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ABSTRACT This work presents a strategy, from the perspective of the distribution system operator (DSO),
that aims at simultaneously estimating the maximum penetration levels of renewable-based distributed
generation (DG) and electric vehicles (EVs) that can be accommodated into an electric distribution system
(EDS). To estimate such capacity, operational resources such as generation curtailment and controllable
features of EVs can be managed to ensure the safe operation of the EDS and avoid infeasible operational
conditions. Through a multi-period representation, the proposed strategy models the variability in demand
consumption and DG power production. In addition, driving patterns of EV owners and energy requirements
of EVs, obtained through probability density functions, are incorporated in this representation. Inherently,
the problem is represented as an optimization model, and to determine its solution, an algorithm based
on the metaheuristics greedy randomized adaptive search and tabu search (GRASP-TS) is developed. The
applicability of the planning strategy is assessed on a 33-bus EDS under different test conditions and the
numerical results show that higher penetrations of EVs and renewable-based DG can be accommodated
without impacting the safe operation of the EDS. The results also demonstrate that by controlling the power
draw by EV aggregators, an increase of 9% can be obtained in the DG installed capacity compared to the case
of uncontrolled charging of EVs. In addition, the scalability of the proposed approach is studied using two
distribution systems, the 83-bus system and the 135-bus system, where the results show that the convergence
of the algorithm is achieved in a few iterations.

INDEX TERMS Electric vehicle aggregator, GRASP-TS, hosting capacity, distributed generation.

I. INTRODUCTION
The restructuring of the energy market and the popularization
of modern technologies such as renewable-based distributed
generation (DG) and electric vehicles (EVs) have changed
the traditional approaches to deal with the operation and
expansion planning problems of electric distribution systems
(EDSs) [1]–[3]. This transition has been encouraged by dif-
ferent factors such as diversification of the energy matrix,
an economy based on low environmental impact, and miti-
gation of dependence on fossil fuels. However, the ceaseless
integration of these technologies could impact the EDS oper-
ation and the quality of the energy supplied to consumers.
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In this context, the distribution system operator (DSO) should
seek strategies to properly assess the integration of such
technologies using the current EDS infrastructure, without
incurring new investments. This condition gave rise to the
concept of hosting capacity analysis in EDSs, which is aided
with the implementation of operational resources to manage
voltage levels and power flows to avoid infeasible operational
conditions [4].

One of the first works that evaluates and quantifies the
impact of high penetrations of DG connected in power sys-
tems is presented by the authors in [4]. Over the years,
the hosting capacity analysis has been addressed using dif-
ferent strategies; for example, in [5], a cost-benefit analysis
model is proposed to determine the maximum wind-based
DG capacity to be connected to an EDS, for which a scheme
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of generation curtailment is implemented to increase such
DG capacity. A sensitivity analysis to estimate the installed
capacity of photovoltaic (PV)-based DG units is developed
in [6]. Taking advantage of the capacity factor of DG units
based on wind and PV technologies, a probabilistic method is
implemented in [7] to estimate the DG hosting capacity of an
EDS. In addition, in the literature, strategies can be found to
maximize the DG hosting capacity through the coordinated
operation of energy storage systems [8], implementation of
demand response programs and DG reactive power sup-
port [9], including the operation of medium- and low-voltage
transformers [10] and open unified power quality condi-
tioner [11], the use of dynamic reconfiguration, and static VAr
compensators [12], and management of devices for voltage
and reactive power control considering voltage-dependent
loads [13].

On the other hand, large penetrations of EVs combined
with uncontrolled charging of these resources can also signif-
icantly impact the EDS operation [14]. In this regard, actions
to manage EV charging schemes and mitigate infeasible con-
ditions in the EDS operation caused by such penetrations, are
crucial in DSO’s planning and operation studies. Different
strategies have been proposed to analyze the impacts and
determine the maximum penetration level of EVs to be incor-
porated into an EDS. Alturki and Khodaei, in [15], propose
an approach based on sensitivity indices to determine the
marginal values of increasing the EV demand in specific
EDS locations, considering operational limits of the system.
Zhao et al., in [16], develop a methodology based on the
concept of EV charging region to estimate the EDS capac-
ity of accommodating the new EV demand, ensuring the
operational limits. To analyze the maximum demand level
of an EDS and in order to guarantee its feasible operation,
a strategy that assesses different EV penetration levels is pre-
sented in [17]. Another similar approach is presented by the
authors in [18], where a probabilistic method is implemented
to determine the maximum penetration level of EVs that can
be incorporated into an EDS.

