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ABSTRACT The ability to recognize the medium access control protocol employed by a network can
facilitate the incorporation of a cognitive radio into an existing network by elucidating an integral aspect
of network behavior. Since the way in which users access the electromagnetic spectrum is one of the most
prominent distinctions between reservation based and contention based medium access control protocols,
the first part of this work exploits the regular timing of transmissions from networks utilizing reservation
based time-division multiple access (TDMA) protocols to differentiate between transmissions governed by
TDMA and by contention based carrier sense multiple access (CSMA) protocols. Our approach leverages
modular arithmetic to identify periodicity in transmission timings and an unsupervised k-means algorithm to
generate distinct TDMA and CSMA clusters. Several supervised machine learning algorithms are explored
to build a protocol classifier. We then present a method of distinguishing between transmissions from
multi-channel frequency division multiple access (FDMA) based networks and single channel networks.
This method uses an automated machine learning clustering algorithm to obtain an estimate of the actual
center frequencies of channels utilized by a network. Such information can be used to determine whether
the network is employing an FDMA protocol to access the electromagnetic spectrum.

INDEX TERMS Classification, clustering, machine learning, medium access control protocol, wireless
communications.

I. INTRODUCTION
Increased use of the electromagnetic spectrum in recent years
has led to the development of new technologies with the
ability to assess spectrum usage and to adjust transmission
parameters intelligently to take advantage of unused fre-
quency bands. For adaptive nodes to utilize vacant spectrum
channels efficiently without causing unintended interference
to other users, it is beneficial to determine how other networks
are accessing a particular channel. If such information is
known, a user can, for example, tailor transmitted packets to
fit into a particular time slot. The method by which nodes
of a communications network share frequency channels is
referred to as the medium access control (MAC) protocol.

The majority of the work concerning medium access con-
trol protocols for wireless communication networks centers
around the development and design of efficient time-slotted,
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random access, and hybrid protocols. Lai et al. [1] designed
medium access protocols for cognitive users to access the
spectrum opportunistically in the absence of primary users.
They focused on determining the probability that a channel is
occupied during a given time slot. Yahya and Ben-Othman [2]
discussed MAC protocols for wireless sensor networks,
including their design and the various advantages and disad-
vantages associated with each. Este et al. [3] investigated the
implementation of the support vector machines algorithm to
identify traffic emanating from specific applications, while
Soysal and Schmidt [4] performed internet traffic classi-
fication using flow traces. There exist numerous surveys
providing detailed discussion of MAC protocol design for
both wireless sensor networks and cognitive radio networks
[5]–[10]. A number of authors have investigated the use of
machine learning for improved MAC protocols, for primary
user detection, and in cognitive radio networks [11]–[16].

Over the last few years, there have been several studies into
employingmachine learning and deep learning algorithms for
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MAC protocol recognition. The publications of Hu et al. [17],
[18] and Yang et al. [19] presented supervised machine
learning approaches to MAC identification. In their works,
the authors used received power and channel state features
combined with a support vector machines model to distin-
guish between TDMA, CSMA, pure ALOHA, and slotted
ALOHA protocols. These methods assume identical trans-
mission power for the nodes in the networks under consid-
eration, and assume that each packet transmission duration
in TDMA and slotted ALOHA systems is exactly equal to
the length of the time slot. Laghate et al. [20] applied a
fourth-order cumulant-based modulation type algorithm to
classify TDMA, CDMA, and OFDMA channel access meth-
ods. Li et al. [21] used long short-term memory learning
models to again classify these four channel access meth-
ods, showing the potential attractions of deep learning for
MAC protocol classification scenarios. Zhou et al. [22] and
Zhang et al. [23] both explored the use of CNNs and SVMs
to classify MAC protocols: Zhang et al. classified TDMA,
CSMA, pure ALOHA, and slotted ALOHA protocols by
converting raw transmission data into spectrograms for CNN
inputs, and Zhou et al. created spectrograms from TDMA,
slotted ALOHA, and Frequency Hopping signals to use
as CNN inputs, with both groups performing manual fea-
ture selection to classify signals using SVMs. Although the
accuracies of the CNN classifiers reached 99%, the maxi-
mum overall accuracy of the various SVMs did not exceed
85%. While these works make simplifying assumptions that
all reservation-based packets are of identical length and fit
exactly the given time slot, our work does not assume perfect
packet reception, identical packet lengths, and transmission
timings in order to account for propagation delays and fluctu-
ating power levels. The accuracy levels achieved by ourMAC
recognition algorithms match or exceed those of compara-
ble works in this area using classical machine learning and
deep learning techniques, with our classifiers performingwell
even when the network traffic is sparse. In addition, none of
these publications considers the identification of FDMA vs.
single-channel networks.

