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ABSTRACT To use artificial intelligence to assist in diagnoses applications, a model to utilize quality
data is required, which results in massive time and cost. In medical data, data imbalance occurs because
the amount of data with lesions is less than that without lesions. To overcome this limitation, this study
proposes a progressive growth of generative adversarial networks (PGGAN)-based anomaly classification
on chest X-rays using weighted multi-scale similarity. An anomaly detection method is applied to learn
the distribution of normal images to solve the problem of data imbalance. The use of PGGAN, which is a
model that generates high-resolution images by gradually adding layers, enables to find image characteristics
on a multi-scale and define the similarity between an original image and a generated image. The anomaly
score is calculated by applying the weighted arithmetic mean to a resolution-by-resolution similarity. The
threshold is defined after the analysis of the F1-score, and then the classification performance is evaluated.
The accuracy of the proposed model was assessed using a confusion matrix and compared with that of
a conventional classification model, and the efficiency was demonstrated through ablation studies. The
classification accuracy of the test dataset was 0.8525. Compared to a U-net-based disease classifier with
low-resolution which accuracy was 0.8410, the performance of the proposed model was 0.8507, exhibited
an improvement.

INDEX TERMS Artificial intelligence, computer-aided diagnostics, deep learning, healthcare, PGGAN,
unsupervised learning, X-ray data.

I. INTRODUCTION
Artificial intelligence (AI), one of the main technologies of
the 4th Industrial Revolution, has been studied and applied
in several industries. Accordingly, a variety of AI-based
methodologies for computer-assisted diagnosis have been
studied in the medical service area [1]–[3]. The develop-
ment of an assisted diagnosis tool based on AI enables to
solve issues of this area, such as monitoring healthcare data
collected by massive amounts of sensors and devices [39].
Appropriate diagnosis criteria help to achieve consistent
judgment. In this regard, high accuracy and fast judgment are
influenced by data evaluated and algorithms applied. There-
fore, the use of a good assisted-diagnosis technology based on
AI is expected to improve this process [4], [5]. To apply AI to
the diagnosis of a disease and the detection of lesions, which
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are abnormal changes in the tissue of an organism, a model is
required to understand the disease [40]–[42]. Therefore, it is
necessary to use and process massive data such that AI can
appropriately learn the characteristics of a disease [4], [6].
Additionally, an image expert’s accurate annotation process
is essential in the training data such that AI can recognize
that a disease is an anomaly. These preparation processes
require time, labor, and cost [7]. In terms of the application
of deep learning technology, a variety of models have been
used to minimize the consumption of unnecessary resources.
Conventionally, they have been researched in the categories
of supervised and unsupervised learning.

Wang and Xia [8] proposed a model for diagnosing 14 dis-
eases based on chest X-ray images in a convolutional neural
network (CNN) and attention-based model. In the proposed
method, the attention-based model enabled to detect dis-
eases despite inefficient information of data (position, label,
etc.). This model achieved the second highest area under
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the curve (AUC) score, of 0.781, among the state-of-the-
art (SOTA) models. Wang et al. [9] proposed a method for
detecting chest diseases through weekly supervised multiple
classification by using patients’ frontal-view X-ray images.
In other proposed methods, the network of the pre-trained
classification model was changed, and the multiple-label
deepCNN (DCNN)model was trained [10]–[12]. Thus, faster
and better performance was achieved, such that the anno-
tated data were automatically generated. In [13], a variety
of pre-trained DCNN models were compared to evaluate
their performance, from which ResNET-50 showed the best
performance for seven out of eight diseases [13]. Because
the proposed method used a large dataset with 112,120 data,
it failed to guarantee its performance in the case of data
shortage. Aviles-Rivero et al. [14] proposed an image clas-
sification of the lung with lesions through minimum super-
vision. By applying graph-based semi-supervised learning
and using a multiple classification function, the proposed
method resolved the lack of labeled data. Thus, with the
use of 20% trained data in the lung image classification of
ChestX-ray14 data, the dependency on annotated data was
minimized. The AUC of the GraphX net using 20% of the
data was 0.79.

