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ABSTRACT Due to the growing demand for video streaming services, providers have to deal with increasing
resource requirements for increasingly heterogeneous environments. To mitigate this problem, many works
have been proposed which aim to (i) improve cloud/edge caching efficiency, (ii) use computation power
available in the cloud/edge for on-the-fly transcoding, and (iii) optimize the trade-off among various cost
parameters, e.g., storage, computation, and bandwidth. In this paper, we propose LwTE, a novel Light-weight
Transcoding approach at the Edge, in the context of HTTP Adaptive Streaming (HAS). During the encoding
process of a video segment at the origin side, computationally intense search processes are going on. The
main idea of LwTE is to store the optimal results of these search processes as metadata for each video
bitrate and reuse them at the edge servers to reduce the required time and computational resources for
on-the-fly transcoding. LwTE enables us to store only the highest bitrate plus corresponding metadata
(of very small size) for unpopular video segments/bitrates. In this way, in addition to the significant reduction
in bandwidth and storage consumption, the required time for on-the-fly transcoding of a requested segment
is remarkably decreased by utilizing its corresponding metadata; unnecessary search processes are avoided.
Popular video segments/bitrates are being stored. We investigate our approach for Video-on-Demand (VoD)
streaming services by optimizing storage and computation (transcoding) costs at the edge servers and
then compare it to conventional methods (store all bitrates, partial transcoding). The results indicate that
our approach reduces the transcoding time by at least 80% and decreases the aforementioned costs by
12% to 70% compared to the state-of-the-art approaches.

INDEX TERMS Video streaming, transcoding, video on demand, edge computing.

I. INTRODUCTION
In recent years, video streaming has developed very quickly
and, according to the Cisco Visual Networking Index [1],
will gain up to 88% of the total Internet traffic by 2022.
On the client side, in particular in mobile networks, a wide
variety of devices and applications have emerged; that leads
to an increasingly heterogeneous environment. To cover the
demands of such heterogeneous environments and mitigate
network bandwidth fluctuations, it is essential to provide
streaming services with different quality levels. HTTP Adap-
tive Streaming (HAS), including Dynamic Adaptive Stream-
ing over HTTP (DASH) [2] and HTTP Live Streaming
(HLS) [3], is the mainstream video delivery technique in the
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industry today. In a HAS system, a high-quality video source
is divided into short intervals known as video segments.
By leveraging the transcoding technique, each segment is pro-
vided at various bitrates resulting in a set of representations
(bitrates), i.e., the highest quality representation is converted
to other bitrates by decoding and re-encoding processes.

By offering different bitrates of each segment, clients can
choose the most appropriate bitrate according to the available
network bandwidth. Many strategies have investigated the
cost-effective delivery of video, such as on-the-fly transcod-
ing in the network [4], [5], video caching [6], and hybrid
approaches [7]–[9].

In the on-the-fly transcoding approaches, the high-
est bitrate is stored, and the remaining bitrates are
transcoded online. The cloud paradigm with virtually unlim-
ited resources enables many cloud service providers like

112276 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8096-8702
https://orcid.org/0000-0001-9853-1720
https://orcid.org/0000-0002-0031-5243
https://orcid.org/0000-0003-1114-2584
https://orcid.org/0000-0003-1606-233X


A. Erfanian et al.: LwTE

Amazon Web Services or Google Cloud Platform to pro-
vide cost-effective transcoding services. However, transcod-
ing tasks are computationally intensive and time-consuming,
which impose significant operational costs on service
providers. Therefore, on-the-fly transcoding approaches are
not commonly used in the industry, especially for large-scale
deployments. On the other hand, pre-transcoding methods
commonly used in the industry store all bitrates to meet all
users’ requests. Although storage is becoming cheaper, this
approach is not cost-efficient. It incurs high overhead in stor-
age to store all bitrates, especially for video segments/bitrates
that are rarely requested.

Some studies try to minimize video streaming costs
by combining on-the-fly transcoding and pre-transcoding
approaches [7], [10], [11]. In fact, they try to minimize
costs by trading off storage costs and computation costs,
considering various constraints. They utilize the fact that
only a small fraction of videos are popular and account
for almost 80% of total views, while other videos receive
few requests [12]. To reduce the costs, they store multiple
bitrates of popular videos/segments and transcode unpop-
ular videos/segments on-the-fly, using a probability model
of video viewing. In other words, when a client requests
a popular segment/bitrate, it will be served immediately
from the storage, which imposes storage cost. In contrast,
a request for an unpopular segment/bitrate will be served
by on-the-fly transcoding from the highest bitrate to the
desired one, which results in computation cost. However,
since transcoding is inherently a computationally-intensive
and time-consuming process, this can impose notable cost
and delay.

This paper proposes a novel technique for transcoding
called Light-weight Transcoding at the Edge (LwTE), moti-
vated by the aforementioned issues. Conventional video cod-
ing standards likeHigh Efficiency Video Coding (HEVC) [13]
divide each video frame into blocks of a predefined size and
then subdivide them into smaller sub-blocks. The optimal par-
titioning structure is determined by calculating rate-distortion
costs for all sub-blocks [13]. Searching is usually done in a
brute-force manner, taking up most of the encoding time as
well as of the transcoding time. Our idea is to store the optimal
search results/decisions of the encoding process as ametadata
file and reuse it in on-the-fly transcoding processes to reduce
the transcoding times by avoiding the brute-force search
processes. In fact, by leveraging the metadata extracted in
the origin server, LwTE significantly reduces the transcoding
time and computation costs. Edge computing aims at bringing
cloud storage/computation resources and services closer to
the user. Based on [14], [15], edge computing paradigms can
be achieved by employing fog computing [16], cloudlet [17],
and mobile edge computing (MEC) [18]. MEC provides
resource capabilities by using virtualization techniques
in telecommunication networks. Thus, due to the impor-
tance of scalability and reliability of the provided service,
we leverage the MEC paradigm as edge computing in this
paper.

