
Received July 14, 2021, accepted July 28, 2021, date of publication August 5, 2021, date of current version August 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3102595

Enhanced Service Framework Based on
Microservice Management and Client Support
Provider for Efficient User Experiment
in Edge Computing Environment
RONGXU XU 1, WENQUAN JIN 2, AND DOHYEUN KIM 1
1Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea
2Big Data Research Center, Jeju National University, Jeju 63243, South Korea

Corresponding author: Dohyeun Kim (kimdh@jejunu.ac.kr)

This work was supported by the 2021 Scientific Promotion Program funded by Jeju National University.

ABSTRACT Leveraging the edge computing paradigm, computing resources are deployed in the network
edge to provide heterogeneous services. Edge computing delivers sensing and actuating services to the Inter-
net from the constrained Internet of Things (IoT) devices. Meanwhile, management of various elements is
provided by offloading sufficient computing and storage to the edge of the networks for the IoT environments
such as home, factory, and private spaces without cloud servers. In this paper, we propose an enhanced service
framework based on microservice management and client support provider for efficient user experiments
in the edge computing environment. For providing the edge computing service and management in the
network edge, this paper presents an edge-computing architecture that provides various functions through
microservice modules on the edge platform engine. Through the microservices, the interfaces are provided
to the client to access the device, data, and additional services. Using Docker, the microservice modules are
deployed in the edge platform to provide the services. However, the services and management functions need
to be presented to the clients based on the friendly user interfaces. For providing the user interfaces of the
services and Docker engine to the clients, the client support service provider is developed and deployed in the
network edge based on the edge platform. Therefore, the proposed edge platform provides the services and
management to the users for accessing the resources and functions through visualized interfaces in the IoT
environment based on edge computing. The performance of our proposed system can be checked through
the test result screen and delay time. Compared to controlling edge computing by using a command-line tool
for users, we made it easy for general users who are not computer savvy to access edge services through a
graphic user interface. And by measuring the delay time and comparing the execution time, it can be seen
that the proposed system operates faster.

INDEX TERMS Container, edge computing, EdgeX, Internet of Things, microservice management.

I. INTRODUCTION
The recent global IoT market currently has a potential value
due to non-face-to-face or un-contact social and economic
activities. The increased devices are used for sensing the
environment to present the physical world to uswhich enables
most people moves the work and entertainment to the living
area. For example, home electronic devices are being armed
with network access and sensors to provide autonomous

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhipeng Cai .

abilities to their users [1]. In particular, attention is focused
on edge computing technology and intelligent services that
change the existing vertical IoT service structure to a horizon-
tally distributed ecosystem [2]. Developing edge computing
technology to distribute and process data generated from var-
ious IoT devices is important in IoT environments [3] and [4].
However, cloud computing can be used for applications that
require high availability, computing process, and rich storage
space [5]. IoT Cloud integration facilitates in terms of pro-
visioning large-scale data storage and feasible network scal-
ing [6]. Nevertheless, a massive amount of data is generated

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110683

https://orcid.org/0000-0002-4902-0681
https://orcid.org/0000-0002-8404-9447
https://orcid.org/0000-0002-3457-2301
https://orcid.org/0000-0001-6017-975X


R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

by the increased number of IoT devices which derives high
pressure to cloud computing to reduce the latency in the
interactions between the cloud and IoT environments.

Deploying the computing ability to the IoT environ-
ment for sensing, storage, analysis, and decision making,
that enables less latency for real-time applications and
services [7]–[9]. For the real-time applications in the IoT
environment, less delay is most important to maintain the
quality of service with the IoT devices [10]. To improve the
capabilities of IoT devices, offloading tasks to the nearby
node equipped with efficient computing power and storage
resources is a solution [11]. Edge computing enables suf-
ficient computing and storage to the constrained IoT envi-
ronment to provide various functions such as web services
and management. Instead of the cloud, deploying the service
and management providers to the network edge reduces the
network latency, and also prevents data to be exposed for
private spaces [12]–[14]. In the entry of the IoT network,
the edge platform can be deployed to provide services and
management close to the environments where the IoT devices
are deployed to provide services of sensing and actuatingwith
limited resources. The edge platform performs as a gateway
to provides interfaces to IoT devices and cloud servers in
the entry [15]–[17]. Therefore, various integrated services
and solutions are enabled to be provided in the edge of
networks based on the edge platform for proxy, intelligence,
autonomous and management.

The management of IoT devices provides good interoper-
ability for the visibility and accessibility of IoT services from
the Internet [18]. For presenting the heterogeneity of the IoT
devices to the client using the consistent interface, the device
management represents and integrates the physical resources
through cyber information [19]. The edge platform can be
deployed in the entry of the IoT network to provide man-
agement for registering, discovering, and monitoring devices
and environment, also bridging heterogeneous device pro-
tocols [20]–[23]. For providing a unified data format and
consistent interface, standard frameworks can be adopted
to develop the edge platform. The EdgeX framework is a
lightweight edge computing implementation that is adopted
to develop the proposed edge platform to provide various
functions based on the microservices [24]. The microservices
provide Representational State Transfer (REST) Application
Programming Interface (API) REST APIs that are exposed
by the microservice server modules that are deployed in the
edge platform based onDocker. Docker runs themicroservice
server modules without considering the underlying operating
system [25]. Therefore, using the microservices and docker
to integrate the service providers and management to the
network edge enables comprehensive IoT services to be per-
formed close to the environment.