Regarding supervised learning, the problem of data imbal-
ance, which is caused by the quantity difference between nor-
mal data (without lesions) and abnormal data (with lesions),
has been extensively researched [15]. To solve this prob-
lem in advance, unsupervised learning-based models per-
form learning using only normal data. Tang et al. [16]
proposed a classifier for detecting chest diseases using a gen-
erative adversarial network (GAN). In the proposed model,
the structures of the discriminator and encoder were added
to the U-net structure, and chest X-ray images were regener-
ated. The U-Net auto-encoder architecture enables preserv-
ing high-resolution capabilities through connections in the
upsampling process [17]. For classification, the result (fake
image) from the model learning normal images was com-
pared with that from the model learning abnormal images.
The accuracy of the proposed method was 0.841, which
was far higher than that of the U-net architecture, of 0.627.
Nevertheless, the GAN-based learning model requires sig-
nificant resources. The actual data had a high resolution of
1024 × 1024, which was reduced to 64 × 64 in the study.
As a result, data information was lost. Madani et al. [18]
proposed a classifier for detecting chest diseases using GAN.
Compared to the CNN-based classifier [19], the proposed
classifier showed a higher performance (85.10%) in terms
of 2,000 annotated data. When the number of annotated data
was 10, the CNN-based method and the proposed method
had performances of 51.27% and 73.08%, respectively; thus,
there was a large difference in performance. This means that
the proposed method solves the problem of insufficient data
in image classification using deep learning by classification
with the use of small amount of annotated data [20]. Never-
theless, based on the training of adjusted 32×32 images, it is
difficult to consider fine diseases.

For learning, a conventional lesion classifier changes a
high-resolution image to a low-resolution image [21]. Given
that medical images have high resolution, information on
fine tissues can be lost, which negatively influences the
classification [22]. Therefore, in terms of a GAN-based
model for learning the distribution of normal data and dis-
cerning the distribution of abnormal data, this study pro-
poses the use of progressive growth of GANs (PGGANs)
as a base model. This model shows better performance for
high-resolution image generation than the deep convolutional
GAN (DCGAN) [23], [24]. An anomaly score (AS) is defined
by analyzing the similarity between an abnormal image and
a fake image generated using the PGGAN model. It is cal-
culated as a weighted average according to the similarity in
multiple resolutions of an image and the amount of informa-
tion. This study makes the following contributions:

- AI-based assisted diagnosis technology solves the prob-
lem of insufficient human and physical resources in the
medical service area;

- A segmented high-resolution image generation model
overcomes information loss and failures in the detection
of small lesions, which are common in conventional
unsupervised learning-based models;

- Solve the class imbalance problem of medical data using
an unsupervised learning model that learns only the
normal data distribution;

- Analyze similarities considering the scale space of the
data generated by PGGAN. It is possible to find the
invariant features of lesions robustly, despite a scale
change. By weighting the distortion of image regener-
ation through scale and similarity, small-sized lesions
were prevented from being excluded from abnormality.

The remainder of this paper is organized as follows:
Section 2 describes related work on GAN-based high-
resolution image generation and multi-scale image structure
similarity evaluation. Section 3 describes the proposed chest
X-ray anomaly classification method using PGGAN-based
weighted multi-sale similarity. Section 4 describes the exper-
imental results and performance evaluation of the model.
Section 5 presents the conclusions of this study.

II. RELATED WORK
A. GAN-BASED HIGH-RESOLUTION IMAGE GENERATION
Conventional GANmodels have an unstable learning process
and low-resolution images for learning. In the case of gen-
erators and discriminators competitively learning, the higher
the image resolution, the more difficult a generator deceives
a discriminator. In addition, high-resolution images entail
limitations of storage space and learning speed limit. Accord-
ingly, a reduction in the batch size leads to unstable learning
and performance degradation [25]. The proposed model to
solve the problem is the PGGAN. PGGAN learns by adding
layers progressively to the generator and discriminator. With
a progressive increase in resolution, it is possible to first
find the large-scale structure of the image distribution and
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FIGURE 1. Learning process of PGGAN.

to gradually represent detailed features. Fig. 1 shows the
learning process of PGGAN.

As shown in Fig. 1, layer addition starts from the smallest
layer (4 × 4) and ends at the largest layer (1024 × 1024).
At the beginning of learning, the large-scale structure, a fea-
ture found in low-resolution images, is discovered through
image distribution. Through progressive learning, the overall
features of the learning images are trained. Along with layer
growth, detailed features are trained. Through the fade-in
type in the process of increasing the resolution, the output of
the previous resolution layer influences the high-resolution
output. Considering the learning result of a previous layer,
PGGAN progressively generates a high-resolution image
from a large-scale low resolution.

Thus, PGGAN overcomes the limitation of conventional
GAN-based models, which usually generate images with a
low resolution of approximately 64× 64, by creating images
with a high resolution of 512 × 512. In addition, it achieves
stable learning and reduces the learning time through the
layer growth of the generator and discriminator. In the med-
ical imaging field, studies have been conducted on anomaly
classification and nodule detection using the excellent char-
acteristics of PGGAN. Yoo et al. [26] applied PGGAN to
conjunctival melanoma detection to improve performance.
PGGAN was used to generate images with a high resolution
of 256× 256 to solve the problems of data imbalance and data
shortage in ocular surface images. The detection performance
of the data was improved using CycleGAN and PGGAN [44].
However, a GAN model was not applied after the data aug-
mentation.

