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ABSTRACT By establishing a linear regression relationship between the projection coefficient of the
empirical orthogonal function (EOF) of the sound speed profile (SSP) and remote sensing parameters of the
sea surface, the single empirical orthogonal function regression (sEOF-r) method was used to reconstruct
the underwater SSP from satellite remote sensing data. However, because the ocean is a complex dynamical
system, the parameters of the surface and the subsurface did not conform to the linear regression model
in strict sense. This paper proposes a self-organizing map (SOM)-based nonlinear inversion method that
used satellite observations to obtain anomalies in data on the sea surface temperature and height, and
combined them with the EOF coefficient from an Argo buoy to train and generate a map. The SSP was
then reconstructed by obtaining the best matching neuron. The results of SSP reconstruction in the northern
part of the South China Sea showed that the relationship between the parameters of the sea surface and the
subsurface could be adequately expressed by the nonlinear neuronal topology. The SOM algorithm generated
a smaller inversion error than linear inversion and had better robustness. It improved the average accuracy of
reconstruction by 0.88 m/s and reduced the mean-squared reconstruction error to less than 1.19 m/s. It thus
offered significant promise for acoustic applications.

INDEX TERMS Sound speed profile, empirical orthogonal function, self-organizing map, nonlinear
inversion.

I. INTRODUCTION
As the basic physical parameter used to describe the acous-
tic characteristics of water columns, the sound speed pro-
file (SSP) is crucial to applications of marine acoustics, such
as underwater target recognition [1], marine environmental
monitoring [2], and underwater communication [3]. Themost
direct way to obtain the SSP is by directly measuring the
sound speed on site, which is time consuming and laborious.
Owing to the significant temporal and spatial variations in
underwater sound speed, it is nearly impossible to obtain
a large-scale real-time SSP through direct measurement.
Marine satellite remote sensing can satisfy the demands of
a large scale and immediacy, but the parameters measured by
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using it are limited to the surface area of water. With recent
developments in observation technologies, such as Argo and
remote sensing, data samples of the underwater profile and
ocean surface are being continually accumulated, and a strong
relevance has been noted between the underwater profiles and
remote sensing data. This has been used to obtain empirical
relations between the surface and subsurface parameters at
sea, and for the real-time remote sensing-based monitoring
of underwater profiles [4]–[11].

As the sound speed is a function of temperature, salinity,
and pressure (depth), the change in it reflects the temporal and
spatial variations in the characteristics of sea water. Acoustic
tomography is an important means of ocean exploration, and
the SSP is an important parameter to this end. Munk and
Wunsch proposed a method for the large-scale inversion of
the SSP by using acoustic rays time differences and used
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this to observe global water temperatures perturbation [12].
To limit the dimensionality of the parameters in SSP-related
Inversion, the empirical orthogonal function (EOF) has been
introduced to provide a compact representation of the SSP.
LeBlanc proved that the EOF as shape function yields the
smallest error in describing the SSP [13], and its first few
orders can be used to reconstruct it [14]. To reconstruct
the underwater profile from surface observation, empirical
relationships between surface quantities and subsurface per-
turbation shape were studied. Stammer and Wunsch found
that variations in the height of the sea surface and its surface
velocity are generally correlated with barotropic, and the
surface kinetic energy of water is controlled by the first baro-
clinic model [15], [16]. Carnes obtained the statistical regres-
sion relationship between the EOF of the vertical temperature
structure and the dynamic surface height [17], and then used
the EOF with a linear relationship to invert the parameters of
the water columns, this is called single empirical orthogonal
function regression (sEOF-r) [4]. The US Navy has adopted
this method as part of modular data prediction for the marine
environment [5]. In the framework of the sEOF-r, MODAS
provides a dynamic climatology that can obtain data on the
height and temperature of the sea surface to predict under-
water structures by constructing synthetic profiles generated
by regression analysis [6]. Based on the assumption that the
empirical relationships are static in time, the vertical structure
of different parameters can be reconstructed [7]–[10]. The
SSP were also reconstructed directly in a global scale via the
sEOF-r method [11]. Although the above methods have been
proven effective, they are all based on a linear framework,
whereas the ocean system is a complex and nonlinear system.
This makes it difficult to describe it accurately by using a
linear system.

