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ABSTRACT This paper investigates an adaptive neuro-fuzzy inference system (ANFIS)-based maximum
power point tracking (MPPT) technique applied to a reconfigurable photovoltaic (PV)-based battery charger.
The proposedmethod uses training data collected from a dynamicmodel of the PVmodule to train theANFIS
to locate the maximum power point (MPP) under different environmental conditions. Based on the estimated
MPP, the proposed method can select the optimal configuration of a PV array and the corresponding
global MPP under the non-uniform distribution of the temperature and irradiance. In this way, the proposed
method can guarantee the highest possible power harvesting to charge a lithium-ion battery under either
partial shading conditions or characteristics mismatch, achieving a high system efficiency. The proposed
method is compared with the conventional MPPT scheme to verify its feasibility and effectiveness. The
verification results show that the proposed method provides higher accuracy, faster response and better
tracking efficiency.

INDEX TERMS Adaptive neuro-fuzzy inference system (ANFIS), battery charging, maximum power point
tracking (MPPT), non-uniform irradiance, photovoltaic system (PV), partial shading, reconfigurable PV
system.

I. INTRODUCTION
Photovoltaic (PV) systems have become an essential power
source for many applications in recent decades [1]. They are
the best solutions in many small electrical energy demand
applications in remote areas that are difficult to be sup-
plied from the utility grid or small generators such as solar
vehicles, water pumping, street lighting, and communication
systems [2]. On the other hand, due to the equipment required,
the electricity from the photovoltaic system ismore expensive
compared to electricity from the utility grid [3].

For that reason, it is necessary to carefully study the
efficiency of the entire parts to design an efficient pho-
tovoltaic system to cover the load demands at a lower
cost. Improving the efficiency of the PV panels and the
power converter depends on the technology available; it may
require better components, which can increase the installation
cost [3]. Instead, improving the maximum power point track-
ing (MPPT) technique with a new control method is easy, not
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expensive, and can be done even in systems that are already in
use by updating their control methods, whichwould lead to an
immediate increase in PV power generation and consequently
a reduction in its price [4].

Several MPPT techniques have been proposed in the lit-
erature. These techniques utilize different search strategies
to be suitable for a wide variety of PV system applications.
The main directions of these MPPT methods can be classi-
fied under three categories; hill-climbing, computational, and
artificial intelligence methods [5].

Both the perturb and observe (P&O) and the incremental
conductance techniques [6]–[9] depend on the hill-climbing
principle, which looking for the direction in which power
increases and forces the operating point of the PV panel to
continuously follow that direction. These techniques cause
continuous oscillation around the maximum power point
(MPP), resulting in a loss of PV power, especially under
slow variations in the environmental conditions [10]. Con-
sequently, computational methods such as the fractional
open-circuit voltage and the temperature measurement-based
techniques are proposed [11], [12]. In these techniques,
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the MPP parameters (e.g., voltage, current, and power) are
obtained based on constant relations between measured and
known variables of the PV panel output. Because of the
non-linear behavior of the PV panel, these methods suffer
from low accuracy and cannot ensure sufficient tracking
for the MPP under partial shading conditions [13]. Alter-
natively, artificial intelligence (AI) methods, such as fuzzy
logic control (FLC) and adaptive neuro-fuzzy inference sys-
tem (ANFIS) based techniques, are presented in [14]–[16] to
overcome these issues.

The AI-based methods are used to map highly non-linear
relationships between inputs and outputs of the system, and
it can transform heuristic and linguistic terms into numerical
values using fuzzy logic [17]. In [18], a single input fuzzy
logic controller (SIFLC) is proposed based on the constant
voltage algorithm. The reference voltage is calculated using
a curve fitting-based approach that provides the voltage at the
MPP for any power value at a given temperature, achieving
higher efficiency than the conventional P&O technique. How-
ever, FLC is heavily dependent on prior experience of the sys-
tem behavior to obtain correct fuzzy rules and membership
functions. These issues have been overcome by a hybrid FLC
and particle swarm optimizer (PSO)-based MPPT technique
proposed in [19] for a grid-tied PV system, where the duty
cycle of a zeta buck-boost converter is controlled under fluc-
tuating irradiance levels. This method eliminated the steady-
state error and oscillations around the MPP with reduced
switching losses. Other authors have applied the ANFIS for
MPPT of PV systems in recent years, as it integrates fuzzy
logic and neural networks, providing a powerful artificial
intelligence technique. In [14] and [20], an ANFIS-based
MPP estimator is proposed to determine the optimal oper-
ating voltage. Then, a closed-loop PI regulator is employed
to adjust the duty cycle of the converter switch. Although
these methods improved the dynamic- and steady-state per-
formances, they did not consider the presence of shading.