Nevertheless, the works discussed on the integration of
EVs into an EDS have not explored the benefits that can be
obtained when coordinating the EV charging. The authors
in [19] propose an approach to assess the EV hosting capacity
under controlled and uncontrolled charging scenarios, using
a strategy based on voltage constraints. Later, the strategy in
[19] is improved in [20], where a strategy based on a demand
response mechanism is implemented to maximize the EV
penetration level. On the other hand, by taking advantage
of the EV charging coordination, the integration of other
resources could be maximized, such as heat pumps [21], and
DG [22]–[25].

In this connection, the charging scheme should be coor-
dinated to take advantage of those time intervals with lower
demand and higher DG in order to mitigate infeasible con-
ditions and, to increase the EV penetration into the sys-
tem. As controllable demand, EVs have characteristics that
can be used to avoid voltage drops and overloading of

transformers and EDS circuits. In the DG hosting capacity
problem, EVs have been scarcely studied; however, an initial
approach is presented in [22], which estimates the maxi-
mum DG capacity to be installed considering EVs as uncon-
trollable loads. To overcome this limitation, some studies
present different approaches to increase the DG installed
capacity, taking advantage of controllable features of the
EVs [23]–[25]. Although these works exploit, from the per-
spective of the DSO, the benefits that controllable features of
EVs can provide in the EDS operation, these studies assume
that EVs are placed in the system; therefore, the simultaneous
hosting capacity assessment of DG and EVs in EDSs is
not considered in such approaches. To address this problem,
an initial approach is presented by the authors in [26], where
the penetration levels of PV-based DG and EVs are simul-
taneously increased at the residential level by implementing
operational resources such as generation curtailment and the
coordination of EV charging schemes.

Although there is a vast number of approaches that address
the DG hosting capacity problem, only [23]–[25] consider
the effects of EVs. As discussed in the literature review,
approaches to simultaneously estimate the hosting capacity
of DG and EVs in EDSs have been scarcely proposed, where
only the work presented in [26] is found. However, the prob-
lem is viewed from the residential level and simulations are
carried out in order to determine the maximum penetration of
EVs and PV-basedDG that can be connected. Unlike previous
works, the proposed work aims to fill this existing gap in the
literature by developing a novel strategy. Formulated from the
perspective of the DSO, the strategy seeks to estimate simul-
taneously and in advance the amount of renewable-based DG
that can be connected to the current infrastructure of the EDS
and, moreover, to foresee the impact due to the increasing
integration of EVs to the system.

In the formulation of the DG hosting capacity problem,
the capacity factor and complementarity of DG units based
on wind and PV technologies are addressed. On the other
hand, in the EV hosting capacity problem, unlike existing
approaches and to reduce the complexity of the problem,
EVs are grouped in different EV populations that can be
connected in different EDS locations. Each EV population
can be controlled independently, through an entity denoted
as the aggregator. Simultaneously, the problem is represented
as an optimization model, which is based on a multi-period
formulation that describes the operation and variability of DG
units, variability of demand consumption, controllable EV
characteristics, driving patterns of EV owners, and energy
requirements of EVs. Therefore, to estimate the maximum
DG and EV penetration level, the strategy optimizes oper-
ational resources such as generation curtailment and con-
trollable features of EVs, avoiding infeasible operational
conditions and reducing the energy losses. Based on the above
review, the main contributions are summarized as follows:
• A novel strategy to simultaneously assess the hosting
capacity of DG and EVs in EDSs. The strategy, for-
mulated from the perspective of the DSO, consists of
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determining the maximum penetration level of DG and
EVs, ensuring the safe operation of an EDS. In order
to estimate this capacity, the strategy manages oper-
ational resources such as generation curtailment and
controlled EV charging schemes by coordinating the
power draw by EV aggregators. Furthermore, variability
in demand consumption andDGpower production, tech-
nical characteristics of EVs, driving patterns, and energy
requirements of EVs are modeled using a multi-period
formulation, for a planning horizon of one year.