To the best of our knowledge, we are the first to introduce
a method to extract metadata during the encoding process
and employ them to reduce transcoding efforts at the edge
servers. It is worth mentioning that the metadata is extracted
during the encoding process in the origin server, which is
part of the multi-bitrate video preparation. Thus, LwTE does
not incur any extra computation cost to extract the metadata.
The generated metadata’s size is very small compared to the
corresponding encoded video segment, as the results indicate.
Although the LwTE approach is applicable for cloud plat-
forms, we focus on the edge servers in the sense of, e.g., multi-
access edge computing in 5G networks, to reveal its potential
and capabilities.

The main contributions of this paper are as follows:
• We propose LwTE as a novel method that extracts metadata
during the encoding process and employs it during the
transcoding process at the edge to reduce transcoding time
and cost.

• We formulate the problem of minimizing the total cost,
including storage and computation (transcoding) costs, as
a Mixed-Integer Linear Programming (MILP) model and
prove its NP-completeness.

• To mitigate the time complexity of the proposed MILP
model, we introduce a polynomial heuristic algorithm to
determine a near-optimal solution.

• We compare LwTE with state-of-the-art approaches. The
implementation results show that LwTE achieves at least
80% reduction in transcoding time. Moreover, LwTE can
decrease the total cost by up to 70% compared with the
state-of-the-art approaches.
The remainder of the paper is organized as follows.

Section II highlights related work. LwTE is described in
Section III and evaluated in Section IV. Section V concludes
the paper and outlines future work.

II. RELATED WORK
Most of the related works have used a hybrid solution to
minimize various cost functions, e.g., for storage, compu-
tation, bandwidth, and energy consumption [7], [19]–[21].
Zhao et al. [7] formulated amodel intending tominimize stor-
age and computation costs for VoD by considering segment
popularity and a weighted transcoding graph, which captures
each bitrate’s computation cost in the representation set to
lower bitrates. However, they did not consider the video qual-
ity drop caused by using lower bitrate segments for transcod-
ing instead of the highest bitrate segment. A trade-off between
the bandwidth cost and the user experience for a cloud-
assisted video distribution platform has been studied in [20].
To minimize the backhaul network cost, Tran et al. [19]
formulated the collaborative joint caching and transcoding
problem as an Integer Linear Program (ILP). To mitigate
the time complexity and impractical overheads of the pro-
posed model, they presented an online algorithm to deter-
mine cache placement and video scheduling decisions. They
extended their work such as to minimize the expected video
retrieval delay by determining the video request scheduling.
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Li et al. [22] compared the impact of transcoding and bitrate-
aware caching on consumers’ Quality of Experience (QoE).
Jin et al. [21] proposed a partial transcoding approach at the
edge servers. They store the full representation set for a few
popular videos, only keep the highest bitrate for the rest,
and prepare the other bitrates on demand by utilizing on-the-
fly transcoding. They take into account storage, transcoding,
and bandwidth costs and formulate a model to minimize
the total cost. Gao et al. [11] employed a partial transcod-
ing method based on user viewing patterns in the cloud.
Gao et al. [23] also addressed resource provisioning issues
for transcoding in cloud platforms to maximize financial
profit. Wang et al. [24] proposed an algorithm to determine
edge servers for transcoding operations to improve perceived
quality by clients. A distributed platform at the edge named
Federated-FogDeliveryNetwork (F-FDN) has been proposed
in [25]. F-FDN stores only one bitrate of non-popular videos
and leverages the edge server computing capability to provide
requested bitrates at the edge to minimize video stream-
ing latency. Jia et al. [26] formulated joint optimization for
caching, transcoding, and bandwidth in 5G mobile networks
with mobile edge computing.

In [4] and [5], we proposed OSCAR as a framework for
real-time streaming. In OSCAR, we served clients’ requests
by minimizing bandwidth usage and transcoding costs. After
aggregating requests at the edge servers, OSCAR transfers
the highest requested bitrate from the origin server to the
optimal set of Point of Presence (PoP) nodes. After that,
virtual transcoders hosted at PoP nodes transcode the high-
est requested bitrate to those requested by clients. Finally,
these bitrates are transferred to the appropriate edge servers
and corresponding clients, respectively. However, in OSCAR,
we leveraged a conventional transcoding method and exe-
cuted them in the networks, including the edge. Moreover,
OSCAR only targeted a live streaming scenario.

In contrast to other works, LwTE employs metadata
acquired in the encoding process to reduce the transcoding
computation time and cost, which can be applied to the above-
mentioned methods to improve their performance.

III. LIGHT-WEIGHT TRANSCODING AT THE EDGE
A. MOTIVATING EXAMPLE
Before explaining an example motivating LwTE, let us
briefly compare LwTE with two basic strategies: (i) store all
bitrates (Store-All) and (ii) conventional partial-transcoding
(PT ) [21]. In case of the Store-All method, we should only
consider the cost of storing all segments in a full represen-
tation set for all videos. The PT approach stores popular
segments/bitrates and only the highest bitrate for unpopular
ones. LwTE tries to achieve cost reduction as compared to
PT by employing the metadata to accelerate transcoding
operations.

Let us assume 100 segments of a video sequence encoded
in a representation set with six bitrates using HEVC
HM-16.20 [13] with four-second segment length as shown

TABLE 1. Resolutions and bitrates of the encoded video.

FIGURE 1. Motivating example: Comparison of LwTE with two
state-of-the-art approaches.

in Table 1. We are going to measure the storage and compu-
tation costs of serving the sequence for one month from an
edge server with three request arrival rates: 100, 1000, and
5000 requests per month. As depicted in Fig. 1, the Store-
All approach stores all segments of the representation set;
thus, it introduces just a fixed storage cost regardless of arriv-
ing requests (for details of calculating total cost, the reader
is referred to Section IV). In case of having request arrival
rate 100, PT stores around 21% of segments/bitrates as the
popular set and serves the others by transcoding, resulting
in saving costs by around 55% compared with Store-All.
However, thanks to the extracted metadata, LwTE reduces the
total cost by 60% through storing 2% of segments/bitrates
as the popular set and performing light-weight transcod-
ing for the other ones. For increasing request arrival rates,
the PT and LwTE approaches store more segments/bitrates
in the popular set, which leads to an increase in the storage
and computation costs. For instance, in case of request arrival
rate 5000, PT and LwTE store around 57% and 49% of
segments/bitrates, respectively.

