature engineering refers to the transformation of data into
meaningful representation using human knowledge. This pro-
cess is labor intensive but important nonetheless as this is
a weakness of the learning algorithms. Feature engineering
relies on human ingenuity and prior knowledge to compen-
sate for the inability of the algorithms to extract and organize
the discriminative information from the data [53]. We discuss
the future engineering steps next.

Firstly, we convert the time fields that will be used by the
models into numeric format by simply dividing the minute by
60 and adding to the hour. Then, for each charging record,
we find out their average departure time, session duration

and energy consumption. This is done by finding out the
user ID of the charging record and aggregating his previous
records. We use the arrival time as a numeric feature. How-
ever, the arrival time also has other components such as the
date information. Using this, we extract the hour of the day,
day of the month, month of the year, day of the week, whether
the day is a weekend and whether the day falls in a US federal
holiday. However, temporal information such as day, hour,
andmonth are cyclic ordinal features. This is because the hour
value of 23 corresponding to 11 pm, for example, is actually
close to the hour value of 0 which corresponds to 12 am.
To represent the proximity of these values, trigonometric
transformation is performed as following:

fx = sin (2π f /max (f )) (7)

fy = cos (2π f /max (f )) (8)

where f represents the cyclic feature to be transformed, fx and
fy represents the first and second components of the cyclic
feature, respectively. To transform other categorical variables,
one-hot encoding was used, where a single variable with n
points and k distinct classes is transformed into k binary
variables with n points each. For numeric variables, feature
scaling is a common transformation where the goal is to
normalize the range of the numeric features. There are various
scaling techniques, including scaling by domain where all
the features are scaled to a specific range such as [0, 1] and
scaling to minmax where the features are scaled to the range
[0, R], in which case the minimum of the maximum value of
feature in all directions is assigned as the radius of the sphere
R [54]. However, in this work we have used standardization
which ensures the values of each feature to have zero mean
and unit variance. The transformations were performed using
the preprocessing package of the Scikit-learn [55] library.
Table 2 lists the features used for training.

E. MODEL SELECTION AND EXPERIMENTAL SETUP
We selected all charging sessions from the ACN dataset
that belonged to the 2019 calendar year, which ensures we
take the seasonal factors into consideration during training.
The dataset was split such that 80% of the records were
used for model training and 20% for evaluation. During the
training phase, we performed K-fold cross validation where
the algorithms are repeatedly trained K times with a fraction
1/K training examples left out for testing [56]. In this case,
we selected the common K value of 10. To determine model
hyperparameters, we utilized grid searchmethodwhich deter-
mines the optimal set of parameters from a given list by
trying out all possible values of the specified parameters [57].
We performed the grid search across K-folds, selected to be
5 in this case to speed up the grid search. We then evaluated
all the models using the aforementioned regression metrics.
Inspired by the success of ensemble learning methods in
previous works, we also decided to experiment with ensemble
learning. We used two variants of ensemble stacking, namely
voting regressor and stacking regressor, using the ensemble
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FIGURE 4. Graphical representation of the proposed framework.

TABLE 2. List of features and their descriptions.

package of the Scikit-learn library. In a voting regressor,
several base regressors are trained on the entire training set,
and the average predictions made by the base models are
treated as the final prediction. Stacking regressor is based on
the concept of stacked generalization where predictions made
by the base models are used as inputs to a final estimator,
which is trained using cross-validation, to generate predic-
tions [58]. Figure 4 provides a graphical representation of the
framework.

IV. RESULTS AND DISCUSSION
We begin the experiment with RF algorithm which can be
used to visualize the variable importance [30]. This is a

FIGURE 5. Top ten features for session duration.

method for feature selection where certain variables that are
not important and can often hinder performance are removed.
In this case, the inclusion of the least important variables
had a very insignificant performance increase and hence we
decided to include them in model training. Additionally, vari-
ables can be ranked in terms of their relative importance. This
is determined by each feature’s contribution in determining
the most effective splits. In Figures 5 and 6, we plot the
top 10 important variables for session duration and energy
consumption, respectively. The two most important predic-
tors of session duration are the maximum traffic after arrival
and the time of connection. This indicates the usefulness of
including traffic information for the prediction of session
duration. However, for energy consumption, the historical
average consumption is by far the most significant. This is
because a specific vehicle will consume similar energy if the
session duration is consistent.

A. SESSION DURATION PREDICTIONS
As mentioned earlier, the hyperparameters for the models
were determined using the grid search approach. For the deep
ANN training, we experimentally determined an architecture
with 3 hidden layers of 64, 32 and 16 nodes respectively to
be the most suitable. Rectified linear units (Relu) [59] was
used as the activation function for all hidden layers and the
output layer contained a linear activation as we are expecting
the prediction to be a numeric value. The learning rate value
was set to 0.001 and we used the Adam [60] algorithm for
model optimization. The training batch size was 32 and the
number of iterations were 15 epochs. Appendix 1 displays the
training loss curve and Table 3 summarizes the 10-fold cross
validation scores on the training set.

The training scores are very similar for RF, SVM and
XGBoost whereas deep ANN performs slightly worse.
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TABLE 3. Training scores for session duration.

FIGURE 6. Top ten features for energy consumption.

Therefore, we aggregated the 3 best performing models in
the training phase into 2 ensemble models, which resulted
in improved cross validation scores. Next, we present the
results on the test set. For reference, we also selected the
user estimates of their departures as prediction. This value
was collected through a smart phone app where users were
asked to enter their estimates of their departure time and
consumption upon arrival. We summarize the results on the
test set in Table 4.

TABLE 4. Test scores for session duration.