• A solution technique composed of an algorithm based on
the greedy randomized adaptive search and tabu search
(GRASP-TS) metaheuristics, which are based on the
literature review, has not yet been proposed to solve the
DG and EV hosting capacity problem. This technique
can be used as a planning tool that could assist the DSO
in the decision-making process.

II. PROBLEM DESCRIPTION
This work proposes a strategy to simultaneously estimate
the maximum penetration level of EVs and DG that can
be accommodated into an EDS. Inherently, the problem is
addressed as an optimization model, where the objective
function maximizes the installed DG capacity and the EV
demand for each aggregator, while the energy losses of the
system are also minimized A multiperiod formulation is
developed to capture the operation of renewable-based DG
(wind and PV technologies), the conventional demand con-
sumption, and the behavior of EVs. Moreover, the effects
of different EVs are grouped into populations, which are
optimally coordinated by aggregators. It should be noted that,
in this work, the aggregator is the entity responsible for oper-
ating the EV populations; however, the proposed formulation
may comprise charging stations and independent groups of
EVs.

A. RENEWABLE-BASED DG MODELING
In DG based on wind technology, wind speed is directly
related to the amount of power generated, which is the deter-
mining factor for power production. With the wind speed
information for different time intervals and using the lin-
earized power curve, equation (1), the active power generated
by a wind turbine, can be determined [27]:

Pwt =



0, v < vI
Pnom

wt

vR − vI
· (v− vI ), vI ≤ v < vR

Pnom
wt
, vR ≤ v < v0

0, v ≥ v0

(1)

Similarly, in PV generation, the amount of power produced
by a panel depends on the temperature and solar radiation,
as modeled in (2) and (3). With the irradiation information at
different time intervals, the cell temperature can be obtained
using (2), and finally, with the value of Tcel in (3), the active

power injection of a panel can be determined [27]:

Tcel = Tamb +
(
NOCT − 20

800

)
G (2)

Ppv = Pnom
pv
{

G
1000

[1+ δ (Tcel − 25)]
}

(3)

B. EV DRIVING PATTERNS AND EV AGGREGATORS
Daily driving patterns of EVs are characterized using the
probability density functions (PDFs) developed in [28]. These
PDFs are obtained through a statistical analysis of the infor-
mation presented in [29]. The normal segmented probability
functions, modeled in (4) and (5), describe the arrival times
(plug into the grid) and departure times (plug out) of EVs dur-
ing a day. From these equations, one can obtain information
related to the occurrence of the arrival time (harr ), the depar-
ture time (hdep), and the period when the EV is positioned
and available to charge (Dt,u). To represent the number of
kilometers that an EV has traveled, the normal logarithmic
function (6) is used. Based on this information, it is possible
to determine the initial battery state of charge (SOC) of each
EV.

fc(harr ) =



1
2πσc

exp

[
−
(harr + 24− µc)2

2σ 2
c

]
0 ≤ harr ≤ (µc − 12)

1
√
2πc

exp
[
−
(harr − µc)

2σ 2
c

]
(µc − 12) ≤ harr ≤ 24

(4)

fs(hdep) =



1
√
2πσc

exp

[
−
(hdep − µs)

2

2σ 2
c

]
0 ≤ hdep ≤ (µs + 12)

1
√
2πσc

exp

[
−
(hdep − 24− µs)

2

2σ 2
s

]
(µs + 12) ≤ hdep ≤ 24

(5)

fpev(x) =
1√

2πσpev
exp

[
(lnx − µpev)2

2σ 2
pev

]
(6)

The information provided by these PDFs can be extrapo-
lated to different populations of EVs; thus, with less compu-
tational effort, the proposed approach seeks to manage the
controllable features of EV populations instead of individ-
ually managing each EV. In this regard, to take advantage
of the flexibility that can facilitate these EV populations,
it becomes necessary to define an entity that appropriately
manages the integration of EVs into the EDS. In the literature,
some works adopt aggregators as intermediaries between the
EV owners and the DSO [30], [31]. This entity can represent
operators of charging stations and/or independent groups of
EVs; however, for the purposes of the present work, this agent
will be denoted as an aggregator.