In this paper, by having the metadata for all video seg-
ments/bitrates, we address the following problem: For the
given set of video segments/bitrates with a wide range of pop-
ularity rates and request arrival rates, which segments/bitrates
must be stored and which ones should be transcoded in such
a way as to minimize the total cost, including storage and
computation costs?

B. GENERAL ARCHITECTURE
In HAS, clients adapt to the desired bitrate (resolution/quality
level) based on, e.g., network conditions and client charac-
teristics. Consequently, a Content Delivery Network (CDN),
i.e., a geographically distributed group of servers provid-
ing storage capability for the fast delivery of Internet con-
tent, is responsible for distributing all segments (or subsets
thereof) within the network towards the clients. The CDN
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FIGURE 2. LwTE architecture.

paradigm has been generalized and extended by edge com-
puting [27]. On the other hand, edge computing provides
storage capability closer to clients, leading to lower latency
than CDNs. Moreover, providing computation capabilities
within the edge enables us to run compute-intensive ser-
vices like transcoding, although edge nodes may have limited
capacity and serve small, frequently changing client popula-
tions [28]. Thus, we use edge computing capabilities and pro-
pose a light-weight transcoding approach (LwTE). Aiming to
reduce the total cost of VoD applications, including storage
and computation costs and accelerating the transcoding pro-
cesses, LwTE serves the clients through the following steps
(see Fig. 2):
1) Encoding and extractingmetadata: During the encod-

ing process, selected features are extracted and stored as
metadata for all bitrates (except for the highest bitrate)
at no additional costs. The metadata is used to reduce
the computation time of the transcoding process at the
edge. The technical aspects of the metadata generation
are discussed in Section III-C.

2) Optimized downloading: At this stage, the edge servers
employ an optimization model to determine popular and
unpopular sets of video segments/bitrates. For popular
sets, all video segments/bitrates are downloaded from
the origin server. In unpopular sets, only the highest
bitrate plus corresponding metadata generated during
the encoding process are made available at the edge.

3) Light-weight transcoding: This stage will be applied to
those segments/bitrates available in the unpopular set.
Thanks to the available metadata, the edge server can
promptly produce desired bitrates by means of light-
weight transcoding.

4) Delivering requested bitrates: Finally, requested
bitrates are delivered from the edge server to the clients.

C. EXTRACTING METADATA
Video coding is becoming more efficient thanks to sophis-
ticated tools that come with higher demands in terms of
computing power and time complexity. In conventional
block-based video compression, each video frame is divided
into small-sized blocks, and each block is predicted using
previously encoded spatial/temporal neighboring blocks.

In HEVC, frames are divided into 64 × 64 pixel blocks,
called Coding TreeUnits (CTUs) [29], [30]. To encodeCTUs,
each of them is partitioned into equally sized square blocks

FIGURE 3. Each CTU is split into CUs with different sizes.

known as Coding Units (CUs). For a 64 × 64 pixels CTU,
four different CU size partitionings including one 64 × 64
pixels CU, four 32 × 32 pixels CUs, sixteen 16 × 16 pixels
CUs, and sixty four 8 × 8 pixels CUs is considered. These
partitionings for one CTU are shown in Fig. 3. The rate-
distortion cost [13] is calculated for all of these CUs to find
the optimal CTU partitioning structure with the minimum
cost.

The search to find the optimal CTU partitioning into CUs
using a brute-force approach takes the largest amount of time
in the encoding process. To avoid a brute-force search process
at the edge, we extract the optimal partitioning structure
for CTUs during encoding in the origin server and store
this as metadata for each segment bitrate except the highest
bitrate. To save the partitioning structure optimally, a quad-
tree structure is used for partitioning a CTU recursively into
CUs starting from 64 × 64 pixels CU going toward 8 × 8
pixels CUs. When the optimal CTU partitioning is found,
‘1’ is allocated to the partitioned CUs, and ‘0’ is allocated
to the non-partitioned CUs. An example of an optimal CTU
partitioning structure is shown in Fig. 4. To save this optimal
CTU partitioning, thirteen bits are required.

In HEVC, each CU is further split into Prediction Units
(PUs) [29]. Eight different PU partitioning modes of each
CU in HEVC inter-coding are illustrated in Fig. 5. For each
CU, the PU structure with the minimum cost is selected as
the optimal PU partitioning mode. In addition to the CTU
partitioning structure, the optimal PU partitioning mode for
each CU is extracted and added to the metadata. To further
reduce the size of the metadata (or bitstream), we use the
Huffman algorithm to encode the metadata losslessly.
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FIGURE 4. Example of an optimal CTU partitioning into CUs and its corresponding quad-tree structure. The optimal decisions in this example are colored.
If a CU has been divided to smaller CUs, ‘1’ is added to the bitstream for that CU, otherwise, ‘0’ is added to the bitstream.

FIGURE 5. Eight different CU partitionings into PUs in inter-coding.

In this paper, LwTE-M1 (mode1) is used if the metadata
contains only the optimal CU partitioning structure, and
LwTE-M2 (mode2) is used if the metadata contains both
the optimal CU partitioning structure and the optimal PU
partitioning mode [29].

D. LwTE PROBLEM FORMULATION
Recent studies have shown that the access pattern to video
streams follows a long-tail distribution [31]. It means only a
small percentage of videos are requested frequently, and the
majority of videos are rarely accessed. For instance, in the
case of YouTube, it has been shown that only 5% of the
videos are popular [32]. Even within a popular video, some
segments are accessed more often than others. For example,
the beginning portion of a video or a popular highlight part in
a video is typically streamed more often than the rest of the
video [31]. This paper adopts the long-tail access pattern and
the partial transcoding approach.

The main idea of the partial transcoding approach is to
store popular video segments/bitrates and keep only the high-
est bitrate for rarely accessed video segments to be transcoded
upon receiving clients’ requests. However, the main issues of
partial transcoding are (i) determining the optimal set of video
segments/bitrates which should be stored and (ii) the high
computation time of the transcoding process that imposes
noticeable computation cost and delay.