B. MULTI-RESOLUTION IMAGE STRUCTURE SIMILARITY
METRIC
To detect image features, a variety of feature detection tech-
niques have been applied onmultiple scales. The image size is
inversely proportional to the scale. Therefore, a scaled-down
image shows the entire structure, and a scaled-up image pro-
vides a microscopic feature. Amulti-scale image presented in
such away is called a scale space [27]. In scale space, it is pos-
sible to find image structures from different perspectives. The
simplest method for obtaining a scale space is to size up or
down an image. If a scale space is obtained through a simple

size change, the detailed image features can be lost. Thus,
a conventional image quality assessment method is used to
maintain the image size and obtain the scale space of an
image through blur or lower resolution [28]. A typical image
similarity assessment method considering multiscale is the
multi-scale structural similarity (MS-SSIM) [29]. Unlike the
quality measurement method to discriminate the similarity of
images through the calculation of the distance between pixels,
the structural similarity index measure (SSIM) considers a
cognitive structure and generates a result similar to that of
human perception ability [30]. The luminance, contrast, and
structure of an image are compared, and thereby one local
quality map is calculated. Equation (1) is the formula for
calculating the SSIM:

SSIM (x, y) = [l (x, y)]α[c(x, y)]β [s(x, y)]γ (1)

x and y are the input images for comparison. Functions l, c,
and s calculate the image feature maps of luminance, contrast,
and structure, respectively. α, β, and γ are the variables that
adjust the contribution of each evaluation element. Equa-
tion (2) presents a formula for calculating the luminance of
each image:

l (x, y) =
2µxµy + C1

µ2
x + µ

2
y + C1

(2)

µ represents the mean of the two images. Equation (3) is used
to calculate the contrast of each image:

c (x, y) =
2σxσy + C2

σ 2
x + σ

2
y + C2

(3)

σ represents the standard deviation of each image.
Equation (4) is used to calculate the structure of each
image:

s (x, y) =
σxy + C3

σxσy + C3
(4)

In (2)–(4), Ci(i = 1, 2, 3) is a positive constant to solve
the instability when the operation value of the denomina-
tor converges to zero [30]. After the contribution of the
three elements is adjusted, the final structural similarity of
an image is drawn. Accordingly, visual image features are
obtained by comparing three image features for the struc-
tural evaluation of an image, rather than a simple differ-
ence between pixels. MS-SSIM developed from SSIM can
compare SSIM on multiple scales and discriminate simi-
larity. After blurring an original image, MS-SSIM down-
samples it and considers the K scales of an image in a
top-downmanner (k = 1; full resolution image). Equation (5)
presents the formula for calculating the similarity through
multi-scale SSIM:

MS-SSIM= [lk (X,Y)αK ]
∏K

k=1
[ck (X ,Y )γk ][sk (X ,Y )γk] (5)

In (5), αk , βk , and γk are the variables for adjusting
the relative contributions of each element. With the use of
PGGAN, this study considers the scale space of images in a
bottom-up manner to generate an image (from low resolution
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FIGURE 2. Structure of process for the chest X-ray anomaly classification using PGGAN-based weighted
multiscale similarity.

to high resolution). The method used in this study identifies
a feature through model learning in a random space, rather
than down-sampling-after-blurring, and then increases the
resolution. A generator that learns different resolutions is
used to find the scale space of an image. Thus, the structural
feature of a high-resolution image is found by considering the
information amount of the image at multiple scales.

III. PGGAN-BASED ANOMALY CLASSIFICATION ON
CHEST X-RAY USING WEIGHTED MULTI-SCALE
SIMILARITY
To detect lesions in chest X-ray images, this study proposes a
PGGAN-based model using weighted multi-scale similarity.
The proposed model consists of three steps: pre-processing,
model training, and estimation of the decision boundary.
Fig. 2 shows the structure of the process for chest X-ray
anomaly classification using PGGAN-based weighted multi-
scale similarity.

In the first pre-processing step of Fig. 2, a pre-trainedU-net
is used to remove unnecessary features other than the lung
from an image. In other words, this is the step of lung seg-
mentation [31]. TheNIHChest X-ray dataset applied is image
data that include a patient’s chest, and a diversity of burned-
in annotations and other organ structures [8], [9]. Therefore,
to increase the efficiency of anomaly classification, regions
other than the region of interest (lung) are removed. In the
second step, the PGGAN is trained using normal data. The
PGGAN model can generate images with high resolution.