The aggregator receives information regarding energy
requirements and behavior from EV owners. This informa-
tion is sent to the DSO, and then the DSO determines, for
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each time interval t , the power drawn by the aggregator in
a way that meets the energy requirements of the EVs’ and
the EDS’s operational limits. To model the aggregators and
determine the population of EVs that can be connected to
them, the expressions (7)-(15), based on [25], are used.

Emaxt,u =
∑EV k

v=1
Ecapv,k Dv,tzu,k , ∀(t, u, k), (7)

Pmaxt,u =
∑EV k

v=1
Pevv,kDv,tzu,k , ∀(t, u, k), (8)

Earrt,u =
∑EV k

v=1
E iniv,kh

arr
v,t zu,k , ∀(t, u, k), (9)

Edept,u =
∑EV k

v=1
Ecapv,k h

dep
v,t zu,k , ∀(t, u, k), (10)

Eagt,u = Eagt−1,u + E
arr
t,u − E

dep
t,u +1tP

ag
t,u, ∀(t, u), (11)∑

k∈0pev
zu,k = 1, ∀u, (12)

zu,k = 0/1, ∀(u, k), (13)

0 ≤ Eagt,u ≤ E
max
t,u ∀(t, u, k), (14)

0 ≤ Pagt,u ≤ P
max
t,u ∀(t, u, k), (15)

where the indices t , u, and k correspond to sets of time
intervals (0T ), the location of aggregators (0AG ∈ 0B), and
EV populations (0pev), respectively.
The maximum storage capacity of the aggregator u at

time t is determined in (7). Similarly, the maximum capacity
of the power drawn by the aggregator u in time t is given
by (8). The energy stored by the aggregator depends on the
initial and final SOC of the EV batteries that connect and/or
disconnect from the grid; this effect is represented by (9)
and (10). Note that these expressions depend on the charging
availability Dv,t of each EV v at time t; the time when an
EV is connected and disconnected from the grid (harr and
hdep); independent features, such as Ecap, Pev, E ini, and Edep

of each EV associated with the population k; the maximum
number of vehicles defined in each population (EV k ); and
the z decision variable, which determines the population that
can be integrated into the aggregator location u. The dynamic
energy balance of an aggregator is determined by (11), where,
for each t , the stored energy of a population of EVs is defined
in terms of the energy stored in the previous time (Eagt−1,u),
energy due to the arrival time of EVs (Earrt,u ), energy due to
the departure time of EVs (Edept,u ), and energy demanded from
the EDS (1tP

ag
t,u). An EV population with EV k is associated

with an aggregator using the variable zu,k ; thus, (12) states
that only a population k , contained in the set 0pev, can be
accommodated into the aggregator location u. The nature of
z is given by (13), where value 1 defines that the popula-
tion k must be associated to the aggregator location u, and
0 otherwise. Finally, expressions (14) and (15) limit the stored
energy and the power drawn by each aggregator, considering
the technical constraints of each EV population.

C. OPTIMIZATION MODEL
The problem addressed in this work consists of two stages.
The first stage seeks to estimate, in predefined locations,

the penetration level of EVs and renewable-based DG that
can be accommodated to an EDS. Meanwhile, the second
stage simulates the operation of the EDS as a reaction to the
capacities estimated in the first stage. Therefore, the second
stage minimizes the EDS energy losses in the whole planning
horizon, while EDS technical constraints must be satisfied.

In the proposed approach, the problem is mathematically
formulated as an optimization model. The objective function,
presented in (16), maximizes the installed capacity of PV- and
wind-based DG units (first and second terms, respectively)
and the EV demand by defining the maximum EV population
that can be accommodated into all aggregators (third term);
(16) simultaneously minimizes the energy losses of the EDS
(fourth term). To define the priority in each term of (16),
the weights τ and β are assigned.

max τ (
∑

n∈0pv
Pins

pv

n +

∑
m∈0wt

Pins
wt

m +

∑
u∈0AG

Pins
ag

u )

− β(
∑

t∈0T

∑
ij∈0L

I2ij,tRij) (16)

Subject to: (1)− (3), (7)− (15),

G(V , I ,P,Q) = 0, (17)

Vmin ≤ Vi ≤ Vmax , ∀i, (18)

Iij ≤ Imax , ∀ij, (19)

Pss
2
+ Qss

2
≤ Sss2, (20)