To cope with the high time complexity of transcoding,
LwTE leverages the metadata produced during the encod-
ing process. Although, compared to the conventional par-
tial transcoding approaches, LwTE transmits corresponding
metadata for segments/bitrates that should be transcoded, this
transmission cost is worth having since (i) it significantly

decreases transcoding time at the edge and (ii) it introduces
only little storage overhead (additional cost) due to its very
small size (see Section IV).

We now describe the proposed mixed-integer linear pro-
gramming (MILP) model that enables LwTE to deter-
mine the optimal sets of popular and unpopular video seg-
ments/bitrates by considering computational resource limita-
tion at the edge (i.e., CPU). Let us define V as the set of m
distinct videos in the edge server and S = {Si|i = 1, . . . ,m}
as the set of all segments, where each segment set Si includes
all segments of video i and si,j ∈ Si denotes the jth segment
of video i. For the sake of simplicity, let us assume all videos
are encoded into a predetermined set K of representations
(bitrates) including k bitrates (see Table 2 for notations). Let
xri,j be a binary variable that determines if segment si,j ∈ Si
in bitrate r must be stored (xri,j = 1) or served by transcoding
(xri,j = 0). In LwTE, we should fetch the highest bitrate to
serve requests for popular and unpopular (for transcoding)
segments; thus, the first constraint can be stated as follows:

xri,j = 1, ∀i = {1, . . . ,m}, j = {1, . . . , |Si|}, r = 1 (1)

where r = 1 shows the highest bitrate of each segment.
The storage cost is a function of the storage duration and
volume. The storage capacity is consumed by storing the
video segments/bitrates for the popular set and the highest
bitrate plus the corresponding metadata for the unpopular set.
Thus, the storage cost Cstr can be formulated as follows:

1s ×

m∑
i=1

|Si|∑
j=1

|K|∑
r=1

(xri,j × ω
r
i,j)+ (1− xri,j)× ω̄

r
i,j ≤ Cstr , (2)

where ωri,j and ω̄
r
i,j denote the size of bitrate r and the cor-

responding metadata of segment si,j, respectively. For those
segments that must be stored (xri,j = 1), xri,j × ω

r
i,j represents

the size of the bitrate that needs to be stored. In contrast
(1 − xri,j) × ω̄ri,j shows the required storage for metadata.
Moreover,1s refers to the storage cost per byte per θ seconds.
The next constraint specifies the required computation cost
Ccmp for transcoding processes:

ρ × m×1c ×

m∑
i=1

|Si|∑
j=1

|K|∑
r=1

(1− xri,j)× F(i, j, r)× R
r
i,j

≤ Ccmp, (3)
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TABLE 2. Notations.

where ρ and 1c show the average request arrivals per
video in θ seconds and resource computation cost per CPU
per second, respectively. Rri,j defines the required resources
(i.e., CPU time in seconds) for transcoding the segment si,j
into requested bitrate r from its highest bitrate. Moreover,
F(i, j, r) determines the request probability of segment si,j
in bitrate r based on the given popularity pattern. Consid-
ering the computation resource limitation at the edge server
(i.e., CPU), we should limit the transcoding to the available
computation resource at the edge server through the following
constraint:

ρ × m×
m∑
i=1

|Si|∑
j=1

|K|∑
r=1

(1− xri,j)× F(i, j, r)× R
r
i,j ≤ 8× θ,

(4)

where 8 and θ are the total available computation resource
per second and simulation duration in seconds, respectively.
Thus, the MILP model can be represented as follows:

Minimize Cstr + Ccmp

subject to: constraints Eq. 1 – Eq. 4,

variables: xri,j ∈ {0, 1}, Cstr , Ccmp ≥ 0 (5)

By minimizing the total cost function, we can determine
which video segments/bitrates must be stored and which
ones should be transcoded according to the given probability
function F and the average request arrivals per video (ρ).
Theorem 1: The proposed MILP formulation (Eq. 5) is an

NP-complete problem.
Proof: To show that a problem is NP-complete, we need

to consider the following two main steps: (i) indicating
that the problem is in NP, and (ii) reducing a well-known
NP-complete problem to the addressed problem in polyno-
mial time. To prove that this problem is an NP problem,
we should verify whether the proposed solution is a reli-
able solution in polynomial time or not. By considering
the proposed constraints Eq. 1 – Eq. 4, we only need to
check whether the solution satisfies these constraints. This
examination can be performed in polynomial time for the
addressed problem. For the second step, we need to serve all
clients’ requests in the edge server by either delivering stored
segments/bitrates or by transcoding. Let us consider vi as the
obtained value by serving request i that can be proportional
to 1

ci
, where ci is the cost of serving the request i, and also

define a weight parameter wi as the required computation
resource for serving i. Now, by assumingM as the maximum
available computational resource at the edge, the addressed
problem can be reduced to the NP-complete 0-1 knapsack
problem in a polynomial time.

We note here that the current version of the MILP model
(Eq. 5) aims to reduce the storage and computation costs
concerning the available computational resources. However,
we plan to enhance the LwTE approach in our future work
by considering various metrics in the objective function
(e.g., fetch delay, transcoding delay, and bandwidth cost) and
adding more realistic constraints (e.g., storage and bandwidth
limitations at the edge).

E. HEURISTIC ALGORITHM
Due to the high time complexity of the proposed MILP
model (Eq. 5), we introduce an efficient heuristic algorithm
to determine a near-optimal solution. Let X be an array of
all segments of m videos in k bitrates. After applying the
popularity distribution in [21] over X and sorting them in
descending order, the proposed heuristic algorithm tries to
select an optimal integer boundary point, denoted by x? where
1 ≤ x? ≤ |X |, to divide X into two sub-sets: (i) those video
segments/bitrates that should be stored and (ii) those that need
to be transcoded. We note here that x? should be selected
regarding the average request arrivals per video (ρ) in such a
way that the available computational resource is not violated
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and the total cost of storage and transcoding is minimized.
For a given ρ value, LwTE stores x? video segments/bitrates
to serve requests up to point x?. The remaining |X | − x?

video segments/bitrates are stored in the highest bitrate plus
corresponding metadata to serve requests by transcoding.