In this work, we develop a new set of metrics to generate
a machine learning feature set for MAC protocol identifica-
tion with the intention of being applied in blind scenarios
to learn more about unknown or uncooperative networks.
We then present a two-stage machine learning approach
to time-division multiple access (TDMA) and carrier sense
multiple access (CSMA) MAC protocol recognition. First,
an unsupervised k-means clustering algorithm is employed
to partition the dataset into reservation-based protocol and
contention-based protocol clusters. These groupings then
become labels for the data, and a variety of supervised
machine learning algorithms are explored to generate a
TDMA/CSMA MAC protocol classifier. Next, we focus
on identifying frequency-division multiple access (FDMA)
based protocols. The algorithm we have developed uses
k-means clustering and an intra-cluster variance based metric
to automatically determine the inherent number of clusters in

a one-dimensional dataset of transmission center frequencies.
The work presented here recognizes the need to analyze
potentially uncooperative networks with no prior knowledge
of their operating parameters, and the development of our fea-
ture sets and algorithms was carried out with this constraint
in mind.

The metrics we develop to generate a machine learning
feature set for MAC protocol identification result in accura-
cies of over 90% when used as inputs to SVM, k-NN and
Naïve Bayes classifiers. Thesemetrics have been created with
the intention of being calculated and evaluated using ML
algorithms in blind scenarios to learn more about unknown
or uncooperative networks, or to provide a cognitive radio
with a better understanding of channel usage in a particular
environment. Inferences made from MAC protocol knowl-
edge can allow adaptive nodes to make more efficient use
of the available spectrum, or can aid in making informed
decisions about effectively deploying jamming signals during
electronic attack scenarios.

II. METHOD
We have developed a TDMA/CSMA protocol recognition
algorithm that integrates both unsupervised and supervised
machine learning techniques. Since the data used for our
algorithm development and evaluation were unlabelled in an
effort to emulate a blind scenario, we began by employing
an unsupervised clustering method to partition the prepro-
cessed data into two groups: reservation based and random
access protocols. These clusters became class labels, and
a classifier was trained to identify new inputs as TDMA
or CSMA governed transmissions. The initial steps of our
FDMA-based protocol identification algorithm involve the
use of an unsupervised machine learning algorithm to cluster
noisy sets of center frequencies.

A. TDMA/CSMA CLASSIFICATION
1) DATASET
The dataset used to develop, evaluate, and refine the algo-
rithm was composed of traces collected from a testbed of
universal software radio peripherals (USRPs) and of traces
generated by the extendable mobile ad-hoc network emula-
tor (EMANE) software, which allows for real-timemodelling
of mobile network systems [24]. Each trace contains features
such as transmit time (microseconds), packet length (bytes),
and center frequency (Hz) for all transmission events during
a period of between two and ten minutes. The number of
nodes in the networks ranged from four to ten, and nodes were
arranged in different topologies over a range of distances pro-
ducing varying amounts of pathloss to prevent the cultivation
of an overly simplified data set by assuming perfect detection
of all packets. The congestion levels of the networkswere also
varied to produce changing traffic loads, such that the average
number of transmissions per minute fell between 300 and
25,000 events.

Each trace contains a record of the transmit time of every
packet sent in the network, so the transmit time feature for
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trace T can be written as T = t1, t2, . . . , tn for a trace
containing n transmission events. This feature was used to
calculate the differences between consecutive transmissions

Td =

t2...
tn

−
 t1

...

tn−1

 =
 td1

...

tdn−1

 (1)

which became the basis of the feature vector generation stage.
Since we intend for this approach to be used in blind scenar-
ios, only the inter-packet arrival time is necessary for imple-
mentation of the recognition algorithm. In such a situation,
information about transmission timings may be obtained by
a node through a method such as pulse detection, from which
time differences between the commencements of transmis-
sion events may be calculated.