Pss ≥ 0, (21)

Pinj
pv

n,t = xnP
pv
n,t − P

pv(cut)
n,t , ∀(n, t), (22)

Pinj
wt

m,t = ymPwtm,t − P
wt(cut)
m,t , ∀(m, t), (23)∑

t∈0T

Ppv(cut)n,t ≤coef pvcut
∑
t∈0T

xnP
pv
n,t , ∀n, (24)∑

t∈0T

Pwt(cut)n,t ≤coef wtcut

∑
t∈0T

ymPwtm,t , ∀m, (25)

Pins
pv

n = xnPnom
pv

n , ∀n, (26)

Pins
wt

m = ymPnom
wt

m , ∀m, (27)

xn ∈ {0, 1, 2, . . . , xmax}, ∀n, (28)

ym ∈ {0, 1, 2, . . . , ymax}, ∀m, (29)

Pins
ag

u =

∑
k∈0pev

∑EV k

v=1
Pevv,kzu,k , ∀u, (30)

where i, ij, u, k , m, n, and t correspond to the sets of
EDS buses, 0B; EDS circuits, 0L ; locations of EV aggre-
gators, 0AG ∈ 0B; EV populations, 0pev; candidate buses
for installing wind-based DG units, 0wt ∈ 0B; candidate
buses for installing PV-based DG units, 0pv ∈ 0B; and time
intervals, 0T , respectively.

The objective function (16) is subject to renewable-based
DG power production (1)-(3), the operation model of EV
aggregators (7)-(15), and constraints (17)-(30). In this set of
constraints, the function given by (17) represents power flow
equations, where for each bus i, each circuit ij, and each
time t , Kirchhoff’s first and second laws must be satisfied.
To guarantee a secure EDS operation, (18) and (19) define the
pre-established limits for voltagemagnitude and thermal limit
at circuits, respectively. Expressions (20) and (21) define the
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FIGURE 1. Codification of the solution proposal.

transformer capacity of the substation and the requirement
that the substation cannot export power to the upstream sys-
tem, respectively. The set of constraints presented in (22)-(29)
determines the operation andmaximum capacity of wind- and
PV-based DG to be connected in the system. Constraint (22)
defines the power injection at time t of a PV-based DG unit
(Pinj

pv

m,t ), located at bus n in terms of the available power

xnP
pv
n,t and of the generation curtailment Ppv

cut

n,t . Similarly,
(23) determines the power injection at t of a wind-based
DG unit sited at bus m. Note that the power injection of
the renewable-based DG is subject to generation curtailments
in time intervals where the peak generation could affect the
operation of the system; therefore, the DG power injected into
the EDS is affected by a percentage generation curtailment for
each technology. For each technology, this DG curtailment
is limited by (24) and (25), where the sum of generation
curtailment for all ts (Ppv(cut)n,t /Pwt(cut)n,t ) should be less than or
equal to a percentage coef pvcut/coef

wt
cut of the sum in all time

intervals of the available power (xnP
pv
n,t /ymP

wt
m,t ). To define

the installed DG capacity for wind and PV units, Pins
pv

n
and Pins

wt

m , expressions (26) and (27) are used, respectively.
These capacities are defined by the product of the number
of PV modules (xn) with the nominal power of each PV
module (Pnom

pv

n ), and by the product of the number of wind
turbines (ym) with the nominal power of each wind turbine
(Pnom

wt

m ). Variables that define the number of PVmodules and
wind turbines are established to be integer variables in (28)
and (29), respectively. Finally, (30) determines the demand
of an EV population k accommodated to an aggregator. This
demand is obtained from the product that associates the sum
of the capacity of each EV charger (Pevv,k ) with the binary
variable zu,k , which establishes that the population k can be
accommodated to the aggregator u.

III. SOLUTION FRAMEWORK
The problem formulated in the previous section can be solved
using different optimization techniques. However, the perfor-
mance of classical optimization techniques could be affected
due to the non-linearities of EDS power flow equations
and, the problem complexity increases due to the number
of decision variables. As an alternative, techniques based on
heuristics and metaheuristics provide high-quality solutions

close to the global optimal solution with less computational
effort. Therefore, this work proposes an optimization-based
technique composed of twometaheuristics, GRASP and Tabu
Search, to solve the EV and DG hosting capacity problem.
To illustrate the implementation of this solution technique,
this section presents in detail the codification structure, algo-
rithm steps, and general solution scheme.