In this paper, we propose edge support service andmanage-
ment based on the Docker engine that provides management
of microservice server modules. The microservices are devel-
oped for providing services in edge computing that enables
the edge support service and management to be provided

in the network edge based on the EdgeX framework. The
EdgeX-based edge platform is deployed in the entry of the
IoT network where the sensing and actuating functions are
provided through the IoT devices with the sensors and actu-
ators. The edge platform brings the computing ability to the
IoT environment with constrained resources. The proposed
edge platform includes a device, data, and additional service
management based on the EdgeX framework. For providing
the User Interface (UI) to access the microservice of the edge
platform, the client support service provider is included to
provide the UIs of the microservice modules. The microser-
vice modules are deployed in the edge platform through the
Docker that orchestrates the microservices to provide various
functions at the edge of the network. Based on the Docker
engine, the microservices are installed, started, and stopped
in the edge computing environment. For providing the client
console of the Docker engine based on UIs, the client support
service provider also provides interfaces to access the Docker
engine. Furthermore, the proposed edge computing architec-
ture enables the users to access the services and management
through visualized interfaces based on the edge platform
in the network edge for interacting with IoT devices. Our
proposed system made the following contributions:

1) Reduced installation and execution time of edge com-
puting services.

2) We reduce the barriers to exploring IoT services for
ordinary users who are not familiar with computers by
providing a graphic user interface, based on microser-
vice management and client support provider services.

3) we improve the efficiency of user experiments through
visualized interfaces based on the edge platform.

The rest of this paper is organized as follows. Section II
introduces the related works for existing solutions of edge
computing regarding the management functions. Section III
introduces the proposed edge computing architecture with
the Docker-based microservice management and functions
of the edge platform including the microservice modules,
client support service provider, and docker engine. Section IV
presents edge computing service and management sequences
for the scenarios in the network edge with the proposed edge
computing architecture. Section V presents the implementa-
tion details of the edge computing service and management.
Section VI evaluates the performance of the edge platform
based on the Docker engine. Finally, we conclude this paper
and introduce our future directions in Section VII.

II. RELATED WORK
Microservice-based web application development provides
advantages in maintenance and functional extension through
the characteristics of flexibility, lightweight, and loose cou-
pling in development and deployment [26]–[28]. For devel-
oping constrained applications in the IoT networks, a set of
small services can be provided through microservices that
run on a standalone process [29]. EdgeX foundry proposed a
standard IoT edge computing framework to services based on
the microservices in the edge of networks using constrained

110684 VOLUME 9, 2021



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

devices such as Raspberry Pi [30]. The EdgeX framework
supports the connections to heterogeneous device protocols
and provides various management functions for devices, data,
and edge computing environments. Using the framework,
the edge gateway includes several microservice server mod-
ules to enable the functions to be scale up and down.

For providing management in the network edge, multiple
functions are required such as configurations of application,
network, and system, monitoring, and interfaces [31]. The
edge platform is deployed in the entry of the network to
interact with IoT devices and cloud servers. The management
functions can be provided through the microservices based
on the edge platform in the network edge. Various standards
provide management in the IoT and edge computing envi-
ronment. The Open Mobile Alliance (OMA) provides device
management and security workflow for the IoT devices based
on the APIs of device configuration, connectivity monitor-
ing/statistics, security, firmware update, and server provision-
ing [32]. The LwM2M is the implementation of OMA that
is developed for constrained IoT devices using a construed
protocol such as CoAP [33]. The LwM2M can be used for
the edge gateway with a constrained machine to be deployed
in the network edge. The oneM2M is a scalable and interop-
erable IoT standard that is too heavy to deploy in the network
edge [34]. The Open Connectivity Foundation (OCF) stan-
dard proposed the IoTivity that is an implementation of the
OCF core specification [35], [36]. The main protocol is the
CoAP that is used for implementing the role of server and
client. The edge platform can be the OCF server to receive
the data from the IoT device.

Many standard frameworks are available for implement-
ing IoT edge computing and deploying various industrial
domains. Many initiatives proposed solutions that include
management, transmission data formats, interaction inter-
faces, communication protocols. The European Telecommu-
nications Standards Institute (ETSI) proposed Mobile edge
computing (MEC) for providing the data and cloud com-
puting service at the edge of networks through offload-
ing the computation to the mobile environment [3]. The
Industrial Internet Consortium (IIC) proposed a reference
architecture that considers interactions with the enterprise
layer from edge computing to process heavy computing
tasks [37]. The Openfog architecture proposed three layers
including communication, service, and application security
to provide proxy and services to cloud servers as well as
IoT devices [38]. The cloudlet is proposed for deploying a
small-scale cloud data center to the edge of networks [39].
The cloudlet-based architectures bring powerful computing
machines to the environment where the data is generated.
However, most edge computing requires constrained environ-
ments with limited resources and spaces. Therefore, deploy-
ing high-performance computing machines to the network
edge is difficult.