With the use of the model, an X-ray image is generated as
health data. A normal lung image generation model is trained
only with data that do not include lesions, and compared with
a ground truth image [32]. At this time, as for the fake image
generated in the PGGAN model, in which a random image
is regenerated in the existing random vector, it is difficult to
find a reference image clearly. Accordingly, the latent vector
calculated through the feature extract layer of the discrim-
inator is applied to generate a fake image that matches the
ground truth image [33]. To find abnormal regions in images
with high resolution, it is necessary to detect fine defects
and abnormal regions in multiple scales, such as medically
assisted diagnosis systems for visual inspection [34]. There-
fore, an anomaly is defined by considering a scale space, and
its image is compared with the original image. From the view
of themulti-resolution detected based on the drawn similarity,
an image information amount is weighted, and an AS is
defined. In the last step, the decision boundary is estimated
based on the AS of the entire dataset. With this estimation,
the image is classified into normal or abnormal.

A. DATA PRE-PROCESSING
The NIH Chest X-ray dataset [9] was used in this study as the
data for anomaly classification, which are frontal-view chest
X-ray image data offered by the National Institutes of Health
of the US (NIH).

The data consist of 112,120 images with a resolution
of 1024 × 1024, with a total of 30,805 patient data.
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In addition, they have the labels of 14 diseases (atelectasis,
consolidation, infiltration, pneumothorax, edema, emphy-
sema, fibrosis, effusion, pneumonia, pleural thickening, car-
diomegaly, nodule, mass, and hernia). Because a GAN-based
model learns the probability distribution of data, it is impor-
tant to use a large amount of data. Only normal data were
used as training data, totaling only 50,361 data, excluding
test data and disease-existing data. Among the 14 diseases,
cardiomegaly and hernia are disorders related to the heart
and bowel. As this study focused on the classification of lung
defects, disorders unrelated to the lung were not considered.

An anomaly is defined as one of the 12 diseases related
to the lung. In terms of lung diseases, the lesion region is
very small compared to the entire image size. For this reason,
the presence of a lesion has no influence on a feature of the
entire image. In addition, X-ray images in the NIH dataset
include a patient’s physique, organs, and various components.
In addition, situational features at the time of shooting X-ray
images, such as a patient’s posture, are influential. These
unnecessary data affect the classification of the abnormal
images. Fig. 3 shows the preprocessing of the chest X-ray
data for the removal of unnecessary features.

FIGURE 3. The preprocessing process of the chest X-ray data for the
removal of unnecessary features.

In the chest X-ray, the original image of Fig. 3 shows
text and unnecessary noise marked with a red dotted line,
which includes an indicator presenting the direction (L; left,
R; right), and objects such as the examinator’s waist belt
shown on the bottom, ormedical tools [35]. These features are
not on the region of interest of the model and are unnecessary
information for lesion classification. Thus, to prevent incor-
rect classification of abnormalities due to other structures,
it is necessary to preprocess unnecessary regions and extract
regions of interest. In the medical service area, U-net [17] is
applied to image segmentation for labeling particular regions
in a medical image. To improve the accuracy of the model,
this study used a pre-trained U-net to perform lung segmen-
tation. The segmented data were used as the learning data
for the PGGAN, which regenerates images. By using the
segmented lung data of the chest X-ray image as learning
data, it is possible to increase the learning accuracy and make
a robust classifier.

B. STRUCTURAL SIMILARITY METRIC OF
MULTI-RESOLUTION IMAGE
The lung data segmented in the preprocessing step were used
as learning data for the PGGAN. The DCGAN-based model

applied for anomaly detection sometimes fails to generate
high-quality images with high resolution. A model using a
generator of low-quality images fails to perform anomaly
classification of images with high resolution [36]. Although
it does not consider detailed features of lesions necessary
for the classification of medical images with high resolu-
tions, it allows many noises. For learning, this study applied
the PGGAN, which supports the stable learning of images
with high resolutions. PGGAN learns by adding layers pro-
gressively to generator G and discriminator D. The layer
addition starts with a small size of 44 and ends with a
large size (512 × 512), sequentially. At the beginning of
learning, a large-scale structure, a feature found in images
with low resolution, is found through image distribution.
With progressive learning, the overall features of the learn-
ing images are learned. Detailed features are trained with
the layer addition. Thus, PGGAN progressively generates
images with high resolutions, overcoming the limitations of
conventional GAN-based models that generate images with
a low resolution of approximately 64 × 64. In this study,
by using PGGAN, images with progressively growing res-
olutions were generated and converted into multi-scale ones.
Thus, it is possible to find the feature vector of an image in a
random latent space. The distribution of normal lung images
is only used as input data, and a model learns the data to
represent lung images without diseases only. Fig. 4 shows the
ground truth image used for learning (a) and the normal lung
image generated by the PGGANmodel that learned a normal
distribution (b).