A. CODIFICATION STRUCTURE OF THE SOLUTION
To solve the problem under analysis, a solution proposal
within the search space should be efficiently represented; this
is essential to determine the solution to the problem using
metaheuristics. Thus, a solution proposal is formulated as
a vector, as shown in Fig. 1, where the size of the vector
depends on the number of PV- and wind-based DG units
(|0pv|, |0wt |); the number of EV aggregators, (|0AG|); and
power drawn by the EV aggregator, ur at time t , determined
∀r ∈ 1 . . . |0AG| and ∀t ∈ 1 . . . |0T |, respectively.
The vector consists of the number of PV modules (xnf ) to

be installed at bus nf (∀f ∈ 1 . . . |0pv|), the number of wind
turbines (yml ) to be installed at bus ml (∀l ∈ 1 . . . |0wt |),
a population of EVs (k ) to be accommodated to the aggrega-
tor ur using the decision variable zur ,k , and finally, the power
drawn (Pagt,ur ) at time t by the aggregator ur . Therefore, from
this information, the total installed DG capacity and the EV
demand of an aggregator u (Pins

ag

u ) to meet the energy require-
ments of an EV population k are determined using equations
(26), (27), and (30), respectively.

B. CONSTRUCTIVE PHASE
The constructive phase iteratively generates a solution;
GRASP provides this solution as the starting point in the
local search. Due to the different characteristics of the solu-
tion components, this phase is divided into two processes,
as shown in Fig. 2. The first one, denoted as Constructive
DG, aims at estimating the maximum installed DG capacity.
Meanwhile, Constructive AG determines the maximum EV
demand that can be accommodated to each aggregator.

The constructive DG consists of determining themaximum
PV- and wind-based DG capacity at predefined locations,
where different numbers of PV modules and wind turbines
are evaluated and while the EDS operational limits should
be met. Then, the process starts with an empty solution, for
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FIGURE 2. Flowchart of the constructive phase.

which the solution components are iteratively added through
a for loop. For each iteration l, the capacity wl of the DG
unit gl is added to the solution, where wl generically rep-
resents both the number of PV modules and the number of
wind turbines. Simultaneously, for each iteration l, different
capacities wl,a for the DG gl are evaluated using another for
loop, which starts at zero and can reach the maximum pre-
defined capacity wmax . From this loop, each iteration a starts
calculating, for each time interval, the DG power production
with capacity wl,a, using equations (22) and (23). Therefore,
the power flow, given by (17), determines the EDS operating
condition, considering the integration of the renewable-based
DG.

From the solution obtained by the power flow, operational
constraints of the EDS, such as voltage magnitude limit, (18);
thermal capacity, (19); and substation transformer capacity,
(20) and (21) are verified. Note that the feasibility of the EDS
operation for each iteration is assessed using the information
regarding operational constraints; if these constraints are not
met, a generation curtailment can be implemented at those
time intervals where there is a surplus of renewable gener-
ation. In addition, this operational resource should meet the
constraints formulated in (24) and (25), where the curtailment
is limited to a percentage that can be defined as a prior agree-
ment between the DSO and DG developers. However, if the
maximum generation curtailment availability is reached and

the infeasible conditions still remain, then iteration a is ended
and the process continues to the next l iteration. Otherwise,
when the proposed solution is feasible, the objective function
is calculated and its value is stored in the vector OFDG.
When the ‘‘for a’’ loop is ended, the Restricted Candidate
List (RCL) is calculated from theOFDG array, and an element
is randomly chosen to be part of the solution. Finally, the DG
constructive process ends when l = |0DG| and, thus, the DG
capacity determined is connected into the EDS.