Docker provides a development and running environment
for applications without considering the underlying sys-
tem. Through containers, Docker deploys applications for

distributing the computation and storage. Alam et al. [40]
proposed a modular and scalable edge computing archi-
tecture based on lightweight virtualization using Docker
and microservices. Al-Rakhami et al. [41] proposed an
edge computing framework based on Docker to enable the
performing of data processing close to the environment.
Yuzhou Huang et al. [42] proposed intelligent edge comput-
ing through training the model in the cloud and offloading it
to the edge based on the Docker that enables the prediction
model to be operated in the edge platform. Smet et al. [43]
proposed a mechanism to deploy specific functionalities to
the layers in edge computing using Docker. Ha et al. [44]
proposed a mechanism of deploying the web services to the
edge platform based on Docker for managing service in the
smart factory.

III. PROPOSED SERVICE FRAMEWORK WITH
MICROSERVICE MANAGEMENT AND CLIENT SUPPORT
PROVIDER BASED ON EDGE COMPUTING PLATFORM
A. CONCEPTUAL ARCHITECTURE OF PROPOSED EDGE
COMPUTING SERVICE FRAMEWORK
To enhance the efficiency of user experiments in edge com-
puting we propose an architecture of edge computing service
framework based on microservice management provider and
client support provider. Figure 1, presents the overall concep-
tual architecture of the proposed solution. The edge comput-
ing service framework includes a microservice management
module and client support provider module to provide web
user interface-based monitoring and management for edge
computing services.

The client support provider consists of service monitoring,
service management, and service repository modules. The
service monitoring module provides default information of
edge computing services. The service management enables
a client to use services with a simplified user interface to
enhance the user experience. The service repository includes
overall information of services managed by this proposed
solution such as name, image, dependencies, etc.

The microservice management provider composes plat-
form monitoring, service operation, and platform repository
components. The platform repository stores the informa-
tion of the platform that serves as an executing envi-
ronment for edge computing services. With the service
operation, a component client could control the executions
of services of edge computing through the docker engine.
Platform monitoring component allows a client to get infor-
mation on the running environment of edge computing ser-
vices. The microservice management provider releases the
user from the swamp of command-line scripts to trans-
parency the management of the execution of edge computing
services.

The edge computing platform is the environment for
running edge computing services with container-based appli-
cations. The services comprised in each container, com-
municate with each other via REST-APIs to provides
functionalities to users. The docker engine manages docker

VOLUME 9, 2021 110685



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 1. Proposed edge computing service framework based on microservice management and client support
provider.

objects, such as images, containers, networks, and volumes
to support containerized applications running properly.

B. FUNCTIONALITIES OF OUR PROPOSED EDGE
COMPUTING ARCHITECTURE
The proposed edge platform provides device, data, con-
sul, rules engine, microservice, and additional service man-
agement functionalities based on the EdgeX framework.
Figure 2, depicts the overall functionalities of our proposed
edge computing architecture. The client support services con-
sist of several support services to provide the User Inter-
face (UI) to the clients that are used to access themicroservice
of the edge platform, the client support services are imple-
mented to provide the UIs of the microservice modules. The
microservice modules of the EdgeX framework are deployed
and executed in the edge platform through the Docker engine.
The Docker engine use image of the application to build a
containerized service in the platform. It also generates related
volumes and networks to connect the services in the platform.
Based on the Docker engine, the microservices of the EdgeX
framework are containerized as a container, and started and
stopped in the edge computing environment. For provid-
ing the management functionalities of the Docker engine to
clients based on UIs, the microservice client support service
provides interfaces to access the Docker engine. Furthermore,
through the developed edge computing architecture the users
enable to access the services and manage them.

Figure 3, shows a functional architecture of microservice
management for presenting platforms and services infor-
mation through interacting with the Docker engine. The
Docker engine provides services to manage container-related

FIGURE 2. The microservice and additional service management
functionalities of edge computing service framework.

functionalities. The container of each service is generated
by the Docker engine based on the image. The image con-
tains the container’s filesystem, it must contain everything
needed to run an application - all dependencies, configura-
tion, scripts, binaries, etc. The Docker engine also provides
volumes and networks to manage container-related data and
connectivity them. With the web client, users can retrieve
information about managed platforms and services. The plat-
form list represents the physical devices that serve edge com-
puting services. Through the web page, users can get default
information of the device such as the number of the images,
number of the containers, number of running containers, and
the address of the device. With the service list, users can
retrieve information on managed services of each platform.
The service list represents the microservices of edge comput-
ing. Through the web page, users can get default information

110686 VOLUME 9, 2021



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 3. Microservice management functional architecture of edge
computing platform based on docker containers.

of the service such as service name, status, container name,
and start/stop specific service on the web page.

Figure 4 shows a functional architecture of consul manage-
ment for presenting service information, node information,
and Key/Value information through interacting with the core
Consul of the EdgeX framework.