FIGURE 4. (a) Ground truth image used for learning and (b) normal lung
image generated by the PGGAN model that learned the normal
distribution.

As shown in Fig. 4, the structural features of the lung,
such as its structure and size, are well represented, but the
input image and the generated image fail to match each other.
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To find a matching pair of an original image and a generated
image, the feature extract layer of the discriminator is used
to calculate the feature vector of an image. Fig. 5 shows the
architecture to obtain a fake image matching the input image
through the feature extractor.

FIGURE 5. Architecture to obtain a fake image matching the input image
through the feature extractor.

Fig. 5 shows the seven-step progressive image generator
used for classification of abnormal images. It is composed
of the discriminator and generator network of the PGGAN
trained with normal images. The generator creates images
for seven types of resolutions from 23 × 23 (the smallest
resolution in which the lung structure is identified) to 20×20.
The latent feature vector of the input image(x) is obtained
using the last feature extract layer of the discriminator. Based
on the feature vector of x, the generator generates images with
various resolutions, thereby obtaining the scale space of the
image(x). With the application of such process, it is possible
to analyze the similarities between images with multiple
resolutions.

C. THRESHOLD DEFINITION USING WEIGHTED
MULTI-SCALE SIMILARITY
To classify chest X-ray images with lesions, it is necessary to
apply the model learned only with normal data. The trained
PGGAN generates a false image using a query image as input
data. Fig. 6 shows the results of the generation of abnormal
lung images in the trained model.

Fig. 6 (a) and (c) show ground truth images of abnormal
lungs; (b) and (d) present the images of abnormal lungs
generated in the model. Fig. 6 shows the failure to generate
differences in the chest structural deformation and contrast
of the abnormal lung. In the case of such a disease diagnosis,
the human perception ability was used to determine the struc-
ture and level of turbidity. Therefore, to detect lung defects,
this study used an image similarity calculation technique
based on human perception ability to define an anomaly. The
image quality assessment method used in this study was the
full-reference (FR) method, which calculates the similarity
with the image generated in a GAN model using the entire
information of an original image. Because a metric similar to
the human perception ability was applied [37], the structural
and perceptual features of the image generated by GAN were
considered. Based on a scale space, the deformation of a fine
region was also considered. Abnormal regions for detection,

FIGURE 6. (a) and (c) show ground truth images of abnormal lungs;
(b) and (d) present the images of abnormal lungs generated in the model.

such as fine lesion tissues or medical equipment in the lung
region, have diverse sizes. Accordingly, if any defect that
is clearly different from that in an original image is found,
it should be considered a significant region in anomaly clas-
sification regardless of size. In addition, regardless of whether
the fine lung defect is outsized by other anomaly regions,
its image should be clearly classified as an abnormal image.
To do this, similarity analysis was conducted in multiscale.
Each of the different scales appropriately presents the features
of different objects in an image. The abnormal regions to
detect include the deformation of organ structures, such as
noticeable atelectasis and relatively small pulmonary nod-
ules. Considering different image features depending on the
scales, it is possible to find detailed representation features
of an image. Appropriate features and objects are detected
faster from low-resolution images than from high-resolution
images. In addition, some features that are not found in a
low-resolution image are obtained in a high-resolution image.
After the images with progressively growing resolutions were
obtained, defects in the images with low resolutions were
detected. Subsequently, the coarse-to-fine method of veri-
fying the defects progressively and accurately was applied.
This method analyzes image features in diverse resolution
solutions and provides a weight to consider detailed features
of images. For the dataset that includes normal and abnormal
images, the AS values of all images were drawn, and then the
threshold for the classification of abnormal images was found
through min-max scaling [38]. Equation (6) is the structural
similarity assessment formula in weighted arithmetic mean-
based multi-resolution:

AS = 1−

∑n
i=1 wi · S(xi, x̂i)

n
(6)

x represents the ground-truth image of the dataset with nor-
mal and abnormal images. x̂ the image generated based on
v (latent vector) generated by the trained D (discriminator of
PGGAN). n is the number of resolutions with the overall con-
tour of the lung in the entire image(x) generated by trained G
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(generator of PGGAN). Accordingly, if the input image size
is 8 × 8, then n = 1. In this study, because an image with a
size 512× 512 was generated, n = 7. w adjusts the degree of
contribution of each resolution to the similarity. Equation (7)
is used to calculate the weight of each resolution:

S (x) =
1

1+ ex

w = S((r − µr + Cr )×
S − µs + Cs

δs
) (7)

r means the resolution, µr represents the median of all reso-
lutions, s represents S(xi, x̂i), the SSIM operation result of a
resolution, µs is the median of s, σs is the standard deviation
of s. C is a positive integer number that prevents one of
the two terms from converging to zero. In the image’s scale
space, row resolution loses pixels, so small anomalies such
as nodules may not exist in the image [39], [40]. However,
high-resolution images have little pixel loss, so nodules exist.
The higher the resolution image, the subtler dissimilarity can
be found. In this case, the influence of nodule dissimilarity
on the arithmetic mean of SSIM in the entire scale space is
minimal.

ALGORITHM 1. Function for calculating an AS of
multi-scale image.

Algorithm 1 Anomaly Score Calculation Function in Multi
Scale Image

Input: Input image(x)
Output: Anomaly Score
CALCULATE Anomaly Score
Create a list RS scale space of input x
Create a list FS scale space of Fake image x̂ with
regenerated image using G(v)
v← Extractfromlastto secondlayerinD(x)
S = []
R = []
for res = 8 to Res
R← Append log2 res
end for
for each rs, fs in the RS, FS do
S ← Appendtheresultof (SSIM(rs, fs))
end for
for each r,s in the R,S do
α← (r − µr + C1)× ( s−µs+C2

σ2
)

w← 1
1+exp(−α)

Anomaly_Score← w ∗ s+Anomaly_Score
end for
Anomaly_Score← Anomaly_Score/len(R)

RETURN Anomaly_Score

This indicates that the smaller the size of the lesion, the less
it is reflected in the Anomaly score. Therefore, it can be clas-
sified as normal compared to diseases in which dissimilarity
is relatively large at all resolutions (e.g., organ deformation).
The weights control the contribution of small anomalies to
the anomaly score. By normalizing the image resolution and

the SSIM score of the scale space, the influence of small
lesions found at high resolution is increased. Since each
resolution must be considered, the similarity analysis value
cannot be zero. Therefore, the calculated value gets the final
weight through the reverse sigmoid function. Algorithm 1
presents the function of calculating the anomaly score (AS)
of a multiscale image. Algorithm 1 shows the function of
drawing an anomaly of one input image using weighting.
The resolutions considered for the input image range from
a 23 × 23 resolution (in which a lung contour appears) to
Res (the resolution of the input image). It is judged that as
there is considerable fine distortion (texture loss, turbidity)
for each resolution, there ismore information for lesion image
classification.

The importance of the resolution that has more infor-
mation is reflected, and a weighted arithmetic mean is
applied to increase the influence of a scale with a
large distortion. In other words, the information amount
of each resolution is reflected, and their contribution is
adjusted.

IV. RESULT AND PERFORMANCE EVALUATION
The experimental environment for implementing the pro-
posed anomaly classification was as follows: Ubuntu, Intel
Skylake Xeon, NVIDIA Tesla V100 X 2(20RFLOPS), and
RAM 128 GB. Tensorflow back-end engine was used as
the software for the implementation. The training data for
the model generating an image were only normal data. The
model was trained using 50,361 normal image data. Two test
datasets were generated and used for the threshold defini-
tion and validation. Each dataset consisted of 3,000 normal
data and 3,000 abnormal data preprocessed by the proposed
method in this study. Abnormal data include at least one
disease. Based on all data ASs calculated using the afore-
mentioned AS calculation method, a threshold was defined
using the F1-score. Binary classification was performed
based on the individual distribution of abnormal scores
considering the threshold. Thus, images of the test dataset
were regenerated, and a comparison with a conventional
model for detecting lung defects was conducted [41]–[44].
As performance evaluation indexes, confusion matrix-based
F1-score and AUC index were applied. The performance
was evaluated using three methods. The first method con-
sisted of using the weighted multi-scale similarity based on
the decision boundary set through the F1-score. The sec-
ond was to compare the proposed model with a classifi-
cation model that includes a conventional generator. The
third was to evaluate the excellence of the proposed algo-
rithm in the ablation test based on the anomaly calculation
method.

A. THRESHOLD DEFINITION USING WEIGHTED
MULTI-SCALE SIMILARITY
For the binary classification of medical images in normal
and abnormal categories, a threshold was defined. A ran-
domly specified threshold would be inaccurate, and the
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allowable range of normality could be significantly changed
along with a shift in the threshold. Therefore, the F1-score
was used to find an appropriate threshold. Fig. 7 shows
the results from the AS distribution with the first test
dataset.