With advances in computation power, machine learn-
ing has been gradually proposed for similar problems.
Hjelmervik used k-means clustering and gradient search
to estimated real-time profiles from the surface parameters
[18], [19]. Analyses based on the self-organizing map (SOM)
have been used to extract patterns of the ocean current
featuring dynamic and unique spatial and temporal struc-
tures from data obtained by HF radars [20]. Charantonis
applied the SOM to data on underwater autonomous gliders
to reconstruct thermohaline profiles [21]. In recent studies,
a generalized regression neural network that uses the fruit
fly optimization algorithm has shown a better capability to
reconstruct the salinity profile than the linear method [22].
Su proposed extreme gradient boosting (XGBoost), a new
ensemble learning algorithm, to retrieve anomalies in the
temperature and salinity at altitudes above 2000 m in the
ocean [23]. Compared with traditional inversion algorithms,
machine learning can be used to obtain optimal solutions
without presetting the linear model to improve accuracy.

This paper proposes a SOM-based inversion scheme and
evaluates it through comparative tests on SSP reconstruction
in the northern part of the South China Sea. The South
China Sea is a semi-enclosed marginal sea with a typical East

Asian monsoon climate. Owing to the alternating rotation
of southwesterly winds in summer and northeasterly winds
in winter, the marine and atmospheric environments of the
South China Sea have clear seasonal differences. Due to the
complexity of the ocean–atmosphere system and the unique
topographic effect of the South China Sea, dynamic marine
activities in this region are complex [24], which makes it
difficult to reconstruct the SSP. There is also a lack of data
samples owing to political tensions and suboptimal exper-
imental conditions. Because of the complex perturbation
mechanism of the SSP and the lack of a large number of
samples, a robust reconstruction of the SSP from remote
sensing data in this region could be of immense benefit to
the technical progress in SSP acquirement. By introducing
the artificial neural network, the linear constraint between
the parameters of the sea surface and those of the subsurface
can be eliminated, and the relationship between them can
be established through neuronal topology. Compared with
the sEOR-r method, the results of SSP reconstruction thus
obtained have a smaller error and better robustness, which
improves the accuracy and applicability of the method of SSP
inversion using parameters of remote sensing.

II. METHODOLOGY
The SSP c(z, t) at a specific depth z and time t can be repre-
sented by a 1× n column vector. Each element of the matrix
represents a sampling point at depth z. To provide constraints
on the number of parameters in applications, the c(z, t) is
usually expressed as:

c(z, t) = c0(z)+
∞∑
s=1

as (t)K (z) (1)

where c0(z) is the constant part in the SSP representing the
background profile of the sea that is stable in the long term.∑
∞

s=1 as (t)Ks(z) represents the abnormal value of the SSP that
results from ocean energy and matter exchange. It has time-
varying characteristics but does not affect the background
profile. K (z) is the shape function of the perturbation that
is determined by the characteristics of the sea, and as is the
projection coefficient representing changes in the weight of
the shape function with time. In the SSP inversion, the result
can be reconstructed by the shape functions and their corre-
sponding amplitudes.

The EOF is the most commonly used perturbation shape
function to solve the problem of SSP inversion. It can iden-
tify the main modes of ocean perturbation while reducing
noise [25]. EOFs are obtained by extracting the principal
components of the SSP sample matrix. The SSP anomaly
matrix X is calculated by subtracting the background mean
SSP from the m×n SSP sample matrix, where m is the depth
of the sample profile and n is the number of sample profiles.
The EOF vectors can be derived by principal component
analysis [26], [27]:

R =
1
n
XXT (2)
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RK = KE (3)

where R is the covariance matrix, K is the eigenvector, and
E is the diagonal matrix of the eigenvalues. The non-zero
element ofE represents the variance in perturbation described
by the corresponding column vector of K , which is the EOF
vector. The EOF vector corresponds to the largest eigenvalue
that explains the greatest variance R. In general application,
the first five leading modes with the highest variance are used
to reconstruct the SSP with reasonable accuracy.