In both cognitive radio and military applications, the user
is interested in a particular channel or frequency band, and
so will focus on detecting transmission events in that area
of the spectrum. Although the user is primarily concerned
either with accessing or observing a particular frequency
band, it might not possess knowledge of the exact set of center
frequencies being used by a network due to carrier frequency
offset and measurement errors. Therefore, the node would
be able to obtain the times of transmission events without
knowing the precise center frequencies being used in the
monitored band.

2) FEATURE VECTOR GENERATION
In number theory, modular arithmetic is defined by amodulus
N > 1 and all integers r ∈ [0,N − 1] such that any integer
taken modulo N is congruent to some r ∈ [0,N − 1]. The
congruence class of an integer k moduloN can be determined
by writing k as

k = m ∗ N + r, (2)

where m, r ∈ Z and 0 < r < N . Then,

r ≡ k(mod N ), (3)

and so k is in the same congruence class as r .
The goal of this work is to exploit the regular tim-

ing of TDMA transmissions to facilitate differentiation
between TDMA and CSMA protocols. Ideally, the dif-
ferences between transmission times of TDMA emissions
should be integer multiples of the predetermined time slot
length, τ . Thus for any TDMA transmission time difference
tdi and modulus τ ,

tdi mod τ ≡ 0. (4)

In reality, a variety of factors prevents TDMA transmission
time differences from being exact multiples of the time slot
duration. To account for effects such as noise and propagation
delay, the modulo value of a transmit time difference tdi and
the time slot length τ is normalized with respect to τ so that
near-integer multiples of τ are treated as integer values. For
example, suppose the time slot length τ = 8000µs, and a time

FIGURE 1. The histograms provide a visual comparison of the differences
between the rnorm values calculated for TDMA (top) and CSMA (bottom)
protocols. Each histogram has a bin size of 0.02 and is plotted over the
interval from 0 to 0.5.

difference between consecutive transmissions is recorded as
56150µs. Then, 56150 mod 8000 ≡ 150, and so the normal-
ized modulo value is 150/8000 ≈ 0.019. Since 0.019 is close
to zero, this particular transmit time difference is recognized
as a multiple of the time slot duration. Therefore, for

tdi mod τ ≡ r, (5)

the normalized transmit time difference modulo value, rnorm,
is calculated as

rnorm =


r
τ

r < 0.5τ
τ − r
τ

r ≥ 0.5τ
(6)

Then for any td , rnorm ∈ [0, 0.5]. If the majority of
normalized values of transmit time differences modulo τ
are approximately zero, this indicates that transmissions fre-
quently occurred at regular intervals, so they likely adhere to
a TDMA protocol. If the normalized values of transmit time
differences modulo τ are dispersed fairly evenly throughout
the interval [0, 0.5], this then indicates that transmissions
occurred at random intervals, a characteristic of CSMA pro-
tocols. Fig. 1 provides a visualization of the differences in the
rnorm value distributions between TDMAandCSMAnetwork
transmissions.
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Since we assume no prior knowledge of the precise operat-
ing parameters of a network, only the ability to detect packet
timings via methods such as pulse detection, the feature vec-
tor generated for each trace contains two calculated elements:
the mean of the normalized transmit time difference modulo
values, and the variance of the normalized transmit time
difference modulo values. Thus the feature vector for trace Ti
containing n transmission events is [µi, σ 2

i ], where the mean
of the normalized transmit time difference modulo values is
defined as

µi =
1

n− 1

n−1∑
j=1

rnorm,j (7)

and the variance of the normalized transmit time difference
modulo values is defined as

σ 2
i =

1
n− 1

n−1∑
j=1

(rnorm,j − µi)2. (8)

3) TIME SLOT LENGTH ESTIMATION
TDMA is a medium access control protocol that allows mul-
tiple users to transmit on a single channel without collisions.
This is accomplished through segmenting time into a series
of repeating frames that are further divided into individual
time slots. Each time slot is assigned to a network user so
that only one user may transmit at any given time. Time slots
may be re-assigned to accommodate new users entering the
network. In general, due to the slotted structure of a TDMA
network, some portion of the transmissions will inevitably
occur in consecutive time slots regardless of the amount of
network traffic. The percentage of total transmissions that
occur in consecutive time slots will be high for congested
networks, where vacant time slots are rare, but will be low
for uncongested networks where few consecutive time slots
are used from one frame to the next.