Authors of [21] presented an ANFIS-based controller com-
bined with a PSO as a training unit to guarantee MPPT of
a set of two PV modules connected to an interleaved soft
switched boost converter. Although this controller can detect
the global MPP under partial shading conditions, training
the ANFIS controller by the PSO complicates the system
implementation and causes slower dynamic response [22].
Alternatively, an artificial bee colony (ABC) method was
employed in [23] to optimally adjust the ANFIS membership
functions, which demands fewer control parameters than the
PSO-based methods [24], simplifying the implementation.
Also, it guaranteed fast convergence and robustness against
operating conditions variations. Aiming for further reduction
of the complexity, the flower pollination algorithm (FPA)
has been proposed in [25] for MPPT application. Also, this
algorithm has been implemented with an ANFIS forMPPT of
a PV pumping system [26]. To avoid the procedural complex-
ity of the hybridized ANFIS-based techniques, [27] has pro-
posed utilizing the salp swarm algorithm (SSA) to enhance
the PV system efficiency by using the duty cycle boundary

FIGURE 1. Equivalent circuit of a PV cell using the single-diode model.

concept that directly searches for the global MPP. Despite
the high MPP-tracking efficiency and fast dynamic response
achieved by the prescribed methods, the benefits that can be
achieved by reconfiguring the PV system with the varying
and non-uniform weather conditions are not considered.

The main objective of this paper is to design an
ANFIS-based MPPT control method to ensure the maximum
power harvesting for a PV-battery charging system based on
two main aspects:

1) Selection of the best configuration that provides the
highest output power from the PV panels included
in the system under non-uniform operating conditions
(i.e., irradiance and temperature);

2) Detection of the global MPP of the interconnected PV
modules and force the system to work at that oper-
ating point according to the battery output voltage.
Therefore, the proposed scheme can provide higher
accuracy, faster response, and better tracking and oper-
ating efficiency compared with the conventional MPPT
methods.

The rest of this paper is organized as follows: Section II
introduces the mathematical model of the PV module and
the lithium-ion battery. Section III explains the operation
principle of the proposed MPPT system under non-uniform
operating conditions. In Section IV, the feasibility and effec-
tiveness of the proposed ANFIS-based MPPT techniques
are verified by comparative evaluation with the P&O MPPT
scheme. Finally, the conclusion is drawn in Section VI.

II. MODELLING OF THE PV-BATTERY SYSTEM
The PV-battery system studied in this work includes a
lithium-ion battery fed from a boost converter supplied by
a PV generator. Thus, in this Section, a mathematical model
for each component will be presented.

A. PV GENERATOR MODEL
The single-diode model and the double-diode model are the
most widely used models for the PV cell in the literature [28].
The precision of the single-diode model (shown in Fig. 1) is
considered sufficient for modeling interconnected PV mod-
ules in the literature to test maximum power point tracking
techniques or predicting the effect of the partial shading on
different modules because of its simplicity and the smaller
number of parameters that need to be determined to build the
model of the PV module. The behavior of the PV module can
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be described as follows:

Ipv = Iph − Io

e
(
q(Vpv+IpvNsRs)

NsnkT

)
− 1

− Vpv + IpvNsRs
NsRp

(1)

where Ipv is the PVmodule current, Iph is the photo-generated
current, Io is the reverse saturation current, Vpv is the PV
module voltage, n is the ideality factor, which varies from 1 to
2 depending on the fabrication process and semiconductor
material, k is the Boltzmann’s constant (1.38 × 10−23 J/K),
T is the cell temperature in Kelvin, q is the charge of an
electron (1.6 × 10−19 column) and Ns is the number of PV
cells connected in series.