In applying remote sensing parameters to reconstruct the
SSP, the sea area is divided into grids (2◦ × 3◦ grids are
considered in this paper) and SSP samples are calculated
by introducing temperature, salinity profiles of Argo to the
empirical formula for sound speed. The perturbation of the
SSP in a grid is considered to follow a law, that is, it is
composed of a unique EOF mode of the sea area. The key to
solving the inversion problem is to establish the relationship
between the remote sensing parameters and the amplitude of
K through historical samples. Based on this, the real-time
remote sensing values can be used to obtain as and then
reconstruct the SSP through (1).

A. INVERSION BASED ON sEOF-R
Based on the parameters of remote sensing and SSP samples
obtained the same time and in the same grid, a linear relation
between the parameters of the surface and subsurface of the
sea can be calculated. The regression relationship between
the projection coefficients of each order of the EOF and the
parameters of remote sensing can be described by [11]

as(t) = As,0 + As,1 × H (t)+ As,2 × T (t)

+As,3 × H (t)× T (t), s = 0, 1, 2, 3, 4, 5 (4)

where H is the sea surface height anomaly (SSHA), T is the
sea surface temperature anomaly (SSTA), as is the projection
coefficient of EOFwhen s is greater than zero, a0 is a constant
term coefficient, and A is an unknown coefficient to be deter-
mined. By using the regression expression (4), the projection
coefficient can be inverted using theH and T as input param-
eters, and the profile can be reconstructed with the help of (1).
It is easy to see that the sEOF-r is based on a linear regression
between the remote sensing parameters of the sea surface and
the projection coefficient. This linear relationship is based on
the statistical results of a large number of samples in a specific
sea area [15]–[17]. The differences between individual and
statistical characteristics may lead to errors.

B. SOM-BASED INVERSION
Given that individuals do not fully conform to the linear
relationship, and a large number of samples are not even
strictly linear, the accuracy of inversion can be improved
by violating the constraints of linear inversion. To improve
inversion accuracy, we introduce the self-organizing neural
network, which is a side inhibition phenomenon in a simu-
lated biological nervous system. That is, nerve cells that win
in the nerve cell competition are excited and the failed nerve

cells are inhibited. The SOM is a vector projection with two
layers, an input layer and a output layer (competition layer),
as shown Fig. 1. It defines the nonlinear projection from the
input layer to the low-dimensional competition layer. In the
training process, the prototype vector moves to follow the
probability density of the input data and keeps the topolog-
ical structure of the data unchanged. The processing flow
of SOM-based inversion is shown in Fig. 2. In the input
layer, EOF coefficients, anomalies in the sea surface height
and temperature, and latitude and longitude are input to train
the SOM, which maps the training data to a discreet set of
classes. In the inversion, real-time remote sensing data are
imput to calculate the distance between pairs of neurons, and
themissing projection coefficients are extracted from neurons
from the best matching class with the minimum distance from
input data [28].

FIGURE 1. SOM input layer and output layer.

The training of the SOM algorithm can be described as
follows:

1) Use linear initialization, where the i-dimensional
weight vector (prototype vector) [m1, . . . ,mi] is initial-
ized in order along the linear subspace formed by the
two main feature vectors of the input dataset. The fea-
ture vector can be calculated using the Gram-Schmidt
method.

2) Randomly select a sample vector x from the input
training dataset, and calculate the degree of similarity
between it and all weight vectors on the map. The best
matching unit (BMU) is denoted by mc, and its weight
vector has the highest similarity with the input sample
x. This similarity is defined by the Euclidean distance
metric, and the BMU is defined as a neuron:

‖x − mc‖ = mini {‖x − mi‖} (5)

3) After finding the BMU, use the batch algorithm for the
prototype vector of the SOM to simply replace it with
the weighted average of the samples, where the weight
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FIGURE 2. SOM-based inversion process.

factor is the value of the neighborhood function:

mi (t + 1) =

∑n
j=1 h

c(j)
i (t)xj∑n

j=1 h
c(j)
i (t)

(6)

where t denotes time, c(j) is the BMU of the sample
vector xj, h

c(j)
i is the neighborhood function (weighting

factor), and n is the number of sample vectors.
4) Select another learning data input to the input layer of

the network, and return to step 2 until all input data have
been provided to the network.