(a), the web client requests service /consul to get the
page and accesses /getServiceList to get the service list.
Once a service item is selected, the web client accesses
service /getService to get the detailed information of the
service. For providing the information of Consul, services
/catalog/datacenters, /internal/ui/services, and /health/service
are used.

(b), the web client requests service /consul node to get the
page and accesses /getNodeList to get the node list. Once
a node item is selected, the web client presents detailed
information about the node. The node detail information
is included in the node list retrieved by accessing service
/getNodeList. The service /catalog/datacenters provides a list
of data centers that are used in the Consul Node Page. The
service /internal/ui/nodes provides a list of nodes that are used
for presenting the registered nodes in Consul.

(c), the registered keys and values in Consul are provided
by the resource /kv. With the keys and values, the Consul Kv
Page presents list keys, and once the last level of a key is
clicked, then the web client presents the value of the key.Web
client requests service /consulkv to get the page and accesses
/getKvList to get the key list. Once a key item is selected,
the web client presents sub key items of the selected key. If a
selected key has value, then the value will be presented.

Figure 5 shows a functional architecture of export client
management for retrieving registered export clients in the
export service index page and detail information of a selected
export client, and creating new export client information
to the export client in the EdgeX framework. Web client
requests service /export to get the export service index page
with an export client list. Through the delete function of
each item in the export client list, the web client requests
the service /exportdelete to delete a selected export client.
The export client is a server for providing micro-services in
the EdgeX framework. For the export service index page,

FIGURE 4. Consul management functional architecture – (a) Service page,
(b) Node page, (c) Key/Value page.

FIGURE 5. Export client management functional architecture.

services /export and /exportdelete are used and access the
export client.

To retrieve detailed information of a selected export client,
the web client requests service /exportdetail to get the export
service’s detail page with export client detailed information.
The export client detailed information is retrieved by the
selected export client ID that is included in the export client
list on the export service index page. The service /exportdetail
accesses the export client to get the detailed information of
the selected client by ID and returns the information with the
user interface.

In order to create a new export client information to the
export client, the web client requests service /exportform to
get the export service form page and presents it to the user.
The user inputs the information of required fields and submits
it to the service /addClient for creating new export client
information. Using the submitted form data, the service /add-
Client generates JSON format data for the new export client
and sends it to the export client of the EdgeX framework.

VOLUME 9, 2021 110687



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 6. Rules engine management functional architecture.

Figure 6 shows a functional architecture of rules engine
management for retrieving registered rules in the rules engine
index page and detail information of a selected rule, creating
new rule information to the rules engine and Mongo DB in
the EdgeX framework.

(a), Rules Engine is a server for providing micro-services
in the EdgeX framework. For the rules engine index page,
services /rules and /rulesdelete are used to access the rules
engine. Web client requests service /rules to get the rules
engine index page with rules list. Through the delete function
of each item in the rule list, the web client requests the service
/rulesdelete to delete a selected rule.

(b), web client requests service /rulesdetail to get the rule
detail page with rule detail information. The rule detail infor-
mation is retrieved by the selected rule ID that is included in
the rule list on the rules engine index page. The rules engine in
the EdgeX framework only saves the rule name of a created
rule. Therefore, the Mongo DB is used for saving the rule
profile.

(c), web client requests service /rulesform to get the rules
engine form page and presents it to the user. The user inputs
the information of required fields and submits it to the service
/addRule for creating new export client information. The
service /addRule sends the rule profile to the rules engine and
Mongo DB in the EdgeX framework.

IV. PROPOSED SERVICE FRAMEWORK BASED ON EDGE
COMPUTING PLATFORM
EdgeX Foundry that is introduced by Linux Foundation and
Dell, adopting microservice-based architecture to achieve the
edge computing paradigm. In EdgeX Foundry, all services

are generally developed as a dockerized lightweight container
which is isolating services and providing simplified main-
tainability and scalability for the EdgeX Foundry framework.
To simplify the deployment and operation of services in the
platform, the specifications of the services are explained in
the configuration file. The proposed microservice support
service in the startup read the configuration file to prepar-
ing the operating environment. In order to shorten the time
on initialization, we implement each initializer separately
including environment initializer, network initializer, volume
initializer, and service initializer. Each initializer operates
asynchronously to save related configurations in the repos-
itory and create related instances in the edge computing
platform, exclude the environment initializer it only saves
the configurations in the repository. Before creating related
instances, the initializer should inspect the instances, if there
are instances just quit, else POST requests to the Docker
engine to create related instances such as networks, volumes,
containers. Figure 7, illustrates a detailed procedure.

FIGURE 7. Sequence diagram of microservice management provider
initialization.