The five unknown parameters Io, Iph, n, Rs, and Rp can
be determined using the electrical information of the PV
module, which is provided by themanufacturer, as introduced
by many authors, e.g. [29] and [30]. Typically, this electrical
information is provided at standard test conditions (STC) of
solar irradiation (Gstc) of 1000 W/m2 and cell temperature
(Tstc) of 298 Kelvin.

According to the short circuit and open circuit conditions,
(1) can be expressed as:

Isc = Iph − Io

[
e

(
qIscRs
nkT

)
− 1

]
−
IscRs
Rp

(2)

Iph = Io

[
e

(
qVoc
NsnkT

)
− 1

]
+

Voc
NsRp

(3)

At the maximum power operating condition under STC,
the output voltage and current (Vpv, Ipv) in (1) can be replaced
by themaximum power point voltage and current (Vmpp, Impp)
to obtain the following expression:

Impp = Iph − Io

e
(
q(Vmpp+ImppNsRs)

NsnkT

)
− 1


−
Vmpp + ImppNsRs

NsRp
(4)

Furthermore, the derivative of the output power
(Ppv = Vpv × Ipv) with respect to voltage at the maximum
power operating condition is equal to zero and it can be
expressed as follows:

Impp
Vmpp

=

qIo
NsnkT

e

(
q(Vmpp+ImppNsRs)

NsnkT

)
+

1
NsRp

1+ qRsIo
nkT e

(
q(Vmpp+ImppNsRnns)

NsnkTn

)
+

Rs
Rp

(5)

At the short circuit condition, the derivative of the PV
current with respect to voltage can be determined by the
parallel resistance as follows [31]:

−
1
Rp
=

dIpv
dVpv

∣∣∣∣Vpv = 0
Ipv = Isc

→−
1
Rp

=

qIo
NsnkT

e

(
qIscRs
nkT

)
+

1
NsRp

1+ qRsIo
nkT e

(
qIscRs
nkT

)
+

Rs
Rp

(6)

TABLE 1. Electrical parameters of the SM55 PV module at STC.

TABLE 2. Calculated parameters for the SM55 PV module at STC.

It is possible now to evaluate all the five parameters at
STC by solving the five equations (2), (3), (4), (5), and (6)
using the non-linear equation solver (fsolve) in Matlab [30].
For the purpose of this work, Siemens’s SM55 PV module,
which contains 36 mono-crystalline cells, was selected with
the electrical parameter given in Table 1. Using this electri-
cal information, the five parameters of the PV model were
calculated at STC as shown in Table 2.

The effect of the unavoidable changes in cell tempera-
ture and irradiance must be taken into consideration. The
photo-generated current is directly proportional to the solar
irradiance level and the diode reverse saturation current is
directly proportional to the cubic of the cell temperature,
which can be expressed as [31]:

Iph =
[
Iph
∣∣
stc + ki(T − Tstc)

] ( G
Gstc

)
(7)

Io = Io|stc

(
T
Tstc

)3

e

(
qEg
nk

(
1

Tstc
−

1
T

))
(8)

where ki is the temperature coefficient of Isc, and Eg is
the band gap energy of semiconductor material, which
exhibits negligible temperature dependence and represented
by 1.121 eV for mono-crystalline silicon cells.

The parallel resistance is approximately inversely propor-
tional to the solar irradiance as presented in [32]. Therefore,
it can be given by:

Rp =
Gstc
G

Rp
∣∣
stc (9)

The diode ideality factor and the series resistance are
assumed to be independent of the cell temperature and solar
irradiance in this work. Fig. 2 shows the I-V and P-V charac-
teristics of the PV module under different conditions.

B. LITHIUM-ION BATTERY MODEL
Two methods can be used to model the battery behav-
ior, namely, physics- and electrical-circuit-based mod-
els. Physics-based models suffer from high complexity
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FIGURE 2. The I-V and P-V characteristics of SM55 PV module: (a) at a cell
temperature of 25 ◦C; (b) at an irradiance of 1 kW/m2.