The Constructive AG seeks to determine the maximum EV
demand that can be accommodated and managed by each
aggregator. This process evaluates different EV populations
and determines the power dispatched for each aggregator
satisfying the energy requirements of the EVs contained in
this population. Then, for each iteration r , the EV demand
for an aggregator ur that belongs to the set 0AG is determined,
considering different populations kp in the set0

p
ev. Simultane-

ously, for each iteration in this ‘‘loop for’’, the power drawn
by the aggregator ur is managed for each time interval.
In this process, the charging of EVs contained in the popu-

lation kp are managed in order to take advantage of those time
intervals in which there is more renewable generation and
less conventional demand. Similar to the Constructive DG,
the power flow is used to assess the feasible integration of
these aggregate loads. In addition, it is essential to guarantee
the charging of all EVs contained in each population, while
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FIGURE 3. General flowchart for the solution framework.

the constraints of EV aggregators ((11), (14) and (15)) should
be met. In this regard, when an EV population impacts the
EDS operation, the ‘‘For, p ’’ loop ends, and thus, only the
previous populations (kp−1) are considered as candidates to
be added to the initial solution. In other words, for each
iteration p, the objective function is calculated and stored in
the vector OFAG. When the For, p loop ends, the RCL list is
calculated, and from this, a population kp for the aggregator
ur is randomly chosen. Finally, this process is repeated until
the EV demand for all aggregators ur is determined.

C. LOCAL SEARCH PHASE
The local search phase aims to search for better solutions
in the neighborhood of the current solution obtained in the
constructive phase. Prior to starting the local search phase,
it is necessary to define an appropriate neighborhood struc-
ture. In this regard, this work proposes two neighborhood
structures: 1) the first neighborhood, denoted as N1, is gen-
erated from modifications in the installed capacity of DG
(PV and wind) and in the EV demand associated with each
aggregator, and 2) the neighborhood N2 is generated from
modifications in the power drawn by each EV aggregator at
each time interval.

To generate the set of neighboring solutions N1, the
following steps are carried out:

• Step 1: Determine the next integer values for the vari-
ables xn (number of PV modules), ym (number of wind
turbines), and zu,k (EV population k into aggregator u).

• Step 2: Generate the set of neighboring solutions from all
the possible combinations of the variables determined in
Step 1.

• Step 3: Disregard all the infeasible solutions and con-
sider only the set of feasible neighboring N1 solutions.

The process in the neighborhood N2 consists of generating
a set of neighboring solutions where, for each iteration c,
the power drawn (Pagt,ur ) by the aggregator ur is modified.
Then, when c is equal to the maximum number of aggre-
gators, a neighboring solution is obtained and the process
continues until all the neighboring solutions are generated.
Therefore, starting from the current solution of the neigh-
borhood N1, the set of neighboring solutions N2 has the
following steps:
• Step 1: Make a list of the best time intervals based
on those with highest renewable generation and lowest
conventional demand.

• Step 2: Generate all the possible combinations between
pairs of time intervals, from the obtained list in
Step 1.

• Step 3: Determine a list with the worst time intervals,
those with high demand and low DG power production.
Therefore, two time intervals (t) are chosen from the
list obtained in Step 1, and the EV power demand is
modified in these ts, considering the predefined limits
for energy capacity and power demand.

• Step 4: In this step, for each aggregator ur , exchanges of
power demand (Pagt,ur ) are carried out between the lists
obtained in Steps 2 and 3. It is worth mentioning that
these modifications must satisfy the limits for energy
capacity and power demand, and the energy balance
for each EV aggregator given by (14), (15), and (11),
respectively.

• Step 5: Recalculate the energy of the EV aggregator (ur ),
and if any time interval (t) violates the constraint (14),
then the modifications carried out in Step 4 are disre-
garded. In addition, if infeasible conditions are obtained
for all EV aggregators, then this solution is eliminated
from the set of neighboring solutions.
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• Step 6: Repeat Steps 4 and 5 for all EV aggregators until
c is equal to the maximum number of aggregators.

• Step 7: Repeat Steps 4-6 for all solutions in the set of
neighboring solution N2.

D. GENERAL SOLUTION SCHEME FOR THE DG AND EV
HOSTING CAPACITY PROBLEM
A summary of the proposed methodology to solve the EV
and DG hosting capacity problem is presented in Fig. 3. This
figure illustrates the three stages identified as input, GRASP-
TS metaheuristic, and output. In the first stage, the data
information necessary to formulate the problem is given by
predicted values for DG power production (PV and wind ),
EV energy requirements, and driving patterns of EV owners.
The second stage is defined by the GRASP-TS metaheuris-
tic used as a solution tool, wherein the constructive phase,
an initial solution, is iteratively generated. From this initial
solution, the local search phase seeks to improve it, consid-
ering two different neighborhood structures (N1 and N2).
Finally, when the stopping criterion is reached, the solution
determines a) the maximum installed capacity for the wind-
and PV-based DG units, b) the accommodated EV population
for each aggregator, and c) the power drawn by each EV
aggregator.