The EdgeX framework is a microservice-based architec-
ture, which means the services are modeled as isolated units
that manage a reduced set of issues. However, to deal with
problems the fully functional systems rely on the cooper-
ation and integration of its parts which is the dependency
between the different parts of the application, and the EdgeX
framework is not an exception. When a client request to start
a service of EdgeX framework, the controller will retrieve
information of platform by id which is a parameter of the
request. To start service the controller calls start service

110688 VOLUME 9, 2021



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 8. Sequence diagram of service operation.

function with a related service name and retrieved platform
information as parameters of this function. To make sure
the dependent services of the selected service are running,
the function is implemented as a recursive function. First, the
function retrieves information of service by name from a
repository, then check if the dependencies are existing. If true
the function will call itself again with dependency service
name and platform information. In seconds, the function
requests the Docker engine to inspect the service status, if the
service is running just quit, otherwise request the docker
engine to start service by name. Finally, the controller invokes
the repository to get current information of services then
return it to a client. Detailed progress is depicted in Figure 8.

V. IMPLEMENTATION AND TEST RESULTS
The Implemented edge platform provides device, data, con-
sul, rules engine, microservice, and additional service man-
agement functionalities based on the EdgeX framework.
Figure 8, depicts the overall architecture of our Implemented
edge computing architecture. The client support services con-
sist of several support services to provide the User Inter-
face (UI) to the clients that are used to access themicroservice
of the edge platform, the client support services are imple-
mented to provide the UIs of the microservice modules. The
microservice modules of the EdgeX framework are deployed
and executed in the edge platform through the Docker engine.
The Docker engine use image of the application to build a
containerized service in the platform. It also generates related
volumes and networks to connect the services in the platform.
Based on the Docker engine, the microservices of the EdgeX
framework are containerized as a container, and started and
stopped in the edge computing environment. For provid-
ing the management functionalities of the Docker engine to
clients based on UIs, the microservice client support service
provides interfaces to access the Docker engine. Furthermore,
through the developed edge computing architecture the users
enable to access the services and manage them.

1) DEVELOP SPECIFICATIONS
To implement our proposed solution, the windows 10 oper-
ating system with 500 GB hard disk, 64GB memory, and
Intel R© core i5-8500 CPU desktop is exploited as the devel-
opment environment. In order to simplify the development of
the web application, we are used the Spring boot framework
and Eclipse development tool. Table 1 shows the detailed
specification of the development environment. The microser-
vices of EdgeX framework running on the raspberry pi
3model B is a single-board computer with ubuntu 20.04 oper-
ating system, Quad-Core 1.2GHz BroadcomBCM2837 64bit
CPU, 1GB memory, and 16GB MicroSD card. In the execut-
ing environment, the docker engine is installed to serve our
developed solution. Detailed information refers to Table 2.

TABLE 1. Development environment specification for client support
services.

TABLE 2. Operating environment for microservices of EdgeX framework.

2) TEST RESULTS
Figure 9 shows the implementation result of consul manage-
ment for presenting service information through interacting
with the Core Consul of EdgeX framework. The services are
presented as a list that provides clickable items to display the
details of a selected service. In the detailed information of a
selected service, the items link to the nodes. For each item
in the service list, the service name and passing count are
presented. For the detailed information of service, tags and
nodes of the service are presented.

Figure 10 shows the implementation result of consul man-
agement for presenting node information through interacting
with the core consul of the EdgeX framework. On this page,
the nodes are presented as a list that includes nodes as items
to be clicked. Once a node item is clicked, then the detailed
information of the clicked node is presented. In the presented
node information, the items link to the service page to present
detailed information about the service.

VOLUME 9, 2021 110689



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 9. Development result of service page for consul management in
edge computing services.

FIGURE 10. Development result of node page for consul management in
edge computing services.

Figure 11 shows the implementation results of consul
management for presenting Key/Value information through
interacting with the core consul of the EdgeX framework.
In this user interface, keys are presented as a list. The items of
the key list are used for into next level of selected key items.
The top button is used to go to the previous level of keys,
and the last level of keys is clicked to present the value of a
key. For example, the first item does not have a child-level
key, therefore, the symbol / is not attached at last. Once the
item is clicked, then the value of the key is presented on the
left side.

Figure 12 shows an implementation result of the export
client list to present export client id, name, and topic in each
item. Each item of the list includes a delete button and detail
button to support deleting selected export client and linking
to a detail page for the selected export client respectively.
The presented export client list is delivered from the client
support proxy using JSON format data. For creating a new
export client, the link Go Export Service Form redirects to a
form page.

Figure 13 shows an implementation result of export client
detail for presenting export client’s detailed information to the

FIGURE 11. Development result of key/value page for consul
management in edge computing services.

FIGURE 12. Development result of export client list page for export client
in edge computing services.

user using a user interface of theweb client. The user interface
displays the export client’s detailed page that includes export
client detail information including export client’s ID, name,
and information of addressable, filter, and encryption. The
information of a selected export client is retrieved from the
export client of the ExgeX framework by the ID of the export
client. The delivered data from the EdgeX is JSON format
data that is parsed and well printed by the web client.

Figure 14 shows an implementation result of a form page
for creating a new export client using a user interface of a
web client. The user interface displays the form page that
includes fields for filling properties of the export client that is
used for creating a new export client profile. Once the fields
are filled, commit the Submit button to send the export client
information to the EdgeX framework. The submitted values
of properties are sent to the client support proxy and included
in JSON format data. Then client support proxy sends the
JSON data to the export client of the EdgeX framework.