Let us formulate the storage and computation cost func-
tions for a given integer point x, 1 ≤ x ≤ |X |. The storage
capacity is consumed by storing x video segments/bitrates
and |X | − x segments at the highest bitrate plus the corre-
sponding metadata. Thus, the storage cost can be formulated
as follows:

Cstr (x) = (ωx + ω̄x)×1s, (6)

where ωx and ω̄x are the cumulative size of the video seg-
ments/bitrates that are stored up to point x and |X | − x
segments/bitrates that are stored at the highest bitrate plus
corresponding metadata, respectively. Moreover, we can for-
mulate the computation cost in a similar way:

Ccmp(x) = (P̄|X | − P̄x)× ρ × m×1c, (7)

where P̄x specifies the cumulative required resources
(i.e., CPU time in seconds) for transcoding up to point x; thus,
by setting P̄0 = 0, we have:

P̄x = P̄x−1 + (P(x)× Rx), (8)

where P(x) and Rx are the request probability function x
and the required resources (i.e., CPU time in seconds) for
transcoding segment/bitrate x from its highest bitrate, respec-
tively. To consider the computational resource limitation at
the edge, we should limit the x in the following equation.
Thus, the boundary point x? for the given ρ can be obtained
as follows:

x? = argmin
1≤x≤|X |

{Cstr (x)+ Ccmp(x)}

s.t. Eq. 4 (9)

The value of x? can be achieved by differentiating the total
cost function (Cstr (x)+Ccmp(x)) with respect to x; however,
we first need to estimate the probability function P. Actu-
ally, by employing an appropriate method like [33], we can
estimate the probability function P. However, to avoid the
time complexity of the non-linear function estimation process
and its potential error, here we propose a simple heuristic
approach based on the binary search algorithm to find x? in a
limited number of iterations (see Algorithm 1).

First, we define the three input sets as follows: (i) cuTrans:
the cumulative set of required resources (i.e., CPU time in
seconds) for transcoding x video segments/bitrates where
1 ≤ x ≤ |X |, (ii) cuStorage1: the cumulative set of required
resources for storing x video segments/bitrates where
1 ≤ x ≤ |X |, and (iii) cuStorage2: the cumulative set of
required resources for storing |X |−x video segments in their
highest bitrates plus their metadata where 1 ≤ x ≤ |X |.

It worth mentioning that in case of need to store the video
segments/bitrates, the optimal solution is to store the pop-
ular ones. Thus, to satisfy Eq. 4, we should determine the

Algorithm 1 Finding an Optimal Boundary Point x?

Input: cuTrans, cuStorage1, cuStorage2, ρ, m,8, k
Output: x?

1 x← len(cuTrans)
2 d ← cuTrans[x] - 8
3 if d > 0 then
4 lastVisited ← FindElement(d)
5 else
6 lastVisited ← 1
7 end
8 bestCost ←∞
9 do
10 step← b math.abs(x − lastVisited)/2 c
11 cost[x]← CostFunc(x, cuTrans, cuStorage1,

cuStorage2, ρ, m)
12 next ← AvgCostFunc(x, x + k , cuTrans,

cuStorage1, cuStorage2, ρ, m)
13 prev← AvgCostFunc(x, x − k , cuTrans,

cuStorage1, cuStorage2, ρ, m)
14 lastVisited ← x
15 if next ≤ prev then
16 x← x + step
17 else
18 x← x − step
19 end
20 if cost[x] ≤ bestCost then
21 bestCost ← cost[x]
22 x?← x
23 end
24 while step > 0;
25 return x?

amount of violated resources d , in the worst case (when all
requests are served by transcoding) based on the cumulative
computation set culTran (line 2). If the required compu-
tational resource is more than the available computational
resource (8) at the edge server, we set the lower bound-
ary of x? to the first element that its value in culTran is
greater than d (lines 3-4). For example, let assume culTran =
[1, 2, 4, 5, 7, 9] (themost popular is the first element),8 = 6,
and d = 9− 6 = 3. In this case, the ‘FindElement’ function
returns the third element with the value of 4 as the lower
boundary of x?. In case of available sufficient computational
resource, the lower boundary of x? is set to 1 (line 6). It should
be noted that the upper boundary of x? is set to the last element
of X (line 1).

In the do-while loop, we try to find x? by dividing the
search space using variable step (line 10). Note that here
we prevent unsolicited iterations by restricting the number of
examined points to bmath.abs(x− lastVisited)/2c. In line 11,
we call the ‘CostFunc’ to calculate Cstr + Ccmp for x. It is
possible to have local minima in the summation of the compu-
tation and storage costs. Therefore, to avoid local minima trap
and select an accurate search direction in each iteration of the
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heuristic algorithm, we consider the average Cstr + Ccmp of
k neighbors before and after x? (lines 12-13). Now we update
the lastVisited and then jump to the new x point according
to the value of the step variable and determined direction
(lines 14-19). In lines 20-23, x? and bestCost are updated.
The search process continues until step = 0.
The time complexity of providing the input lists is
|X |log(|X |) owing to the sort algorithm employed for sort-
ing X . Furthermore, the time complexity of the while loop
is equal to log(|X |). Thus the total time complexity of the
proposed algorithm is (|X | + 1)log(|X |).

IV. PERFORMANCE EVALUATION
A. EVALUATION SETUP AND OVERVIEW
In this paper, aiming to introduce the idea of LwTE and
to show its feasibility and cost-efficiency compared with
conventional and state-of-the-art methods in a simple way,
we proposed a mathematical model and heuristic approach
to serve client requests by minimizing computation and stor-
age costs. Thus, based on the paper’s goals, in this section,
we evaluate the feasibility and efficiency of LwTE in com-
prehensive scenarios by varying the considered parameters
through implementation/measurement and analytical model-
ing approaches [34]. To this end, we made the following
assumptions: (i) there are sufficient computational resources
at the edge to serve all incoming requests by transcoding,
(ii) the performance is evaluated for a fixed time interval,
(iii) resource costs (i.e., storage and computation) remain
fixed during the considered time interval, and (iv) arriving
requests are distributed uniformly in the time interval.