5) Let t = t + 1, return to step 2, and stop when training
times T are reached.

Once the SOM has been trained, The missing pareme-
ters can be then obtained by extracting the corresponding
dimensions from the BMU.Chapman proposed a formula that
uses these data to find the BMU with the closest Euclidean
distance in the SOM, and then employs this unit to fill in the
missing profile parameter [28]:

dpE (X ,Y
p) =

∑
i∈a

1+
∑
j∈b

(
Cp
i,j

)2× (Xi − Y pi )2 (7)

FIGURE 3. Argo distribution and experimental sea area.

where X is the input data item, p is the index of each class,
Y is the reference vector (BMU), dE is the Euclidean distance
between the input vector and the SOM unit, Ci,j is the corre-
lation matrix between the input data and the output data, a
is the set of known information, and b is the set of unknown
information. Finally, the SSP is reconstructed by obtaining
the set of projection coefficients.

III. EXPERIMENT OF SSP RECONSTRUCTION
A. DATA
The SSP samples were obtained from Argo buoy data.
The international Argo plan was implemented in 2000,
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FIGURE 4. Test, training, background profiles.

FIGURE 5. First five EOF modes.

whereby more than 30 countries and international orga-
nizations currently deployed roughly 4000 automatic
profile buoys throughout the world’s oceans to mea-
sure temperature and salinity profiles. The Argo buoy
data used in this paper were from the Global Ocean
Argo Scattering Data Collection (V3.0) (1997/07–2020/06)
(ftp://ftp.argo.org.cn/pub/ARGO)/global/) [29]. Del Grosso’s
empirical formula for sound speed was used to convert the
temperature, salinity, and pressure data into a SSP [30].
For matrix processing, the inversion methods require the
same depth sampling in profiles. As the number of samples
decreases very quickly due to exclusion of shallower profiles
when themaximum depth exceeded 900m, amaximum depth
of 900 m was chosen in order to include more variability
of sound speed and SSP samples. All the profiles were

FIGURE 6. Reconstruction errors between the observed and estimated
profiles for different samples.

FIGURE 7. Reconstruction errors between the observed and estimated
profiles for different depths.

interpolated linearly to the standard depth levels of the World
Ocean Atlas 2013 (WOA13) from depths of 0 to 900 m.

The background profile employed the climatic profile data
of the WOA13, which contained climatic hydrological data
on the ocean (https://www.nodc.noaa.gov/OC5/woa13/) pro-
vided by the US National Oceanic and Atmospheric Admin-
istration’s Ocean Data Research Center (NODC). It consisted
of averaged data from a variety of datasets on the global
temperature, salinity, and density. The data are divided into
annual average data, seasonal average data, and monthly
average data. The spatial resolutions provided are 5◦, 1◦,
and 0.25◦. We used the annual average data from 1995 to
2012 at a spatial resolution of 1◦ × 1◦. The SSP anomalies
were obtained by subtracting the climate profile from the SSP
samples, that is, the buoy profile minus the WOA13 profile.
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TABLE 1. Effects of reconstruction of the first three EOFs.

FIGURE 8. Reconstructed samples of the SSP.