110690 VOLUME 9, 2021



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 13. Development result of export client list page for export client
in edge computing services.

FIGURE 14. Development result of creating new export client for export
client in edge computing services.

Figure 15 shows an implementation result of the rule list
to present the rule name in each item. For presenting rule
information in this list, the data is delivered from the rules
engine of the EdgeX framework. The delivered data only
includes the uploaded rule’s name. Therefore, only the names
are presented in the rules list. Each item of the list includes a
delete button and detail button to support deleting the selected
rule and linking to the detail page for the selected rule.
For creating a new rule, the link ‘‘Go Rules Engine’’ form
redirects to a form page.

Figure 16 shows an implementation result of rule details
for presenting a rule’s detailed information to the user using
a user interface of the web client. The user interface displays

FIGURE 15. Development result of rule list page for rules engine in edge
computing services.

FIGURE 16. Development result of rule detail page for rules engine in
edge computing services.

the rule’s detail page that includes the rule’s detailed infor-
mation including the rule’s name and other properties for
the rule profile that is used for creating the Drool profile in
the EdgeX framework. The information of a rule profile is
JSON format data that is delivered fromMongoDB of EdgeX
framework and presented in the fields by the web client. For
each property of the rule profile, the values are filled in the
field as well as the whole profile is also presented.

Figure 17 shows an implementation result of a form page
for creating new rules using a user interface of web clients.
The user interface displays the form page that includes fields
for filling properties of rules that are used for creating a new
rule profile. Once the fields are filled, commit the submit
button to send the rule to the EdgeX framework. In this form,
the drop boxes for the device, in the condition and action
areas, show a device list through requesting metadata.

Figure 18 shows the developed result of the platform list
and service list. (a), presents default information of the device
such as the number of the images, number of the containers,
number of running containers, and the address of the device.
With the view of the platform list, the user would get rough
information of the platform that is managed by the users.

VOLUME 9, 2021 110691



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

FIGURE 17. Development result of creating new rule for rules engine in
edge computing services.

FIGURE 18. Development result of microservice management provider.
(a) Platform list, (b) Service list.

When you click the view details button, the result of the
service list shows up.

(b), exposes the service list that is provided by the EdgeX
framework.With the view of the service list, the client enables
to know the status of the service. Each service has the ability
to start and stop service by the buttons. Figure 18, shows the
result of the start service called ‘‘data’’. With one click the
dependent services are started properly.

VI. PERFORMANCE EVALUATION AND ANALYSIS
To evaluate the performance of the proposed system, wemea-
sure the execution time of services that start with the pro-
posed system and command-line script. As you can see from
Figure 19, the time it takes to start the service when using
the proposed system is faster than that using the command
line script. Especially, when metadata is executed, the startup
with the proposed system is faster than the command-line
script about 24 seconds. Among them, the smallest difference
is about 16 seconds when logging starts. In addition, it takes
less than 10 seconds to run services such as volume, consul,
and mongo.

Figure 20, measures the time it takes to stop the service.
When using the command line script, the maximum time is
about 48 seconds and the minimum time is about 16 seconds.

FIGURE 19. Comparison of the latency taken to start services for edge
computing services.

FIGURE 20. Comparison of the latency taken to stop services for edge
computing services.

FIGURE 21. Comparison of the latency taken to initialize services for edge
computing services.

In contrast, stopping the service with the proposed system
takes less than 5 seconds except for the volume, mongo, and
rules engine that takes more than 10 seconds.

Figure 21, measures the time used in the initialization
phase before starting the service. All services go through the
process of being dockerized before being controlled by the
docker engine, and the time used to do this is as shown in
the figure. The command-line script takes about 30 seconds,
while the proposed system takes about 9 seconds.

VII. CONCLUSION AND FUTURE DIRECTIONS
For providing the edge computing service and management
in the network edge with IoT devices, this paper proposed the
development of an edge platform to provide various functions
through microservice modules based on the Docker engine.

110692 VOLUME 9, 2021



R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

The microservices enables the clients to access device, data,
and additional services through the REST APIs. The Docker
engine deploys microservice modules in the edge platform
that is comprised ofmultiplemicroservicemodules to provide
various IoT and edge computing services. The management
edge computing is developed based on the EdgeX framework,
and deployed in the entry of the IoT network to deliver the
sensing data to the clients and forward the control commands
to the actuators. With the REST APIs of the EdgeX-based
microservice modules, the client support service provider is
developed and deployed on the edge platform to provide the
user interfaces of the services and Docker engine. Therefore,
the proposed edge platform integrates various functions to
the edge computing device using microservice modules for
providing the services in the network edge such as private
spaces with constrained resources. Moreover, the visualized
interfaces are provided to the users for accessing the IoT envi-
ronment and managing the edge computing elements based
on the EdgeX and Docker. When we saw the test results of
our proposed system, instead of asking users to control edge
computing using a command-line tool, we made it possible
for general users who are not computer savvy to easily access
edge services through a graphic user interface. As can be seen
from the latency comparison results, it can be seen that our
proposed system operates faster.