FIGURE 7. AS distribution of the first test dataset.

The orange points (×) in Fig. 7 represent normal images
without any defect. Blue points (•) represent abnormal
images. Through this distribution, it was possible to find
the boundary between normal and abnormal images. To find
an accurate threshold, the F1-score values were compared.
Fig. 8 shows the F1-score as a result of abnormal image
classification based on the threshold, such as to identify an
effective threshold for abnormal image classification.

FIGURE 8. F1-score as a result of abnormal image classification based on
the threshold.

When the threshold was 0.75, the image classification
performance was the lowest; when it was 0.19, images
were more effectively classified. Therefore, a threshold of
0.19, was applied to the classification of the second test
dataset. Table 1 lists the confusion matrix through threshold
classification.

TABLE 1. Confusion matrix through threshold classification.

Based on the confusion matrix of Table 1, the follow-
ing values were obtained: classification accuracy of 0.8525,
recall of 0.9163, precision of 0.8125, and F1-score of 0.8524.
In this study, data (True) whose values were higher than the
threshold were considered to be normal data, and data (False)
whose values were lower than the threshold were classi-
fied as data with lesions. Regarding incorrect classification,
634 normal data (10.56%) were classified as abnormal data,
and 251 (4.18%) abnormal data were classified as normal
data. In healthcare systems that require correct diagnosis
and timely treatment, incorrect diagnosis is fatal to patients.
Thus, the low rate of misdiagnosis in the proposed method is
significant.

B. ANOMALY CLASSIFICATION RESULT ON CHEST X-RAY
The AS of a high-resolution image drawn using the pro-
posed method was calculated. The anomaly classification
was performed according to the threshold defined earlier.
Table 2 presents the results of the proposed PGGAN-based
anomaly classification. Table 2 presents the ground-truth and
generated images. Low ASs calculated using the proposed
technique indicate that the image is abnormal. Based on
the threshold (θ = 0.81) defined earlier, the images were
classified as normal and abnormal. In the case of normal
images, the organ structure and detailed tissues were well
presented. In the case of abnormal images (nodule), the nod-
ule in the boundary box of the ground truth image was
not presented well. The resolution-by-resolution generator
group progressively generating fake image learns the entire
data distribution and generates an image using the latent
vector of the input image. It retains the main features of
the query image and regenerates an image based on the
distribution of different image data. Therefore, distortion can
be found between the images generated by the generator
and the ground truth image. As for normal images, as the
generator was trained with normal images, it effectively
represents structural similarities. In contrast, for abnormal
images, the generator fails to represent a structural shape and
causes considerable distortion. In such a case, distortion (or
the reflection of a different image feature), rather than the
lesion region to detect, can influence the AS. For this reason,
through the generator trained along with progressively grow-
ing resolutions, it is necessary to find scale-invariant features
and give a different weight depending on the information
amount of the image. Along with the learning process of
PGGAN, the distortion influence of the fake image shape
is reduced, and the influence of the fine lesion region not
generated is improved. In addition, through the GAN model
considering progressively growing resolutions, it is possible
to consider the features of medical images with high resolu-
tions efficiently.
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TABLE 2. Results of the proposed PGGAN based anomaly classification.

C. EVALUATION OF MODEL FIT THROUGH COMPARISON
WITH EXISTING STUDIES
In the first goodness-of-fit assessment, the abnormal-chest
X-ray classifier of conventional models was compared with
the proposed model based on the AUC score in terms of accu-
racy. Themodels comparedwere aU-net Auto Encoder-based
model (one-classification SOTA model for NIH dataset [9]),
an encoder-based model, and a CNN-based model with
VGG16. These models were used to classify 64 × 64 and
1024 × 1024 images [13], [43]. Table 3 shows the classi-
fication AUC results of the conventional one-classification
models and the proposed model.

TABLE 3. Classification AUC results according to the resolution of the
existing model and the proposed model.

The models in Table 3 downsampled the chest X-ray
dataset of the NIH and then classified the images. In the
experimental environment of the NVIDIA TITAN Xp GPU,
the PyTorch framework was used for classification. To pre-
vent information loss at the time of down-sampling, the aim
was to maintain the features of images with high resolutions
through the skin-connection of the Auto Encoder structure.

However, because features were trained in a DCGAN-based
model, no high performance was achieved at high resolu-
tions. On the contrary, the proposed model calculated the AS
through multiple scales to find detailed features of lesions
at high resolutions. In the comparative experiment, an image
with a low resolution of 64×64 was used as the input image.
In short, a smaller scale space than that with 512 × 512 was
considered. Therefore, the classifier in the proposed method
showed relatively lower accuracy owing to image feature
loss, but produced high performance at both low and high
resolutions.