FIGURE 3. Equivalent circuit model of a lithium-ion battery.

and require extensive computational efforts to solve the
time-varying partial differential equations and cannot directly
be connected to the rest of the system. On the other hand,
the electrical-circuit model (ECM) is much simpler and eas-
ier to be combined with other system components [33].
Therefore, the ECM is adopted in this work to model the
battery cells. As shown in Fig. 3, it includes three items:
1) the open-circuit voltage (OCV); 2) the internal resistance
(R0); and 3) the diffusion voltages represented by parallel
resistor-capacitor (R1 and C1) sub-circuit. For model-fidelity
enhancement, these items are often expressed as functions of
the cell’s state of charge (SoC) and the internal temperature.
However, for the sake of simplicity, only the SoC will be
considered in this work. Thus, the discrete-time model of the
terminal voltage is written as [34]:

v [k] = OCV (SoC [k])− i [k]R0 − iR1[k]R1 (10)

and

iR1[k + 1] = exp
(
−

Ts
R1C1

)
iR1[k]

+

(
1− exp

(
−

Ts
R1C1

))
i[k] (11)

where Ts is the sampling period.
Matlab/Simulink can be used to estimate the parame-

ters of the Li-ion battery cell (27.625 Ah capacity) [35].

FIGURE 4. Battery-model waveforms of (a) the input current, (b) the
output voltage before and (c) after the parameter estimation.

TABLE 3. The estimated parameters of the battery cell at different values
of SoC.

Experimental data of the input current and output voltage are
defined in the parameter-estimation tool in Matlab. An initial
guess is first given for each parameter, which is then modi-
fied by the estimation tool, resulting in the final parameters
presented in Table 3. Fig. 4 shows the output voltage before
and after the parameter estimation process. It can be noticed
that the output voltage of the model after estimation coincides
with the experimental waveform, confirming the estimation
accuracy.

C. DC-DC CONVERTER
The DC-DC converter is used for matching between the
load voltage (Vpv) seen by the PV panel and the maximum
power point voltages (Vmpp) at any environmental conditions
by controlling the converter’s duty cycle (D). The boost
converter is used in this work because it is more sensitive
to changes of D than the buck and buck-boost convert-
ers [36]. The equivalent circuit of the boost converter is
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FIGURE 5. Equivalent circuit of a DC-DC boost converter.

FIGURE 6. The control block diagram of the proposed method.

shown in Fig. 5, and the relation between the output and input
voltages is as follows [5]:

Vout = Vin

(
1

1− D

)
(12)

where D must be in the range of 0 ≤ D < 1.

III. PROPOSED ANFIS-BASED MPPT METHOD
Non-uniform operating conditions ormodulesmismatch have
a significant impact on the performance of a PV array [13].
Considering a PV array consists ofN number ofmodules con-
nected in series or parallel, even if onemodule receives differ-
ent irradiance, for example, due to shades, the output power
of the whole array significantly decreases. This power loss
and its issues are typically reduced using bypass and blocking
diodes in the cases of the series and parallel connected mod-
ules, respectively [37]. Under such a condition, the modules
need to be rearranged first to maximize the output extracted
from this array. Then, the MPPT is employed to detect the
global MPP.

A. PRINCIPLE OF THE PROPOSED METHOD
Fig. 6 shows the control diagram of the proposed method.
The proposed method utilizes an ANFIS-based controller to
determine the MPP voltage for each module. Then, based
on these voltages, it estimates the MPP current of the PV
modules using (1). After that, the maximum power is cal-
culated for each possible system configuration depending on
the estimated values and the operating conditions to choose
the optimal arrangement ( ) and detect the optimal operating
voltage (Vopt ). The optimal voltage is then used as the refer-
ence signal for the DC-DC converter controller to decide the
duty cycle of the switching device according to the battery
output voltage.

FIGURE 7. 4 × 1 Gaussian MFs before and after training of the ANFIS
model.

FIGURE 8. Root mean square error at different MFs.

B. MPP VOLTAGE AND CURRENT ESTIMATION USING
ANFIS
The ANFIS function (Genfis1) in Matlab toolbox is used to
generate a Sugeno-type fuzzy inference system that initializes
the membership function parameters [38]. The ANFIS func-
tion uses actual data of G, T , and Vmpp to learn the ANFIS
model by adapting the membership functions parameters and
the output parameters of Sugeno output equations by apply-
ing a hybrid learning rule algorithm [14].