In the future, we will develop intelligent approaches
based on deep learning algorithms to provide intelligent
and autonomous services at the edge of the networks. For
offloading the intelligent approaches to the network edge,
the intelligent service module can be developed based on the
microservice and deployed by the Docker engine. However,
offloading multiple intelligent services to edge computing
can be a challenge that requires optimized resource alloca-
tion. In addition, for a more complete performance evalua-
tion, we would perform tests on specific IoT cases, such as
access some Industrial IoT applications or Machine Com-
munications devices in robotic surgery through our proposed
system in the future.

REFERENCES
[1] M. S. Khan, M. F. Abrar, D. Kim, F. Tila, I. A. Khan, J. Shuja,

and A. N. Khan, ‘‘Resource-based direct manipulation: A user-centric
visual interface for operational customization of future smart appliances,’’
Telecommun. Syst., vol. 75, no. 3, pp. 291–306, Nov. 2020.

[2] B. Varghese, N.Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,
‘‘Challenges and opportunities in edge computing,’’ in Proc. IEEE Int.
Conf. Smart Cloud (SmartCloud), Nov. 2016, pp. 20–26.

[3] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[4] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2017.

[5] V. Gezer, J. Um, and M. Ruskowski, ‘‘An extensible edge computing
architecture: Definition, requirements and enablers,’’ in Proc. UBICOMM,
2017, pp. 1–5.

[6] R. M. A. Haseeb-ur-rehman, M. Liaqat, A. H. M. Aman, S. H. A. Hamid,
R. L. Ali, J. Shuja, and M. K. Khan, ‘‘Sensor cloud frameworks: State-
of-the-art, taxonomy, and research issues,’’ IEEE Sensors J., early access,
Jun. 21, 2021, doi: 10.1109/JSEN.2021.3090967.

[7] W. Jin, R. Xu, S. Lim, D.-H. Park, C. Park, and D. Kim, ‘‘Dynamic
inference approach based on rules engine in intelligent edge computing for
building environment control,’’ Sensors, vol. 21, no. 2, p. 630, Jan. 2021.

[8] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, ‘‘Dynamic task offload-
ing and resource allocation for ultra-reliable low-latency edge computing,’’
IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–4150, Jun. 2019.

[9] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[10] A. Yousefpour, G. Ishigaki, and J. P. Jue, ‘‘Fog computing: Towards
minimizing delay in the Internet of Things,’’ in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), Jun. 2017, pp. 17–24.

[11] S. K. U. Zaman, A. I. Jehangiri, T. Maqsood, Z. Ahmad, A. I. Umar,
J. Shuja, E. Alanazi, and W. Alasmary, ‘‘Mobility-aware computational
offloading inmobile edge networks: A survey,’’Cluster Comput., pp. 1–22,
Apr. 2021.

[12] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang,
‘‘Mobile edge cloud system: Architectures, challenges, and approaches,’’
IEEE Syst. J., vol. 12, no. 3, pp. 2495–2508, Sep. 2018.

[13] W. Jin, R. Xu, T. You, Y.-G. Hong, and D. Kim, ‘‘Secure edge computing
management based on independent microservices providers for gateway-
centric IoT networks,’’ IEEE Access, vol. 8, pp. 187975–187990, 2020.

[14] S. Naveen and M. R. Kounte, ‘‘Key technologies and challenges in IoT
edge computing,’’ in Proc. 3rd Int. Conf. I-SMAC (IoT Social, Mobile,
Analytics Cloud) (I-SMAC), Dec. 2019, pp. 61–65.

[15] R.Morabito, R. Petrolo, V. Loscri, and N.Mitton, ‘‘LEGIoT: A lightweight
edge gateway for the Internet of Things,’’ Future Gener. Comput. Syst.,
vol. 81, pp. 1–15, Apr. 2018.

[16] C.-H. Chen, M.-Y. Lin, and C.-C. Liu, ‘‘Edge computing gateway of
the industrial Internet of Things using multiple collaborative microcon-
trollers,’’ IEEE Netw., vol. 32, no. 1, pp. 24–32, Jan./Feb. 2018.

[17] R. Morabito, R. Petrolo, V. Loscrí, and N. Mitton, ‘‘Enabling a lightweight
edge gateway-as-a-service for the Internet of Things,’’ in Proc. 7th Int.
Conf. Netw. Future (NOF), Nov. 2016, pp. 1–5.

[18] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, ‘‘Recent advances in
industrial wireless sensor networks toward efficient management in IoT,’’
IEEE Access, vol. 3, pp. 622–637, 2015.

[19] J. D. C. Silva, J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabêlo, and
V. Furtado, ‘‘Management platforms and protocols for Internet of Things:
A survey,’’ Sensors, vol. 19, no. 3, p. 676, 2019.

[20] W. Jin and D.-H. Kim, ‘‘IoT device management architecture based on
proxy,’’ in Proc. 6th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT),
Oct. 2017, pp. 84–87.

[21] W. Jin and D. Kim, ‘‘Resource management based on OCF for device self-
registration and status detection in IoT networks,’’Electronics, vol. 8, no. 3,
p. 311, 2019.