As highlighted, the best results are obtained using the
ensemble learning approach, which is consistent with pre-
vious works [15], [24]. Voting regressor performs best on
2 metrics and stacking regressor performs the best in terms
of RMSE, whereas they both achieve the same R2 score. The
results are consistent with the training performance with RF,
SVMandXGBoost resulting in similar performance and deep
ANN performs the worst of the four base models. Predictions
made by user about their own session length is also far off the
actual session length. This indicates that perhaps relying on
users to provide an estimate of their own departure time is
perhaps not suitable.

B. ENERGY CONSUMPTION PREDICTIONS
Similar approach to the session duration prediction was also
used here. The only exception was the deep ANN architecture
which in this case contained 2 hidden layers with 64 and
16 nodes, respectively. The training batch size was 64 and
the number of epochs was set to 20. Appendix 2 presents the

TABLE 5. Training scores for energy consumption.

loss curve from the training phase. Table 5 summarizes the
10-fold cross validation scores on the training set.

RF has the best cross validation scores whereas the other
3 models have similar scores. We selected the top 3 models,
i.e., RF, SVM and XGBoost to form the 2 ensemble models.
In this case, the ensemble models did not improve upon
the best performing RF model but rather achieved similar
results on training. The results from the test set are presented
in Table 6. We also compare the results with user predictions
about their consumptions.

The best results as highlighted were obtained using the
stacking ensemble model. The improvement using ensemble
learning for energy consumption prediction was perhaps not
as significant when we compare with the session duration.
The user predictions about their consumptions are not accu-
rate in this case as well.

C. COMPARISON AND DISCUSSION
When we compare across both predictions, looking at the
overall R2 and the SMAPE, it appears that the prediction
of energy consumption is perhaps more difficult. This is
consistent with the previous work on the ACN data [21].
However, in another case the opposite was observed [24],
i.e., the prediction of energy consumption was easier. More-
over, in both scenarios, it was also noticed that the user
predictions about their own behavior is very different to
their actual behavior, which further emphasizes the need
for predictive analytics. The users’ predictions in terms of
their energy consumption are slightly more accurate when
compared to their predictions of session duration as indicated
by better R2 and SMAPE values. This could be due to the
users’ lack of interest in entering their estimates every time
they decide to charge their vehicles. We also noticed that
the performance using deep ANN was the least accurate
in both cases. Although deep learning models are proven
superior in dealing with images and audio data where feature
extraction is not performed, in applications such as this where
we perform feature extraction, traditional MLmodels usually
perform better. Furthermore, predictions made by ensemble
learning outperformed predictions made by individual ML
models in both scenarios, although the impact was more
significant for session duration prediction. This is most likely
because in the first scenario, the top 3 performing models had
similar training performance and combining their predictions
resulted in an improvement. However, in the latter scenario,
one model clearly outperformed the rest in training and hence
the improvement using ensemble learningwas not significant.
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TABLE 6. Test scores for energy consumption.

TABLE 7. Performance comparison with previous works.

Looking at the previous works in the literature, the results
in this work outperformed all the previous works that reported
similar evaluation metrics ([21], [23], and [26]–[28]).
We summarize the results from the previous works in compar-
ison to the one achieved in this work in Table 7. In comparison
to [24], the results obtained in this work for session duration is
more accurate although we do not improve upon their results
for energy consumption. This is most likely because the
authors in [24] utilized both residential and non-residential
data for their predictions, and residential charging behavior
in most cases are more consistent. However, it must be noted
that all previous works except [21] used a different dataset to
this work and therefore a comparison is perhaps not suitable.
Therefore, keeping the comparison across the same dataset,
we can conclude that the utilization of the additional weather,
traffic and events data resulted in an improvement in the EV
charging behavior predictions.

V. RECOMMENDATIONS AND FUTURE WORK
We have quantitatively shown in the previous section that
the traffic and weather data were important predictors in EV
charging behavior, particularly in the case of session duration.
Although the use of local events data (campus events in
this case) had insignificant impact in terms of performance
gain, it cannot be ruled out for future work. In this work,
we obtained all campus events from the university calendar.
However, perhaps only the significant events that draw more
crowd should be taken into consideration. It is possible that
events data may not impact predictions in a university campus

setting. However, for other public spaces such as shopping
malls for example, events like end of the year sale could
be important predictors. Therefore, similar experiments on
other public charging spaces should be carried out to find the
impact of local events. Social media can also be explored as
a means to obtain information about local events as well as
driver behavior. For instance, social media has been shown to
be a good tool for estimating human behavior [61] and also
is a significant predictor of truck drivers’ travel time [62].
It is also likely that the use of vehicle information such
as the vehicle model and vehicle type can improve predic-
tions, especially in terms of energy consumption. Some of
the previous works have utilized vehicle information [23]
but not in conjunction with weather, traffic, and events.
Finally, to better understand the charging behavior during the
COVID-19 pandemic, a case study should be conducted using
the proposed approach to validate the predictive performance
in uncertain situations.

VI. CONCLUSION
In this work, we presented a framework for the predic-
tion of two of the most important EV charging behaviors
with regards to scheduling, namely EV session duration
and energy consumption. Unlike previous work, we utilized
weather, traffic, and events data along with the historical
charging data. We trained four popular ML models along
with two ensemble learning algorithms for the prediction of
charging behavior. The results obtained in terms of prediction
performance is superior to the results in the previous works.
We have also provided a significant improvement of charging
behavior prediction on the ACN dataset and demonstrated
the potential of utilizing traffic and weather information in
charging behavior prediction.

APPENDIX

FIGURE 7. Validation loss curve for session duration.

FIGURE 8. Validation loss curve for energy consumption.
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