CSMA is a medium access control protocol in which
users access the spectrum randomly and opportunistically.
To avoid collisions, users transmit only when the channel
seems vacant. If another transmission is in progress, the user
waits until the ongoing transmission is complete before using
the channel. For CSMA traces, the choice of a potential time
slot duration to use as the modulus has little effect on the
outcome of the modular arithmetic-heavy feature generation,
since the randomness of transmission times will ensure that
mod values are fairly equally spread throughout the interval
[0, 0.5] regardless of themodulus used. Therefore, it was only
necessary to focus on establishing a method of estimating the
time slot duration which produced globally good results for
TDMA traces of varying congestion levels.

Initially, the time slot length for a specific trace was esti-
mated as the minimum transmission time difference. How-
ever, this did not consistently result in an accurate estimation
of the time slot length since in some TDMA traces, the min-
imum transmission time difference was much less than the
time slot length due to noise. Therefore, the time slot duration

used as the modulus in the feature vector generation was esti-
mated individually for each trace by averaging a small per-
centage of the shortest transmission time durations. Several
values between 5% and 10% of the shortest transmission time
durations were tested, with 6% repeatedly producing the best
approximation of the time slot length for the entire spectrum
of network traffic levels. Using such a small percentage of
the shortest transmission time durations to estimate the time
slot length worked equally well for both highly congested net-
works and severely uncongested networks, where often less
than 20% of transmissions occurred in consecutive time slots.
In most cases, the estimated time slot length was within 2%
of the actual time slot duration for TDMA traces.

4) MACHINE LEARNING FOR CLUSTERING AND
CLASSIFICATION
After generating feature vectors for each of the roughly
160 TDMA and 160 CSMA traces, the unlabelled dataset of
over 300 feature vectors was fed into a k-means clustering
algorithm that partitioned the dataset into two distinct clus-
ters, each containing approximately half the entire dataset.
One cluster, centered near the origin, was composed of traces
with low means and low variances. The second cluster was
composed mainly of traces with a mean value of about
0.25 and a variance of about 0.0200.

The cluster indices generated by the k-means clustering
algorithm were then used to label the entire dataset, which
was then split into training and test datasets. Since the
k-means clusters accurately divided the dataset into TDMA
and CSMA clusters, with the exception of only three data
points, these cluster indices were well-suited to being used as
supervised data labels. Fig. 2 shows a plot of the two clusters
obtained as a result of running the k-means clustering algo-
rithm, while Fig. 3 shows a plot of the true TDMA and CSMA
groupings. Various training/test data splits were imposed to
assess the performance of each type of classification model.
The accuracy of each classifier was calculated as

Acc =
TC −MC

TC
(9)

where TC is the total number of cases andMC is the number
of misclassified cases.

Each of the classifiers performed well for the varying
training/test data splits, with all accuracies exceeding 90%.

Initially, the training/test data split was set as 70/30. Mod-
els for k-NN, Naïve Bayes, and SVM classifiers were trained
on 227 data points and evaluated on 99 data points. Using
a 70/30 training/test data split, each of the five classifiers
accurately predicted the class membership of the majority
of the test data, with only a handful of misclassified cases.
For classification models trained on a 50/50 training/test
data split, each subset contained 163 data points. Models
generated for a 30/70 training/test data split were trained on
99 data points and tested on 227 data points. Table 1 contains
the accuracies and misclassified cases for all classification
models and training/test data splits.
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FIGURE 2. Plot of the two clusters obtained as a result of running the
k-means clustering algorithm on a dataset composed of 325 data points.
The centroid of the cluster near the origin is located at (0.0692, 0.0087),
and that of the cluster in the top right of the plot is located at (0.2542,
0.0204).

FIGURE 3. Plot of true TDMA and CSMA trace groupings. TDMA traces are
represented by blue squares, and CSMA traces are represented by red
circles. A comparison between the ground truth clusters and the k-means
clusters (Fig. 2) shows that only three of the 325 data points were TDMA
traces misclassified as CSMA traces. These misclassified points are
outlined by dashed boxes.