The satellite remote sensing data consisted of the anoma-
lies in the sea surface height (SSH) and sea surface tem-
perature (SST), where the latter were from the US National
Oceanic and Atmospheric Administration (NOAA) data cen-
ter. The time resolution of the data was 1 day and the spa-
tial resolution was 0.25◦ × 0.25◦. The data on anomalies
in the sea surface height were from the Copernicus Project
(https://marine.copernicus.eu/), and had a temporal resolu-
tion of one day and a spatial resolution of 0.25◦ × 0.25◦.
The northern area of the South China Sea was selected for

inversion experiments. This area is affected by the monsoon

season and the complex topography of the South China Sea.
It also features frequent dynamic activities at the mesoscale,
and the influence of mesoscale vortices, front and internal
solitary waves, and other activities aggravates the complex-
ity of profile inversion. The combination of these complex
factors is a challenge for the effectiveness of the proposed
method. Considering the consistency of the EOFs and the
number of samples, data in the range of 17◦ − 19◦ N and
116◦−119◦ E in the northern part of the South China Seawere
selected as shown in Fig. 3. This area is located in the northern
basin of the South China Sea. As shown in Fig. 4, a total
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FIGURE 9. Inverted projection coefficients and input remote sensing parameters.

of 490 profiles were finally obtained. The training dataset
consisted of 439 profiles from 2008 to 2016, and 51 profiles
from 2017 were used as the test set. Once the map had been
generated, it was used to iteratively train the algorithm by
gradually extending the duration of training and reducing the
radius of influence.

B. EOF ANALYSIS
The EOF provided a large number of SSP samples with a
compact description by finding spatial patterns that explained
much of the variance in the SSP perturbation. The first five
shape functions are shown in Fig. 5. From the perspective of
modal shape, the perturbation in sound speedmainly occurred
in the range of depth of 600 m, and the amplitude was
close to zero at around a depth of 900 m. We focused on
reconstruction within 900 m. Table 1 shows the effects of
reconstruction of the first five EOFs. The rates of contribution

of the first five eigenvectors to the variance were 81.35%,
8.35%, 4.10%, 1.81% and 1.21%, respectively, and their
cumulative contributions to the rate of variance wsa 96.82%.
The samples were reconstructed using the first five modes,
and reconstruction values were compared with the measured
values. The root mean-squared error was 0.42 m/s, indicating
that the EOF shape function can adequately represent most
of the variance in perturbation in the region, thus ensuring a
reasonably accurate reconstruction.

IV. SSP RECONSTRUCTION
To evaluate the reconstruction effect of SOM-based inversion
and sEOF-r, the root mean-squared error σ̄ is was used:

σ̄ =

√∑N
j=1

∑M
i=1

[
cm(zi, tj)− cr (zi, tj)

]2
N ×M

(8)
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where cm is the measured SSP, cr is the profile reconstructed
by inversion that varies with the depth z and time t , M
corresponds to the number of depth sampling points, and N
is the total number of SSP samples of the test set.

A comparison of the reconstruction results of the two
methods is shown in Fig. 6. Based on the same EOF mode
and the same number of samples used to construct the rela-
tionship between the parameters of the sea surface and the
projection coefficients, the accuracy of reconstruction of the
SOMmethodwas significantly higher than that of the sEOF-r.
The SSPs reconstructed by using the SOM had a mean error
of 1.19 m/s with a coefficient of determination R2 of 0.99,
which can satisfy the needs of conventional applications.
The error in the linear regression algorithm fluctuated sig-
nificantly, and most of the errors were larger than 2 m/s.
The average error of linear regression was 2.07 m/s with a
R2 of 0.98. The errors of reconstruction at different depths
are shown in Fig. 7. Because the SSP near the surface is
directly controlled by parameters of the sea surface, the linear
relationship which is based on the physical mechanism was
more effective near the sea surface and the sEOF-r errors were
smaller near the sea surface. The optimization processing
of the SOM resulted in low errors in the thermocline, but
increased the error near surface. The large errors for the
linear regression algorithm were obtained at depths close
to 500 m, which may be caused by the water exchange
between South China Sea and Pacific Ocean on the East of
Luzhou Strait [31]. As the linear regression was based on a
large number of samples, differences were obtained between
individual and statistical characteristics that led to uncertainty
in inversion using sEOF-r, especially in the experimental sea
area that featured a strong water transport. Fig. 8 shows the
reconstructed samples of the SSP. The results are consistent
with those in Fig. 6 and Fig. 7. The result of the SOMmethod
was thus in good agreement with the actual profile, whereas
the linear method yielded larger errors in many samples.
Under the constraints of linear inversion, even if the statistical
law had an exact statistical relationship with (4), the differ-
ences between individual characteristics and the statistical
law of a large number of samples inevitably introduced errors.
In the SOMmethod, each sample had a unique transformation
relationship and no linear constraint. The results show that the
error introduced by the inversion relationship was relatively
small.