A set of 143 training data is obtained using the dynamic
model of the PV module discussed in Section II-A. Also,
this data is used as test data to indicate the individual error
between the learning data and the predicted data. During
the training process of the ANFIS model, the membership
functions parameters are modified till the root mean square
error (RMSE) is reduced to a minimum value according to
the selected number of epochs. Fig. 7 shows 4× 1 Gaussian
MFs as an example of input data fuzzification before and
after these MFs are adapted by the ANFIS function. For
different groups of input-Gaussian MFs, Fig. 8 shows how
the RMSE between the actual Vmpp and the predicted outputs
is improved after 150 epochs for the predetermined learning
data. When the input G is fuzzified in more than two MFs,
the RMSE decreases rapidly after a few numbers of epochs,
as shown in Fig. 8. In addition, the RMSE is improved due
to increasing the number of MFs that increase the number of
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FIGURE 9. %Error between the testing data and the predicted outputs of
ANFIS.

FIGURE 10. I-V curves of four modules under different operating
condition.

rules as it equals the number of MFs of input G times MFs
of input T . However, minimizing the number of rules is very
important to avoid complexity in system design.

The predicted outputs of the different ANFIS models have
been compared with the actual data, as seen in Fig. 9. The
percentage errors between the actual and the predicted output
from the ANFIS models with 4× 1 MFs and 2 × 2 MFs are
less than 0.5%. These small errors confirm a high precision in
the predicted Vmpp. Also, with the lowest number of MFs in
the 2× 1 model (minimum number of rules), the percentage
error between the actual data andANFIS output is near 1% for
many data sets. The error in these points is reduced when the
input G and T data is fuzzified into three MFs (3× 3 ANFIS
model). This model attains error less than 0.1%. However,
3×3 model increases the number of rules to 9, increasing the
system complexity.

Once the MPP voltage is obtained for each module
installed in the PV system, the MPP currents can be easily
determined using (1). These estimated voltages and currents
are then used to select the optimal configuration and obtain
the optimal operating voltage, as will be described in the
following subsections.

C. OPTIMAL CONFIGURATION SELECTION (OCS)
For series-connected PV panels working under different oper-
ating conditions, bypass diodes are vital to bypass those that
fail to supply the demanded current to the load. Similarly, for
parallel-connected PV modules, blocking diodes are needed
to block the current flow through the modules that fail to
generate the demanded voltage of the load.

The maximum power of any system configuration (i.e.,
series, parallel, or series-parallel) can be calculated using the
MPP’s voltage and current of each module. As an illustration,

a PV array that consists of four modules (M1, M2, M3,
and M4) is studied. These modules operate under different
operating conditions, giving the I-V curves shown in Fig. 10.
Let us first consider that they are connected in series. If the
system works with the current of M4 (i.e., Im4), the other
modules will be bypassed, and the output power will be
(Vm4Im4), neglecting the forward voltage of the diodes. On the
other hand, if the system draws the current of M3 (i.e., Im3),
only M1 will be bypassed, and the output power will be
(Im3× [Vm4+Vm3+Vm2]). Thus, to get the maximum output
power for the series connection of N number of PV modules,
the currents will be arranged in descending order in an array
(X = [x1, x2, x3, x4, . . . , xN ]) and the corresponding voltages
in another Y = [y1, y2, y3, y4, . . . , yN ]. After that, the voltage
and power will be calculated N times using:{

Vn =
∑n

i=1
yi

Pn = xn ∗ Vn
, n = 1, 2, . . . ,N (13)

Based on the maximum calculated power, the optimal volt-
age of the series configuration can be determined.

Now, let us consider that the modules are connected in
parallel. If the system works with the voltage of M1 (i.e.,
Vm1), the other modules will be blocked, and the output power
will be (Vm1Im1). On the other hand, if the system operates at
the voltage of M2 (i.e., Vm2), only M3 will be blocked, and
the output power will be (Vm2 × [Im4 + Im2 + Im1]). There-
fore, for parallel connection, the voltages will be arranged in
descending order in array Y and the corresponding currents
in X . Then, the voltage and power are calculated as follows:{

Vn = yn
Pn = Vn ∗

∑n

i=1
xi

, n = 1, 2, . . . ,N (14)

As for the series-parallel connection, the determina-
tion of the maximum output power is divided into two
steps. First, each group of series-connected modules is
arranged separately, and Vn is determined using (13). Then,
all the new voltages are arranged again in a new array
(Z = [z1, z2, z3, z4, . . . , zN ]) in descending order, and
the corresponding currents are stored in an array (W =