B. FDMA-BASED PROTOCOL RECOGNITION
In theory, recognition of an FDMA-based protocol is seem-
ingly straightforward: an FDMA protocol may reasonably
be assumed if the number of different center frequencies
recorded for a set of network transmissions exceeds one.
In practice however, this becomes more complicated. Any
collection of packet transmissions will contain noise, so sim-
ply tabulating and counting the number of recorded center
frequencies used by a network provides a significant mis-
representation of the actual number of channels being used
by network nodes to transmit messages. The goal of this
algorithm is to run an automated clustering algorithm on a set
of center frequencies extracted from a noisy network trace in

TABLE 1. Classifier accuracies for various Train/Test splits. All accuracies
exceeded 90%.

order to obtain an estimate of the set of center frequencies
actually utilized by the network. Such information can then
be used to determine whether or not the network is employing
an FDMA protocol to access the electromagnetic spectrum.

1) DATA COLLECTION
The datasets used to create and refine the FDMA recog-
nition algorithm were generated by software defined radio
testbeds and the EMANE network simulation software. The
software defined radio testbed was composed of USRPs
transmitting data generated by video streaming applica-
tions. Testbed datasets included transmissions from FDMA,
TDMA-FDMA, and CSMA-FDMA networks with between
two and eight nodes arranged in various topologies trans-
mitting over the 2.0-2.1 GHz frequency band. The EMANE
networks consisted of between two and ten nodes transmit-
ting over the 2.4 - 5.0 GHz frequency band, and employed
either a CSMA-FDMA or TDMA-FDMA protocol. Traces
of packet transmissions were collected for each network.
Included in the fifteen recorded trace features are transmit
time in microseconds, packet length in bytes, source and
target node identification, bandwidth in MHz, and center
frequency in GHz. Therefore, a collection of n transmissions
for some network N is recorded in trace TN as follows:

TN =

TxTime1 packetLength1 · · · centerFreq1 · · ·...

TxTimen packetLengthn · · · centerFreqn · · ·


2) CLUSTERING ALGORITHM
A k-means clustering algorithm was run on the set of center
frequencies recorded for all transmissions of the network to
determine the number of channels. In a dataset exhibiting
a relatively low amount of noise, the optimal number of
clusters to generate should be equivalent to the number of
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channels occupied by a network. The algorithm presented
here initially partitions the data into two clusters, and in
each subsequent implementation of k-means the number of
clusters increases by one until the number of channels can
be determined confidently. This optimal number of clusters
is found by identifying the minimum number of clusters that
explains the majority of variance within the dataset.

In every iteration of the k-means algorithm, the variance of
each cluster ci with i ∈ [1, k], denoted σ 2

i , is calculated as

σ 2
i =

1
m− 1

m∑
j=1

|xj − µi| (10)

where m is the number of datapoints x in cluster i, and µ is
the mean of cluster i. These variances are summed to give the
total value of the intra-cluster variances for a set of clusters,

σ 2
tot,k =

k∑
i=1

σ 2
i . (11)

This sum is normalized through division by the variance of
the entire set of center frequencies σ 2

all and is then subtracted
from one so that the resulting value vark corresponds to
the amount of the total variance within the data that can be
explained by segmenting the data into k clusters, such that

vark = 1−
σ 2
tot,k

σ 2
all

. (12)

The vark values for each k are then recorded in a k-by-2
matrix. The first two columns of Table 2 provide an example
of such a matrix.

Plotting the results produces a curve from which the opti-
mal number of clusters can be identified by locating the
point at which the slopes of successive segments begin to
approximate zero. Fig. 4 shows an example of a curve created
using data collected from an 11-node FDMA-based network.
The points on the plot are of the form (k, vark ), where k
corresponds to the number of clusters and vark is calculated
using (12). The slopes of the line segments are labelled
according to the endpoints of the line, so that the slope of
the segment connecting points (k − 1, vark−1) and (k, vark )
is denoted Lk−1,k . Then for each i ∈ [2, k], the slope ratio

ri =
Li−1,i
Li,i+1

(13)

is computed. Table 2 provides an example of slope ratios
calculated for a plot of the (k, vark ) values computed for an
11-node TDMA-FDMA network.