Fig. 9 shows the relationship between the inverted projec-
tion coefficients and input remote sensing parameters. The
distributions of both show that they did not have a strict linear
relationship, and the actual relationship between the EOF
coefficients and remote sensing parameters was rather non-
linear. The results of inversion of the SOM method were sig-
nificantly better than those of linear regression. The remote
sensing coefficients enabled the accurate inversion of the first
two orders of coefficients, but that of coefficients of the third
order and higher incurred a certain error. The sea surface tem-
perature and height affected changes in the first five orders of
the coefficients, that is, the first five orders accounted for a

large part of the variance in the results. The analysis of the
neural map showed that the SSP can be retrieved using the
remote sensing parameters. In practicality, inversion of five
shape modes is a proper compromise between accuracy and
noise avoidance.

V. CONCLUSION
In this paper, a nonlinear inversion method based on
self-organizing map is proposed. The remote sensing param-
eter was used as input to the BMU to obtain the projection
coefficients for SSP reconstruction. In tests on data from the
northern part of the South China Sea, the SOM-based yielded
higher accuracy than the sEOF-r method.

The analysis of the neuronal topology of the SOM also pre-
liminarily explained the perturbation transfer-based relation-
ship between parameters of the sea surface and the subsurface
profile. The linear relationship embodied in a large amount of
data was not strictly applicable to some sea areas. At the same
time, the first five orders of the projection coefficients of the
EOF had a higher correlation with the parameters of remote
sensing. Choosing the first five order projection coefficients
can satisfy the accuracy-related requirements of the method
of inversion without introducing excessive noise in the high-
order coefficients.

The proposed method also has certain limitations. The
method used to acquire the EOF to establish the inversion
relationship is highly dependent on the number of samples,
which limits its general application. The machine learning
method can reduce the limitations of simple linear fitting so
that the relationship between the parameters can be explored
more accurately. Moreover, as the ocean features the complex
effects of multiple parameters, the neuronal structure is con-
ducive to introduce other parameters, such as heat flux and
wind speed. Currently available methods, including the one
proposed here and the sEOF-r, are statistical, and require the
introduction of physical mechanisms to further improve their
performance.

REFERENCES
[1] N. Han and S. Yao, ‘‘Discrimination of the active submerged/bottom target

based on the total scintillation index,’’ Appl. Acoust., vol. 172, no. 15,
Jan. 2021, Art. no. 107646.

[2] Z. Ying, H. Chen, W. Xu, T. C. Yang, and J. Huang, ‘‘Spatiotemporal
tracking of ocean current field with distributed acoustic sensor network,’’
IEEE J. Ocean. Eng., vol. 42, no. 3, pp. 681–696, Jul. 2017.

[3] A. Song, ‘‘High frequency underwater acoustic communication channel
characteristics in the Gulf of Mexico,’’ J. Acoust. Soc. Amer., vol. 141,
no. 5, p. 3990, Jun. 2017.

[4] M. R. Carnes, W. J. Teague, and J. L. Mitchell, ‘‘Inference of subsurface
thermohaline structure from fields measurable by satellite,’’ J. Atmos.
Ocean. Technol., vol. 11, pp. 551–566, Apr. 1994.

[5] D. N. Fox, W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee,
‘‘The modular ocean data assimilation system (MODAS),’’ J. Atmos.
Ocean. Technol., vol. 19, pp. 240–252, Feb. 2002.

[6] P. C. Chu, W. Guihua, and C. Fan, ‘‘Evaluation of the U.S. Navy’s modular
ocean data assimilation system (MODAS) using South China Seamonsoon
experiment (SCSMEX) data,’’ J. Oceanogr., vol. 60, no. 6, pp. 1007–1021,
Nov. 2004.