[w1,w2,w3,w4, . . . ,wN ]). Finally, the power and voltage are
determined as:

Vn = zn, n = 1, 2, . . . ,N

In =
∑n

i=1
wi −

∑1

j=n−i
wj, if i and j are in series

In =
∑n

i=1
wi, otherwise

Pn = Vn ∗ In

(15)

The maximum power obtained for each configuration
using (13), (14), and (15) are used to decide the optimal
arrangement for the PV modules. Also, according to the
selected configuration, the optimal operating voltage can
be detected, which is used to determine the duty cycle of
the converter’s switching device, as will be discussed later.
Since this proposed algorithm is used to select the optimal
configuration, the high accuracy of the calculated MPP is not
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FIGURE 11. The flowchart of the proposed MPPT method.

necessary. Thus, the assumptions discussed here are feasible,
as will be verified in Section IV.

D. CONVERTER CONTROLLER
The duty ratio of the converter switch can be obtained using
the load voltage (Vload ) and the optimal voltage (Vopt ) cor-
responding to selected optimal configuration determined in
the previous section. In the proposed method, the battery
voltage is measured using a voltage sensor and the duty ratio
of the DC-DC boost converter, adopted in this work, can be
controlled via a PI regulator or directly calculated using (12)
as follows:

D = 1−
Vopt
Vload

(16)

The proposed MPPT control algorithm is summarized in
the flowchart shown in Fig. 11.

IV. VERIFICATION AND DISCUSSION
In this work, simulations are carried out in Matlab/Simulink
to verify the feasibility and effectiveness of the proposed
MPPT approach. The ANFIS is validated by comparing its
MPP-voltage predictions with those obtained by the dynamic
PV model. Then, the OCS strategy is verified using an array
of four PVmodules under different and fluctuating irradiance
and temperature. Finally, the proposed MPPT algorithm is
comparatively evaluated with the P&O method.

A. ANFIS-MODEL VERIFICATION
The accuracy of the MPP voltage prediction using the
ANFIS model is tested under different operating conditions

FIGURE 12. Simulation waveforms: (a) The Irradiance and temperature;
(b) The MPP voltage.

(i.e., irradiance and temperature) shown in Fig. 12(a). The
irradiance level varies between 0.4 kW/m2 and 1 kW/m2,
while the temperature changes between 25 ◦C and 50 ◦C.
As shown in Fig. 12(b), the output voltage of the ANFIS
model coincides with that of the dynamic model of the PV
module, confirming that the ANFISmodel provide high accu-
racy for MPP estimation.

B. VERIFICATION OF THE OPTIMAL CONFIGURATION
SELECTION
To verify the optimal configuration selector (OCS), a set of
four PV modules working under different operating condi-
tions are used. Five arrangements (A, B, C, D, and E) are
considered for the PV array, as illustrated by Fig. 13. For the
series-connected modules, one bypass diode is installed for
each module (presented in red in Fig. 13), while a blocking
diode (blue) is used with each branch in the paralleled groups.
Two different cases are tested as follows:

Case 1: The four modules operate at different irradiation
levels of 400, 600, 800 and 1000W/m2, respectively,
with a temperature of 25 ◦C.

Case 2: The four modules work under a different irradiation
levels of 750, 1100, 850, 1200 W/m2 and tempera-
ture levels of 5, 55, 75, 35 ◦C, respectively.

Table 4 gives the obtained results for both cases, using the
algorithm in Fig. 11, including the maximum power and the
optimal voltage for each system configuration (i.e., A, B, C,
D, and E). Base on the determined maximum power, the opti-
mal configuration can be decided. The obtained results are
compared with the actual global MPP and its corresponding
voltage to validate the optimal configuration selection algo-
rithm. Fig. 14 gives the P-V characteristics of the PV array
for each case, showing the global MPP with different system
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FIGURE 13. Different arrangements of PV array composed of four
modules.

configurations.When these characteristics are compared with
the results in Table 4, it can be seen that the proposed OCS
can effectively detect the GlobalMPP and the optimal voltage
that match those determined using the PV array model.