For comparison of classification results of higher resolu-
tion images (1024×1024), proposed classifier was compared
with a CNN-based classifier using VGG16. Fig. 9 shows
the classification results of the CNN-based model with
VGG16 and the proposed model.

FIGURE 9. Classification results of the CNN-based model with VGG16 and
the proposed model.

TheCNNbasedmodels in Fig 9was usedwithout changing
the resolution of the original data. Therefore, it is possible to
classify images without losing the high-resolution features of
the data. As a result of comparing the proposed model and
the CNN-based model, the performance of recall was similar
at about 0.6. However, there was a meaningful difference in
accuracy. This means that our model can classify the anoma-
lies properlymore than the comparedmodel. In the healthcare
system, the timely judgment of abnormalities is effective for
preventing disease and treatment of patients. Thus, our model
is relatively suitable.

In the second goodness-of-fit assessment, the accuracy
of the proposed anomaly classification was evaluated in an
ablation study. In the AS calculation process, each factor
influences classification performance. Table 4 presents the
performance of the classifier in the proposed anomaly clas-
sification (ACM, anomaly classification model; S, structural
similarity index metric; M, multi-scale image; W, weighted
score). In Table 4, ACM_S classified abnormal data using
the structural similarity of images with high resolutions. As it
compared images in one resolution, it failed to consider
invariant features. Accordingly, ACM_S showed the degree
of distortion of the GAN-generated image and its original
image, rather than the regions that discriminate legions.
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TABLE 4. Performance of classifiers in the proposed anomaly
classification.

ACM_MS can find invariant features of images at diverse
resolutions using multi-scale similarity. However, because
it does not consider the amount of information in each
resolution for anomaly classification, it failed to find
non-similarities caused by fine lesions. Therefore, although it
was effective at detecting a relatively wide abnormal region,
such as the deformation of organ structures, it did not discrim-
inate a fine lesion. To discriminate fine lesions, the model
proposed in this study uses weighted multi-scale similarity
in consideration of resolutions and information amount. The
proposed ACM_WMS model through repeated experiments
showed the highest classification performance with 0.8592.
Accordingly, we prove the effectiveness of anomaly classifi-
cation using the weighted multi-similarity in this study.

V. CONCLUSION
Data imbalance is a common problem in medical images,
caused by the quantity difference between normal data (with-
out lesions) and abnormal data (with lesions), and requires
excess resource consumption due to annotation. In addition,
high-resolution data must be considered to detect the features
of fine lesions. To overcome these problems with chest X-ray
images and classify anomalies, this study proposed a chest
X-ray anomaly classification model using PGGAN-based
weighted multi-scale similarity. The proposed method uses
the PGGAN-based anomaly classification model trained with
normal data. The anomaly classification model using semi-
supervised learning is unstable and cannot generate images
with high resolution. PGGAN enables to achieve stable learn-
ing and generate high-resolution images through progressive
layer learning. Additionally, it does not require the creation
of a scale space for the analysis of image similarity. As the
PGGAN model is trained along with growing resolutions in
a latent space, the multi-resolution information of images is
provided. Accordingly, it is possible to obtain a scale space
and compare diverse features. By segmenting the lung in a
chest X-ray image and using the segmented data as training
data, it is possible to minimize the influence of data noise
on the learning result. Failure to learn the distribution of
abnormal data leads to a failure to learn the features of
images with lesions and a failure to represent the struc-
tural features of abnormal images. Therefore, the multi-scale
structure similarity of drawing a similarity in consideration
of human perception ability was multiplied by the infor-
mation amount of each resolution, and thereby an anomaly
was defined. A threshold used for classifying abnormal lung
images through the defined AS distribution was chosen based
on the F1-score. When the test dataset was classified based
on the defined threshold (θ = 0.81), the accuracy rate

was 85.2%. In addition, the proposed classifier drew the
AUC score (0.8507), which was improved compared to that
of the semi-supervised anomaly classifier. In other words,
it obtained stable learning results for high-resolution images.
In an ablation study, the anomaly calculation method consid-
ering the image information amount in multi-scale enabled to
consider the detailed information of high-resolution images.
Thus, the proposed semi-supervised learning-based model,
as an automated assisted diagnosis tool, contributes to the
development of healthcare systems. In future work, the model
will be expanded to a multi-classification model that can
judge not only the existence of diseases but also the types
of various diseases and locations. Accordingly, it can provide
an improved auxiliary opinion for disease diagnosis of health-
care providers.
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