The largest slope ratio, rmax = max(ri), i ∈ [2, k], nearly
always corresponds to the point where subsequent segments
have a slope of approximately zero. When rmax exceeds a
user-defined threshold, the algorithm stops increasing the
number of clusters on which to run the k-means algorithm,
and the optimal number of channels is identified as the num-
ber of clusters corresponding to the maximum slope ratio
rmax . Oftentimes, since the maximum slope ratio is signifi-
cantly greater than each of the other slope ratios, the choice

TABLE 2. Example vark and rk values calculated for an 11-node
TDMA-FDMA network. The optimal number of clusters corresponds to the
point at which the slope ratio rk far exceeds that calculated for other
possible numbers of clusters. Here, this point is identified confidently
at k = 11.

FIGURE 4. Example of a plot of the total variance within the data that can
be explained by segmenting the data into k clusters. The optimal number
of clusters is chosen by identifying the point on the curve at which slopes
of succeeding segments are approximately zero. The curve above was
generated using the trace from an 11-node TDMA-FDMA network, where
channels transmitted packets on center frequencies between
2.457–2.458 GHz and were separated by 0.1 MHz. As evident from the
plot, the curve plateaus starting at k = 11.

of the threshold is flexible. If the maximum ratio remains
below the threshold after some set number of iterations of the
k-means algorithm, another user-defined parameter, the opti-
mal number of clusters is assumed to be one.

After having determined the number of channels the net-
work is likely using to transmit information, the k-means
algorithm is run a final time on the collection of center
frequency data, with the k-value set equal to the estimated
number of channels. This last iteration of the k-means algo-
rithm is then used to create a new list of center frequencies
for the network trace by replacing the cluster index of each
transmission event with the associated cluster centroid. The
new set of center frequencies is appended to the existing trace,
and can be used along with the set of transmission source
IDs to learn which nodes are communicating on each center
frequency.
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The final step of the algorithm involves creating a table
which contains the identification numbers of nodes that are
transmitting on each frequency. It makes a count of the
number of nodes transmitting on each channel, calculates the
mean of the counts, and outputs the average number of nodes
using any channel in the network. If the average number of
nodes per channel falls below 1.5 and the number of channels
in the network exceeds one, the network protocol is classified
as FDMA.

III. DISCUSSION OF RESULTS
The algorithm presented in this paper was trained and tested
on data from single-channel CSMA and TDMA networks,
as well as TDMA-FDMA and CSMA-FDMA protocols. Our
results show that the algorithm we have developed was able
to determine accurately whether the network was adhering to
a single channel CSMA or TDMA protocol, or whether it was
using a hybrid protocol to access the spectrum.

The modular arithmetic method used to generate machine
learning features from network traffic was developed under
the assumption that only packet transmission times could
be reliably detected. Since no additional features, such as
number of nodes, node location, and received power are
required as inputs to the algorithm, this method provides a
way to recognize blindly the MAC protocol of a network.
Repeated iterations of the k-means algorithm partitioned the
unlabelled dataset into two distinct protocol clusters. The
cluster concentrated near the origin contained traces with
features characteristic of TDMA, while the second cluster
contained traces with higher mean and variance values, char-
acteristic of CSMA. Therefore, each cluster could be labelled
confidently as a grouping of TDMA traces or a grouping
of CSMA traces. When compared to ground truth, only
three out of all 325 traces were incorporated into the wrong
cluster.

All classifiers trained on the feature vectors created using
the modular arithmetic method described in Section II-A2
achieved an accuracy of over 90%. Only data points midway
between the cluster concentrations in the feature space were
misclassified.

Although each of the classifiers accurately predicted the
correct class of nearly every test data point, two of the three
classification algorithms, SVM and k-NN, produce only a
hard decision on class membership rather than calculating
the probability that a data point belongs to a certain class.
Therefore, a distinct advantage of the Naïve Bayes classifier
is the option of a probabilistic output, which provides some
idea of the certainty with which a class is assigned to each
input.

For the few misclassified cases of the Naïve Bayes model
for each training/test data split, the predicted probabilities,
along with the coordinates of the data points themselves, are
listed in Table 3. Plots of the misclassified points together
with the set of training data, provided in Figs. 5-7, show
that all incorrectly classified traces were situated between the
CSMA and TDMA clusters.

TABLE 3. Class membership probabilities, actual class, and feature
values for all data points misclassified by the Naïve Bayes classifiers for
various Train/Test splits. All incorrectly classified traces were situated
between the TDMA and CSMA clusters in the feature space.