For the actual implementation, we transcode the full set
of representations (i.e., we adopt the bitrate configuration of
HEVC/H.265 30 fps from [35]) of the BasketballDrive [13]
sequence using HEVC HM-16.20 [13] with four-second seg-
ment length. It is worth mentioning that transcoding time
depends on the video content complexity [36]. However,
as the encoding process at the edge (as a part of a transcoding
operation) is limited to the optimal decisions stored as meta-
data, there was not a noticeable difference between ‘‘easy
to encode’’ and ‘‘hard to encode’’ videos for both meta-
data size and transcoding time in our experiments. Thus, for
the sake of simplicity, we use one sequence in our evalua-
tions. We generate videos with various lengths, ranging from
2 to 120 minutes, by repeating the BasketballDrive sequence
segments. We also assume that the number of source videos
and video popularity will remain unchanged, and clients can
request any bitrate of a segment from the full representa-
tion set.

Some studies have shown that the access pattern to video
streams follows a long-tail distribution which results in high
popularity of only a small set of videos [31], [32]. Requests
are generated independently and follow a Poisson process.
For the access probability, we use a Zipf-like distribution [31]
and for simplicity, we assume that the popularity of each
video is known in advance. Considering the set V including

m videos sorted in descending order by videos’ popular-
ity, the access probability of video i, denoted by pvideo(i),
is obtained as follows:

pvideo(i) =
l
iα
, where l =

1∑m
i=1(1/iα)

, (10)

and α > 0 is the level of skewness in the popularity profile.
According to [7], [11], [23], we set α = 0.75 and use the
following cumulative distribution function q(i, j) to determine
the access probability of video i up to its jth segment:

q(i, j) =
1
Gi

(1− expγ j), where γ =
σ

|Si|
∀j ∈ Si (11)

where Gi and Si are a constant coefficient value and the
segment set of video i, respectively. Like [7], we set Gi =
0.98 and σ = 4.6. Therefore, the access probability for each
segment si,j ∈ Si is determined as:

psegment (i, j) = q(i, j)− q(i, j− 1), (12)

where q(i, 0) = 0,∀i ∈ V . Assuming that the bitrate pop-
ularities for various videos are almost identical, the access
probability for each bitrate r in representation set K can be
formulated as follows:

pbitrate(r) =
e−(r−z)

2/202

√
2π0

, (13)

where z and 0 are the mean and variance of the bitrate
distribution function, respectively. In general, the middle
bitrates in the representation set have a higher demand; thus,
we set z = 6 and 0 = 0.6 in our experiments [7]. However,
we investigate the performance of LwTE regarding different
values of α, σ , and 0 in pvideo, psegment , and pbitrate, respec-
tively (see Section IV-F). Now, the following probability
function F determines the access probability for bitrate r of
segment si,j in video i:

F(i, j, r) = pvideo(i)× psegment (i, j)× pbitrate(r) (14)

The storage and computation costs are set to 0.024$ per
GB per month and 0.029$ per CPU per hour, respectively.1

We calculate the cost values (i.e., storage and computation
costs) for a period of onemonth. Transcoding is performed on
Docker containers with one 3.4 GHz CPU and 2 GBmemory.
We run the evaluation with three and five CPU per second
as the total available computational resource (8). Since the
measured results were very close to each other and follow an
identical trend, for ease of explanation, we show the results of
8 = 5 CPU per second in the paper. We also set the k = 50
for running the proposed heuristic algorithm.

We evaluate the performance of LwTE in six scenarios.
In scenario I, we measure the LwTE transcoding times and
bitrates in two different modes (see Sect. III-C) and com-
pare the results with conventional transcoding. In scenario II,
we compare the proposed MILP model and the heuristic
algorithm’s performance in terms of transcoding rate and

1https://calculator.aws/, last access: April 25, 2021.
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total cost (i.e., storage and computation costs). In scenario III,
the proposed heuristic algorithm’s performance utilizing
metadata mode1 is evaluated in terms of storage cost, com-
putation cost, and transcoding rate. In scenario IV, we com-
pare LwTE in different modes to state-of-the-art approaches.
In scenario V, the impact of various probability distributions
on the performance of partial transcoding approaches, includ-
ing LwTE is investigated. In scenario VI, we measure the
performance of LwTE in different bitrate popularity modes.

B. SCENARIO I
As mentioned earlier, for LwTE-M1 (mode1), we employ the
optimal CU partitioning of all CTUs. In addition to optimal
CU partitioning, LwTE-M2 (mode2) utilizes the optimal PU
mode decisions. Thus, in the first scenario, we measure the
LwTE performance in terms of transcoding time and the size
of generated metadata for the entire representation set for
both LwTE modes, and compare the results with the conven-
tional transcoding method without the use of metadata.

FIGURE 6. Transcoding times of LwTE-M1 and LwTE-M2 relative to
conventional mode’s transcoding times for each bitrate in the
representation set.

Fig. 6 shows the transcoding times of LwTE-M1 and
LwTE-M2 relative to the transcoding times of the conven-
tional mode for each bitrate. The transcoding times for
LwTE-M1 and LwTE-M2 are about 20% and 10% of the
conventional method, respectively. Since we store the highest
bitrate r1 to transcode the other bitrates from it, it is omitted
from Fig. 6 and the embedded plot in Fig. 7.

Fig. 7 shows the bitrates for all three approaches. The
embedded figure shows the bitrates of the metadata rela-
tive to the corresponding representations. It is seen that the
size of the metadata compared to the corresponding content
bitrates is remarkably small. As an example, we take a look
at the second bitrate (r2). While the bitrate for this represen-
tation is 12425 kbps, the metadata’s bitrate is 209 kbps for
LwTE-M1 and 318 kbps for LwTE-M2, which are signifi-
cantly smaller than the video bitrate itself (1.7% and 2.5%,
respectively). It is clearly seen that by adding more infor-
mation to the metadata in LwTE-M2 as compared to
LwTE-M1, the size of the metadata increases slightly.
However, this results in a considerable reduction in transcod-
ing time compared to LwTE-M1.

FIGURE 7. Bitrates of all representations and their corresponding
metadata. The embedded plot shows the bitrates of the metadata relative
to the corresponding representations.