C. COMPARATIVE EVALUATION
The proposed MPPT method is compared with the P&O
approach to verify its feasibility and effectiveness. The
adopted PV battery system includes ten series-connected
lithium-ion battery cells fed from four PV panels (M1, M2,
M3, and M4) through a boost converter. The initial configu-
ration of the PV array is assumed as (E) (see Fig. 13), and the
initial SoC of the battery is set to 10%. The implementation
of the system in Matlab/ Simulink is shown in Fig. 15. The
two MPPT techniques are compared under three different
operating conditions (i.e., Case (I), Case (II), and Case (III)).
Fig. 16(a) illustrates the operating irradiance and temperature
for the four PV modules under test. The resulting PV wave-
forms of voltage (Vpv), power (Ppv), system configuration,
and converter’s duty cycle (D), and battery SoC using both
MPPT techniques are compared in Fig. 16(b).

FIGURE 14. The P-V characteristics of the PV array: (a) Case 1; (b) Case 2.

In Fig. 16(b), it can be noticed that the proposed MPPT
method allows the PV system to harvest higher power than
the P&O technique. The proposed method increased the out-
put power of the system by 22%, 21%, and 19% compared
with the P&O in Case (I), (II), and (III), respectively. The
impact of this increased power can be observed in the battery
SoC that rises faster with the proposed scheme. These are
because the OCS adopted in the proposed MPPT scheme
can change the initial configuration of the PV system (E) to
the optimal arrangements, i.e., (D) in Case (I), and (C) in
Case (II) and (III), as shown in Fig. 16(b). Additionally,
the proposed MPPT can reach the MPP faster than the P&O
algorithm because the former adopts computational means to
find the global MPP depending on the ANFIS model with

TABLE 4. The results obtained by the proposed strategy of the optimal configuration selector (OCS).

114464 VOLUME 9, 2021



S. A. Ibrahim et al.: MPPT Using ANFIS for Reconfigurable PV-Based Battery Charger

FIGURE 15. Simulink model of the reconfigurable PV-battery system with MPPT using the proposed and perturb & observe methods.

FIGURE 16. Simulation waveforms of the proposed and perturb & observe
MPPT methods: (a) Irradiance and temperature of each panel; (b) voltage,
power, system configuration, duty cycle, and SoC. [from top to bottom].

high accuracy. Although the step size of the P&O can be
increased to improve the MPP tracking dynamics, steady-
state oscillations around the MPP will result, reducing the
tracking efficiency.

FIGURE 17. MPP tracking locus under different operating conditions:
(a) Perturb and observe technique; (b) Proposed method.

Fig. 17 gives a closer observation of the MPP tracking
locus to illustrate another reason for the higher power har-
vesting of the proposed MPPT controller compared with the
P&O. As shown in Fig. 17(a), the P&O technique failed to
detect the global MPP in the Case (II). Instead, it makes
the system stuck at the local MPP because its corresponding
voltage is closer to that of the operating point in Case (I).
This issue called ‘‘MPPT failure’’ has been discussed in detail
in [39].

On the other hand, the proposed algorithm can easily detect
the global MPP and avoid the MPPT failure issue. As shown
in Fig. 17(b), although the voltage corresponding to the local
MPP in Case (II) is closer to the previous operating point in
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Case (I), the proposed method effectively forces the system
to work at the global MPP. This is because the proposed
algorithm employs the OCS that accurately computes the
optimal operating voltage according to the selected optimal
configuration, as verified in the previous Subsection. The
aforementioned results confirm the feasibility and effective-
ness of the proposed MPPT method.

V. CONCLUSION
In this article, a maximum power point tracking technique is
proposed for a reconfigurable PV battery system that works
under non-uniform operating conditions using an adaptive
neuro-fuzzy inference system. Detailed mathematical models
are presented for the different system components, including
the PV panel, converter, and battery, which are employed
to verify the feasibility and effectiveness of the proposed
algorithm. Unlike the traditional MPPT schemes, such as the
P&O, the proposed approach exploits the high accuracy of
ANFIS-based modeling to obtain the MPP voltage of each
module of the PV array. Then, anOCS is adopted to decide the
optimal configuration and detect the corresponding operating
voltage, ensuring maximum power harvesting. According to
the simulation results, the proposedmethod allows the system
to collect higher power compared to the P&O technique by
an average of 21%. Moreover, it provides faster and more
accurate tracking of the Global MPP, even if a potential local
MPP is close to the previous operating point. The practical
implementation of the proposed method will be presented in
a future work.
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