For two of the five points misclassified by the Naïve Bayes
model trained on 30% of the full dataset, P(TDMA) and
P(CSMA)were roughly equal. In each of the other three cases,
the probability leaned in favor of CSMA. However, since all
misclassified cases were nearer the concentration of CSMA
training data than the concentration of TDMA training data,
it was unsurprising that they were all incorrectly classified as
CSMA traces.

The Naïve Bayes classifier trained on 50% of the entire
dataset misclassified only two of the test data points. Again,
the plot of the misclassified points with the training dataset
confirms that both points were near the boundary between
the two classes in the feature space, and were CSMA traces
incorrectly identified as TDMA traces. Since all training data
points surrounding the two incorrectly labelled points were
TDMA, these misclassifications are not surprising.

The two points misclassified by the Naïve Bayes model
trained on 70% of the complete dataset fell on the border
between the TDMA and CSMA classes in the feature space,
and the output probabilities for each class are roughly equal.
Since the data points are midway between the clusters and
the CSMA class probability is only marginally higher than
the TDMA class probability for each, these misclassifications
are not unreasonable.

The FDMA recognition algorithm was generated and
refined using data from a variety of different protocol scenar-
ios, including TDMA, CSMA, FDMA, TDMA-FDMA, and
CSMA-FDMA networks. All networks utilized between one
and eleven channels, with each channel supporting either a
single node or the entirety of the network’s nodes. An exam-
ple of the vark values for each k in a network using 11 chan-
nels between 2.457 - 2.458 GHz is given in Table 2. These
values represent the amount of variance within data that can
be explained by k clusters for an 11-node TDMA-FDMA
network. As evidenced by the results in Table 2, over 99%
of the variance in the dataset for this particular network can
be explained by segmenting the set of center frequencies into
11 clusters. The algorithm accurately estimated the center
frequencies of all channels, with differences from actual cen-
ter frequencies on the order of several hundred kHz. Similar
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FIGURE 5. Plot of training data and five cases misclassified by the Naïve
Bayes model trained on 30% of the entire dataset. The TDMA data points
are represented by blue crosses, CSMA data points are represented by red
crosses, and the misclassified cases are represented by black squares.
Here, each of the misclassified cases was a TDMA data point incorrectly
predicted to be a CSMA data point. The model-generated likelihood of the
class probabilities for each mislabelled point are recorded in Table 3.

FIGURE 6. Plot of training data and two cases misclassified by the Naïve
Bayes model trained on 50% of the entire dataset. The TDMA data points
are represented by blue crosses, CSMA data points are represented by red
crosses, and the misclassified cases are represented by black squares.
Here, each of the misclassified cases was a CSMA data point incorrectly
predicted to be a TDMA data point. The model-generated likelihood of
the class probabilities for each mislabelled point are recorded in Table 3.

accuracies were obtained for the traces from all FDMA-based
networks in the dataset.

Since the main component of the frequency clustering
algorithm uses an unsupervised machine learning technique,
no training data were required to generate the algorithm.
Therefore, all datasets were used to evaluate the accuracy of
the channel estimation. The frequency clustering algorithm
was tested on 60 sets of network traces, 30 of which were
from multi-channel FDMA networks and 30 of which were
collected from single channel non-FDMA networks. Across
all network traces, the algorithm was tasked with identifying

FIGURE 7. Plot of training data and two cases misclassified by the Naïve
Bayes model trained on 70% of the entire dataset. The TDMA data points
are represented by blue crosses, CSMA data points are represented by red
crosses, and the misclassified point is represented by a black square.
Here, the single misclassified point was a TDMA data point incorrectly
predicted to be a CSMA data point. The model-generated likelihood of the
class probability for the mislabelled point is recorded in Table 3.

a total of 170 center frequencies from noisy traces. This eval-
uation was repeated around a dozen times for differing levels
of added noise. The reasonable range of noise to introduce
to the center frequencies of the simulated data was deter-
mined through a Monte Carlo simulation, which indicated
that detection error generally does not exceed 0.002% for a
1 MHz signal.