C. SCENARIO II
In this scenario, we investigate the performance of the pro-
posed MILP model and the heuristic algorithm using LwTE-
M1 in terms of the transcoding rate and total cost (i.e., storage
and computation costs). Due to the high time complexity of
the proposed MILP model (Eq. 5), we conduct the experi-
ments in this scenario with two video sets, including 100 and
1000 distinct videos, and various average request arrivals
per video (ρ) for one month. In this paper, we measure the
transcoding rate as the percentage of video segments/bitrates
in the unpopular set that should be served by transcoding,
relative to the total number of video segments/bitrates that
is equal to |X |−x

?

|X | %.

As depicted in Fig. 8, both the proposed MILP model
and the heuristic algorithm show almost identical results in
measured normalized total cost and transcoding rate. It means
that the proposed heuristic algorithm results in a near-optimal
solution. Although the heuristic algorithm produces smaller
transcoding rates in some points, e.g., ρ = 5000 for the
smaller video set (m = 100), the measured total costs for
both approaches are almost identical. The average measured
execution times for the proposed MILP model for video sets
with 100 and 1000 videos are 1.2 seconds and 19.2 seconds,
respectively. In contrast, the proposed heuristic algorithm
determines the solution for both video sets in less than one
millisecond.

D. SCENARIO III
In this scenario, we investigate the proposed heuristic algo-
rithm’s performance employing LwTE-M1 for eight video
sets and various average request arrivals per video (ρ) for one
month in various aspects. As we can see in Fig. 9, the storage
and computation costs follow an identical behavior for all
video sets (with different numbers of videos). The upper
subfigure in Fig. 9 shows a closer look at the storage and
computation costs with absolute cost values for 500 videos
at various ρ values. The transcoding rate also shows similar
behavior for all video sets (see Fig. 10). Since the ρ values
are fixed for all video sets, we can conclude that determining
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FIGURE 8. Comparison of the proposed MILP model and the heuristic
algorithm in terms of (a) normalized total cost and (b) transcoding rate
for two video sets, including 100 and 1000 videos, and various average
request arrivals per video (ρ) for one month.

FIGURE 9. Normalized values for storage and computation costs of the
proposed heuristic algorithm employing LwTE-M1 for eight video sets and
various average request arrivals per video (ρ) for one month.

the transcoding rate mainly depends on ρ, and the number of
video segments/bitrates has a negligible impact on it.

For ρ ≤ 100, the number of arrived requests is very low,
thus LwTE prefers to serve almost all requests by transcoding;
consequently, there is no change in the storage cost. How-
ever, there is a slight increase in the computation cost (see
Fig. 9 and Fig. 10). For 100 < ρ ≤ 5000, the transcoding

FIGURE 10. Transcoding rate of the proposed heuristic algorithm using
LwTE-M1 for eight video sets and various average request arrivals per
video (ρ) for one month.

rate decreases, therefore, more segments/bitrates should be
stored, and the storage cost increasesmoderately. On the other
hand, the computation cost increases due to the increase of ρ.
For 5000 < ρ ≤ 100000, the computation cost remains
almost constant due to the decrease in the transcoding rate,
although the ρ value increases. However, the storage cost
increases since LwTE stores more segments/bitrates. For
ρ > 100000, the computation cost starts to decrease slightly
due to transcoding rate reduction. On the other hand, the stor-
age cost increases in this interval.

E. SCENARIO IV
In this scenario, we compare the LwTE approach in different
modes with some state-of-the-art and industrial approaches.
For this purpose, we select the following methods for com-
parison in our experiments.
(i) Store-All: It stores all segments in a full representation

set for all videos.
(ii) Store-Highest: Only the highest bitrate is stored for

all segments; other bitrates need to be created through
transcoding.

(iii) Conventional partial-transcoding (PT ) [21]: This
method stores popular segments/bitrates, while it stores
the highest bitrate for unpopular segments. The remain-
ing bitrates in the unpopular set are provided by on-
the-fly transcoding in conventional mode. Proposed
heuristic algorithm (Alg. 1) is used to determine the
boundary point between the popular and unpopular
segments/bitrates.

(iv) LwTE-M1 and LwTE-M2: The proposed LwTE approach
in two modes (i.e., mode1 and mode2) employs the
proposed heuristic algorithm (Alg. 1) to optimally deter-
mine the sets of popular and unpopular video seg-
ments/bitrates.

As shown in the previous scenario, the normalized values
of the storage and computation costs for various video sets are
almost identical. Thus, for ease of explanation, we investigate
the performance of the aforementioned approaches for the
fixed number of 50000 videos.

As depicted in Fig. 11, the Store-All total cost remains
fixed regardless of the ρ values due to storing all segments
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FIGURE 11. Comparison of the proposed LwTE approach’s performance
in different modes with some state-of-the-art methods in terms of the
total cost.

FIGURE 12. Comparison of the proposed LwTE approach in different
modes with PT in terms of the total cost.

in the full representation set. It also results in the highest cost
when ρ ≤ 1000. In contrast, Store-Highest shows better per-
formance for lower ρ values; however, its total cost increases
sharply and generates the highest cost when 5000 ≤ ρ. The
partial transcoding methods, including PT, LwTE-M1, and
LwTE-M2 store the popular video segments/bitrates; thus,
they result in a better performance than the other approaches
(see Fig. 11). Fig. 12 illustrates the obtained total cost for the
partial transcoding approaches in a closer inspection. For a
low number of arriving requests, ρ ≤ 100, the computation
cost is negligible, so all the partial transcoding methods serve
the requests by transcoding (see Fig. 13). However,PT results
in a lower total cost than LwTE approaches, since it does
not store the metadata. After this point, the LwTE methods
have the best performance (see Fig. 11 and Fig. 12). For
ρ > 100, in the partial transcoding approaches, the transcod-
ing rate starts to reduce. This phenomenon happens in order
for PT, LwTE-M1, and LwTE-M2 due to the corresponding
computation cost (see Figs. 12 and 13). LwTE-M2 shows the
best performance in terms of total cost among all studied
approaches due to reduced storage and computation cost. The
LwTE-M1 method has the second-best results.