[22] W. Jin and D. Kim, ‘‘Development of virtual resource based IoT proxy for
bridging heterogeneous web services in IoT networks,’’ Sensors, vol. 18,
no. 6, p. 1721, 2018.

[23] W. Jin andD. Kim, ‘‘Improved resource directory based onDNS name self-
registration for device transparent access in heterogeneous IoT networks,’’
IEEE Access, vol. 7, pp. 112859–112869, 2019.

[24] EdgeX Foundry. (2021). [Online]. Available: https://www.edgexfoundry.
org/

[25] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated per-
formance comparison of virtual machines and Linux containers,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[26] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and tomor-
row,’’ in Present and Ulterior Software Engineering. Berlin, Germany:
Springer, 2017, pp. 195–216.

[27] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Migrating towards microser-
vice architectures: An industrial survey,’’ in Proc. IEEE Int. Conf. Softw.
Archit. (ICSA), Apr. 2018, pp. 29–2909.

[28] S. Newman, Building Microservices: Designing Fine-Grained Systems.
Sebastopol, CA, USA: O’Reilly Media, 2015.

[29] C. Santana, B. Alencar, and C. Prazeres, ‘‘Microservices: Amapping study
for Internet of Things solutions,’’ in Proc. IEEE 17th Int. Symp. Netw.
Comput. Appl. (NCA), Nov. 2018, pp. 1–4.

[30] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, ‘‘A survey on edge
computing systems and tools,’’Proc. IEEE, vol. 107, no. 8, pp. 1537–1562,
Aug. 2019.

VOLUME 9, 2021 110693

http://dx.doi.org/10.1109/JSEN.2021.3090967


R. Xu et al.: Enhanced Service Framework Based on Microservice Management and Client Support Provider

[31] A. Musaddiq, Y. Bin Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W. Kim,
‘‘A survey on resource management in IoT operating systems,’’ IEEE
Access, vol. 6, pp. 8459–8482, 2018.

[32] O. M. Alliance, ‘‘Lightweight machine to machine technical specifica-
tion,’’ Approved Version, Open Mobile Alliance, San Diego, CA, USA,
Tech. Rep. OMA-TS-LightweightM2M_Core-V1_1-20180710-A, 2017,
vol. 1, no. 1.

[33] S. Rao, D. Chendanda, C. Deshpande, and V. Lakkundi, ‘‘Implementing
LWM2M in constrained IoT devices,’’ in Proc. IEEE Conf. Wireless Sen-
sors (ICWiSe), Aug. 2015, pp. 52–57.

[34] H. Park, H. Kim, H. Joo, and J. Song, ‘‘Recent advancements in the
Internet-of-Things related standards: A oneM2M perspective,’’ ICT Exp.,
vol. 2, no. 3, pp. 126–129, Sep. 2016.

[35] Open Connectivity Foundation. (2021). OCF. [Online]. Available:
https://openconnectivity.org/

[36] IoTivity. (2021). [Online]. Available: https://iotivity.org
[37] M. Tseng, T. Canaran, and L. Canaran, ‘‘Introduction to edge computing in

IIoT,’’ Ind. Internet Consortium, Needham, MA, USA, Tech. Rep., 2018,
pp. 1–19.

[38] OpenFog Reference Architecture for Fog Computing OPFRA001.020817,
OpenFog Consortium Architecture Working Group, Fremont, CA, USA,
2017, p. 162.

[39] V. Prokhorenko and M. A. Babar, ‘‘Architectural resilience in cloud, fog
and edge systems: A survey,’’ IEEEAccess, vol. 8, pp. 28078–28095, 2020.

[40] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and
Y. Chen, ‘‘Orchestration of microservices for IoT using Docker and
edge computing,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 118–123,
Sep. 2018.

[41] M. Al-Rakhami, M. Alsahli, M. M. Hassan, A. Alamri, A. Guerrieri,
and G. Fortino, ‘‘Cost efficient edge intelligence framework using
Docker containers,’’ in Proc. IEEE 16th Int. Conf Dependable,
Autonomic Secure Comput., 16th Int. Conf Pervasive Intell.
Comput., 4th Int. Conf Big Data Intell. Comput. Cyber Sci.
Technol. Cong. (DASC/PiCom/DataCom/CyberSciTech), Aug. 2018,
pp. 800–807.

[42] Y. Huang, K. Cai, R. Zong, and Y. Mao, ‘‘Design and implementation of
an edge computing platform architecture using Docker and Kubernetes for
machine learning,’’ in Proc. 3rd Int. Conf. High Perform. Compilation,
Comput. Commun., Mar. 2019, pp. 29–32.

[43] P. Smet, B. Dhoedt, and P. Simoens, ‘‘Docker layer placement
for on-demand provisioning of services on edge clouds,’’ IEEE
Trans. Netw. Service Manage., vol. 15, no. 3, pp. 1161–1174,
Sep. 2018.

[44] J. Ha, J. Kim, H. Park, J. Lee, H. Jo, H. Kim, and J. Jang, ‘‘A web-based
service deployment method to edge devices in smart factory exploiting
Docker,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2017, pp. 708–710.

110694 VOLUME 9, 2021