[7] J.-H. Park, D. R. Watts, K. L. Tracey, and D. A. Mitchell, ‘‘A multi-index
gem technique and its application to the southwestern Japan/East Sea,’’
J. Atmos. Ocean. Technol., vol. 22, no. 8, pp. 1282–1293, Aug. 2005.

VOLUME 9, 2021 109761



H. Li et al.: Reconstructing SSP From Remote Sensing Data

[8] A. J. Meijers, N. Bindoff, and S. R. Rintoul, ‘‘Estimating the four-
dimensional structure of the southern ocean using satellite altimetry,’’
J. Atmos. Ocean. Technol., vol. 28, no. 4, pp. 548–568, Apr. 2011.

[9] L. Liu, S. Peng, and R. Huang, ‘‘Reconstruction of ocean’s interior from
observed sea surface information,’’ J. Geophys. Res-Oceans., vol. 122,
no. 2, pp. 1042–1056, Feb. 2017.

[10] S. Guinehut, A.-L. Dhomps, G. Larnicol, and P.-Y. L. Traon, ‘‘High reso-
lution 3-D temperature and salinity fields derived from in situ and satellite
observations,’’ Ocean Sci., vol. 8, no. 5, pp. 845–857, Oct. 2012.

[11] C. Chen, Y. Ma, and Y. Liu, ‘‘Reconstructing sound speed profiles
worldwide with sea surface data,’’ Appl. Ocean Res., vol. 77, pp. 26–33,
Aug. 2018.

[12] W. Munk and C. Wunsch, ‘‘Ocean acoustic tomography: A scheme for
large scale monitoring,’’ Deep Sea Res. A, Oceanogr. Res. Papers, vol. 26,
no. 2, pp. 123–161, Feb. 1979.

[13] L. R. LeBlanc and F. H. Middleton, ‘‘An underwater acoustic sound
velocity data model,’’ J. Acoust. Soc. Amer., vol. 67, no. 6, pp. 2055–2062,
Jun. 1980.

[14] M. J. Bianco and P. Gerstoft, ‘‘Dictionary learning of acoustic sound speed
profiles,’’ J. Acoust. Soc. Amer., vol. 140, no. 4, p. 3054, Nov. 2016.

[15] D. Stammer, ‘‘Global characteristics of ocean variability estimated
from regional TOPEX/POSEIDON altimeter measurements,’’ J. Phys.
Oceanogr., vol. 27, pp. 1743–1769, Aug. 1997.

[16] C. Wunsch, ‘‘The vertical partition of oceanic horizontal kinetic energy,’’
J. Phys. Oceanogr., vol. 27, pp. 1770–1794, Aug. 1997.

[17] M. R. Carnes, J. L. Mitchell, and P. W. de Witt, ‘‘Synthetic temperature
profiles derived from GeoSat altimetry: Comparison with air-dropped
expendable bathythermograph profiles,’’ J. Geophys. Res-Oceans., vol. 95,
no. C10, pp. 17979–17992, Aug. 1990.

[18] K. T. Hjelmervik and K. Hjelmervik, ‘‘Estimating temperature and salinity
profiles using empirical orthogonal functions and clustering on historical
measurements,’’ Ocean. Dyn., vol. 63, no. 7, pp. 809–821, Jun. 2013.

[19] K. Hjelmervik and K. T. Hjelmervik, ‘‘Time-calibrated estimates of
oceanographic profiles using empirical orthogonal functions and cluster-
ing,’’ Ocean. Dyn., vol. 64, no. 5, pp. 655–665, Apr. 2014.

[20] Y. Liu, R. H. Weisberg, and L. K. Shay, ‘‘Current patterns on the west
Florida shelf from joint self-organizing map analyses of HF radar and
ADCP data,’’ J. Atmos. Ocean. Technol., vol. 24, no. 4, pp. 702–712,
Apr. 2007.

[21] A. A. Charantonis, P. Testor, L. Mortier, F. D’Ortenzio, and S. Thiriab,
‘‘Completion of a sparse GLIDER database using multi-iterative self-
organizing maps (ITCOMP SOM),’’ Proc. Comput. Sci., vol. 51, no. 1,
pp. 2198–2206, Dec. 2015.