To test for accuracy, the algorithm was run on the entire
set of traces eleven times, each time introducing a different
amount of detection error into the set of center frequencies.
The amount of noise added to the center frequencies from
the traces ranged from 0.0 to 0.1% of the channel bandwidth,
which corresponded to±5 kHz. The accuracy was calculated
as the fraction of the 170 center frequencies that were cor-
rectly identified. The majority of the misclassifications were
single channel networks estimated to be transmitting on two
nearly identical center frequencies. Details of the accuracies
and misclassifications for all amounts of detection error are
contained in Table 4. The algorithm consistently identified
over 95%of the center frequencies, with the accuracy improv-
ing as the amount of detection error decreased.

As expected, the number of incorrectly estimated cen-
ter frequencies decreases as the amount of detection error
decreases, and all but a few are within the immediate neigh-
borhood of the actual value. The misidentified center fre-
quencies that were not within a small radius of an actual
center frequency but were equidistant from two ground truth
data points were all from networks where the separation
between channels was 1.6 kHz, the smallest channel separa-
tion throughout the entire dataset. In these cases, the algo-
rithm generally underestimated about one quarter of the
channel frequencies, oftentimes combining data that should
have been grouped into two distinct clusters into a single
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TABLE 4. Accuracy of the frequency clustering algorithm for varying
amounts of detection error. The algorithm consistently identified over
95% of the center frequencies, with the accuracy improving as the
amount of detection error decreased.

cluster with a centroid near the average of the actual center
frequencies. However, although the center frequencies were
not all identified correctly for such networks, the algorithm
was still able to recognize correctly that the network was
FDMA-based.

In order to gauge the efficiency of the algorithm, the run
times for traces of various lengths and protocols were
recorded and examined. All algorithms were run locally on
a PC with an i5-3320M processor running at 2.60 GHz.
The total run time for a trace composed of approximately
800 transmission events collected from an 11-channel net-
work averaged around two seconds, as did the run time
for the trace from a single-channel network with around
750 recorded transmission events. However, although the run
time for the 95,000 event trace log from a three-node FDMA
network remained at just over two seconds, the run time for a
single-channel network averaged closer to two minutes for
a trace with about 50,000 transmission events. Therefore,
the algorithm works much more efficiently for multi-channel
networks. It seems likely that the method used to identify
non-FDMA networks, namely, re-running k-means until the
user-defined maximum number of clusters to consider has
been reached, causes the significantly longer run time for
single-channel networks.

IV. CONCLUSION AND FUTURE WORK
This work presents a MAC protocol recognition algorithm
which exploits the regular timing of transmissions from net-
works utilizing a reservation based TDMA protocol to dif-
ferentiate between transmissions governed by TDMA and
by CSMA protocols. The dataset used to generate fea-
ture vectors, train machine learning classifiers, and eval-
uate the results was collected from a testbed of USRPs
and from network modelling software. We used a modular
arithmetic-based method to extract features from a record of
the transmission times of packets in a network.We then devel-
oped a two-stage machine learning approach to MAC proto-
col recognition, which first involved using an unsupervised

k-means clustering algorithm to partition the dataset into
reservation-based protocol and contention-based protocol
clusters. After clustering, we used these groupings to label
the data and then explored a variety of supervised machine
learning algorithms to generate a MAC protocol classifier.
All classifiers trained on the feature vectors created using
the modular arithmetic method achieved an accuracy of over
90%. Our MAC protocol recognition algorithm performed
well on both highly congested and uncongested networks.

The channel clustering algorithm was developed for the
purpose of recognizingwhether or not a network is employing
a frequency division multiple access based medium access
control protocol. It uses an unsupervised k-means clustering
algorithm on one dimensional noisy center frequency data
to estimate closely the actual center frequencies which a
network is using to transmit packets, and then uses that list
of frequencies to determine the number of nodes transmitting
on each channel. The data sets used to evaluate the accuracy
of the algorithm were collected from both a USRP testbed
and from EMANE network simulator software, and included
various types of FDMA and non-FDMA based networks. The
algorithm accurately identified the center frequencies of the
transmission channels, with accuracy consistently exceeding
95% for differing levels of detection error added to the traces,
and was successful in distinguishing between FDMA and
non-FDMA based networks.

Future work will include extending the MAC recognition
algorithms to accommodate a broader range of protocols,
particularly those that will be utilized by emerging networks,
and finding a more efficient way to recognize networks trans-
mitting on only one center frequency.
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