F. SCENARIO V
In this scenario, we are going to investigate the
LwTE-M1 and PT performance with various request

FIGURE 13. Comparison of the proposed LwTE approach in different
modes with PT in terms of the transcoding rate.

probability distributions for videos, segments, and bitrates.
Fig. 14 (a) shows the request probability distribution
for 1000 videos achieved from Eq. 10 by setting α =

{0.75, 1.25, 2}. To have various probability distributions for
segments within a video and bitrates in the given representa-
tion set, we set σ = {1.2, 4.6, 6.6} and 0 = {0.6, 1.2, 1.9}
in Eq. 11 and Eq. 13, respectively. For example,
Fig. 14 (b) and (c) show the probability distributions for
100 segments in a video and 12 bitrates in the representation
set. In this scenario, we conduct the experiments for a video
set, including 1000 distinct videos, and various average
request arrivals per video (ρ) for one month.
Fig. 15(a)–(c) depict the measured total cost and

Fig. 15(d)–(f) illustrate the transcoding rates for various
probability distributions for videos, segments, and bitrates,
respectively. What stands out in Fig. 15 is that, while both
approaches illustrate almost identical trends, LwTE-M1 sur-
passes the PT approach when the ρ is more than 100.
Moreover, Fig. 15 also indicates that distributions with a
larger standard deviation (i.e., greater α and σ values and
smaller 0 values) result in a better performance in terms of
total cost and transcoding rate in all cases. In fact, in the case
of distributions with a larger standard deviation (e.g., α = 2
in Fig. 14(a)), fewer video segments/bitrates are requested
with a given probability; thus, the studied approaches need
to store fewer video segments/bitrates to serve the arriving
requests.

The obtained results for different probability distributions
are very close for low ρ values, i.e., less than 100; however,
they show a greater difference for higher arrival rates. The
bitrate probability distribution results in the broadest differ-
ences in terms of total cost and transcoding rate (see 0 = 1.9
and 0 = 0.6 in Fig. 15(c) and Fig. 15(f)). On the other
hand, the various segment probability distributions result in
the smallest differences (see Fig. 15(b) and Fig. 15(e)).

G. SCENARIO VI
In this study, different popularities for each bitrate in the rep-
resentation set are considered. In this scenario, we are going
to investigate the performance of LwTE in the following
cases: (i) considering different popularities for each bitrate
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FIGURE 14. Probability distributions for (a) 1000 videos, (b) 100 segments within a video, and (c) bitrates in a representation set.

FIGURE 15. Impact of Zipf distribution parameters on total cost with (a) various α values, (b) various σ values, and (c) various 0 values, and on
transcoding rate with (d) various α values, (e) various σ values, and (f) various 0 values.

in the representation set (default approach); (ii) considering
equal popularity for each bitrate in the representation set; and
(iii) ignoring the bitrate popularity. In fact, in case (ii), each
segment’s bitrate has equal probability to be selected for the
popular set; in the other hand, in case (iii), a segment should
be stored with the entire representation set if it is selected for
the popular set; for those in the unpopular set, we need to
store the highest bitrate plus corresponding metadata for the
rest of bitrates.

Both the proposed model (Eq. 5) and the heuristic algo-
rithm support the first and second cases by considering bitrate
popularity as an input parameter. However, ignoring the
bitrate popularity means identifying popular and unpopular
sets according to the video segments’ popularity. To support
the third approach by the MILP model and the heuristic
algorithm, we only need to assume X as a set of all segments
of m videos without considering bitrates.
Here, we investigate the performance of the LwTE-M1 and

PT methods for the three cases (i)-(iii) for a video set with
1000 videos and various ρ values for one month. Fig. 16
and Fig. 17 illustrate the measured total cost and transcoding
rate, respectively, for LwTE-M1 and PT using the notations:
(i) bitrate-based (BB) by considering different popularities

FIGURE 16. Performance comparison of the proposed
LwTE-M1 and PT approaches in terms of total cost, considering
bitrate-based popularity (BB), equal-bitrate popularity (EP), and
segment-based popularity (SB).

for each bitrate in the representation set, (ii) equal-popularity
(EP) by taking into account equal popularity for each bitrate
in the representation set, and (iii) segment-based (SB) which
does not take into account the bitrate popularity, i.e., only
considers video segments’ popularity.

From Fig. 16 it can be seen that LwTE-M1 and PT methods
for the BB case, which is employed as a default approach
in this paper, achieve the best performance in terms of the
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FIGURE 17. Performance comparison of the proposed
LwTE-M1 and PT approaches in terms of transcoding rate, considering
bitrate-based popularity (BB), equal-bitrate popularity (EP), and
segment-based popularity (SB).

total cost with a considerable difference compared to other
cases. For the EP case, each bitrate of a given segment
has an equal probability of selection for the popular set
that leads to select all bitrates of the segment. That is, the
LwTE-M1 and PT methods for the EP and SB cases yield
almost identical results.

V. CONCLUSION AND FUTURE WORK
In this paper, a novel cost-effective video transcoding
approach called LwTE was proposed. The main idea of
LwTE is to store the optimal search results/decisions in
the encoding process as metadata for each video bitrate
(except the highest) and employ them at the edge server to
reduce the transcoding time. For unpopular segments/bitrates,
LwTE stores only the highest bitrate plus correspond-
ing metadata and serves the desired bitrates by on-the-
fly transcoding by employing the metadata. The popular
segments/bitrates are stored at the edge server in the usual
manner. By utilizing the metadata, unnecessary search pro-
cesses can be avoided during transcoding, which results in
considerable reductions in transcoding time and computation
costs. Besides, the storage cost can be reduced as themetadata
has a much smaller size than its corresponding segment data.
The evaluation results show that LwTE does the transcoding
processes at least 80% faster than the conventional transcod-
ing method. Moreover, the experimental results indicate up
to 70% and 12% cost saving compared to the conventional
Store-All and PT approaches, respectively.
The main goal of this paper was to introduce the idea

of LwTE and show its feasibility and cost-efficiency com-
pared with conventional and state-of-the-art methods based
on simple scenarios. Future work will include more realistic
assumptions and constraints, e.g., by considering resource
limitations at the edge (i.e., storage, bandwidth, and computa-
tion) and multiple time-slots with variable duration into both
optimization models and heuristic algorithms.
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