[22] S. Bao, R. Zhang, H. Wang, H. Yan, Y. Yu, and J. Chen, ‘‘Salinity profile
estimation in the Pacific Ocean from satellite surface salinity observa-
tions,’’ J. Atmos. Ocean. Technol., vol. 36, no. 1, pp. 53–68, Jan. 2019.

[23] H. Su, X. Yang, W. Lu, and X.-H. Yan, ‘‘Estimating subsurface thermo-
haline structure of the global ocean using surface remote sensing observa-
tions,’’ Remote Sens., vol. 11, no. 13, p. 1598, Jul. 2019.

[24] S. Sun, Y. Fang, Y. Zu, B. Liu, Tana, and A. A. Samah, ‘‘Seasonal char-
acteristics of mesoscale coupling between the sea surface temperature and
wind speed in the South China Sea,’’ J. Climate, vol. 33, no. 2, pp. 625–638,
Jan. 2020.

[25] E. Pauthenet, F. Roquet, G.Madec, and D. Nerini, ‘‘A linear decomposition
of the southern ocean thermohaline structure,’’ J. Phys. Oceanogr., vol. 47,
no. 1, pp. 29–47, Jan. 2017.

[26] P. K. Kundu, J. S. Allen, and R. L. Smith, ‘‘Modal decomposition of the
velocity field near the Oregon coast,’’ J. Phys. Oceanogr., vol. 5, no. 4,
pp. 683–704, Oct. 1975.

[27] A. Tolstoy, O. Diachok, and L. N. Frazer, ‘‘Acoustic tomography
via matched field processing,’’ J. Acoust. Soc. Amer., vol. 89, no. 3,
pp. 1119–1127, Mar. 1991.

[28] C. Chapman and A. A. Charantonis, ‘‘Reconstruction of subsurface veloci-
ties from satellite observations using iterative self-organizing maps,’’ IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 617–620, May 2017.

[29] Z. Q. Li, Z. H. Liu, and S. L. Lu, ‘‘Global Argo data fast receiving and
post-quality-control system,’’ IOP Conf. Ser., Earth Environ. Sci., vol. 502,
Jun. 2020, Art. no. 012012.

[30] V. A. D. Grosso, ‘‘New equation for the speed of sound in natural waters
(with comparisons to other equations),’’ J. Acoust. Soc. Amer., vol. 56,
no. 4, pp. 1084–1091, Oct. 1974.

[31] J. Hu, H. Kawamura, H. Hong, and Y. Qi, ‘‘A review on the currents in the
South China Sea: Seasonal circulation, South China Sea warm current and
Kuroshio intrusion,’’ J. Oceanogr., vol. 56, no. 6, pp. 607–624, Jan. 2000.

HAIPENG LI is currently pursuing the B.S. degree
with the College of Electronics and Informa-
tion Engineering, Guangdong Ocean University,
China. His current research interests include neu-
ral networks and ocean color remote sensing.

KE QU received the M.S. and Ph.D. degrees in
signal and information processing from Shang-
hai Acoustic Laboratory, Chinese Academy of
Sciences, Shanghai, China, in 2011 and 2014,
respectively. He is currently an Associate Profes-
sor with the School of Electronics and Informa-
tion Engineering, Guangdong Ocean University,
Zhanjiang, China. His current research interests
include acoustic inversion and joint ocean-acoustic
modeling.

JIANBO ZHOU received the B.S. and Ph.D.
degrees in underwater acoustic engineering from
the School of Underwater Acoustic Engineering,
Harbin Engineering University, Harbin, China,
in 2013 and 2018, respectively. He is currently
holding a postdoctoral position with the Depart-
ment of Acoustic and Information Engineer-
ing, School of Marine Science and Technology,
Northwestern Polytechnical University. His cur-
rent research interests include modeling and appli-

cation of ocean ambient noise and related fields.

109762 VOLUME 9, 2021