IV. CASE DESCRIPTION
The proposed strategy is evaluated under different test con-
ditions in a 33-bus distribution system [32]. For this system,
the nominal voltage is 12.6 kV; the peak demand is 3.715MW
and 2.30 MVAr; the substation transformer has a capacity
of 4 MVA; the maximum and minimum voltage limits are set
to 1.05 and 0.95 p.u., respectively; and the thermal limit of
the conductors is 220 A.

The planning horizon is considered to be one year, being
represented by time intervals contained in the set 0T . In this
regard, the hourly resolution of one year (8760 h) could be
adopted to solve the presented problem. It is known that this
high time resolution could provide more accurate results;
however, with a high computational effort. To deal with this
difficulty, a representative time resolution can be adopted,
which describes the planning horizon in a smaller set of
time intervals, providing approximate results of good quality
and with lower computational effort [33]. Therefore, in this
work, a year is represented by 24-time intervals, where these
representative ts approximate the operation and variability of
renewable-based DG units, the behavior of EVs, and demand
consumption variability.

DG units based on wind and PV technologies are consid-
ered. The Vestas V47 wind turbine with characteristics of
PR = 660 kW, vR = 15 m/s, vI = 4 m/s, and v0 = 25 m/s
is assumed. A PV module consists of 80 panels, with charac-
teristics such as PSTC = 200 kW, δ = −0.004 %/◦C, Tamb =
20◦C, and NOCT = 45. The solar radiation and wind speed
data are obtained using the online tool ‘‘Renawable.ninja’’,
obtained from [34], [35], the expected DG power production
profiles are generated. The expected profiles that show the

FIGURE 4. Expected value for a) demand consumption, and b) PV and
wind-based DG power production.

variability of demand consumption andDG power production
are shown in Fig. 4.a and 4.b, respectively.

For illustrative purposes, four predefined locations for
renewable-based DG units are assumed; two PV-based DG
units can be installed at buses 6 and 14, while two wind-based
DG units can be installed at buses 31 and 10. Note that
these locations can be defined through mutual agreements
between independent DG developers and the DSO prior to
the hosting capacity analysis. Generation curtailment can
be implemented as an operational resource to avoid infea-
sible conditions in the EDS operation and enable more DG
connections. For each DG unit (wind and PV), a maximum
percentage of generation curtailment of 7% is defined for the
whole planning horizon.

Regarding EV information, the NISSAN Leaf model with
a 24 kWh battery capacity, charger capacity of 4 kW, and
battery efficiency of 100% is taken into account. It is also
assumed that all EVs must be charged until complete 100%
SOC. To facilitate their integration into the grid, different
numbers of EVs were grouped into populations in the set 0pev.
This set contains, as a grouped effect, the information on the
EV state of charge at arrival and departure times, and the
maximum limit of the energy and power drawn for each EV
population. The EVs are clustered in different populations
denoted, from 1 to 16, as shown in Table 1, where each popu-
lation contains different numbers of EVs. This representation

TABLE 1. Set of populations of EVs 0
p
ev .
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enables the EV integration to aggregators through groups of
EVs instead of integrating an EV individually, which also
reduces the computational burden. Note that the proposed
strategy should select only one population to connect to an
aggregator, depending on the technical and operational limi-
tations of the EDS.

In this work, a metaheuristic GRASP-TS is used as the
solution technique to solve the aforementioned problem.
Some parameters used in this metaheuristic are defined as
follows: the exchange is prohibited for 3 iterations; the max-
imum number of iterations in the local search step is set
to 20, and the aspiration criterion eliminates a prohibition
when the objective function of the neighboring solution is of
better quality than the incumbent. In addition, to define the
priority in terms of the objective function in (16), the values
of τ = 0.7 and β = 0.3 are used. These values are adopted
to optimize the energy losses without significantly degrading
the DG capacity to be installed.

V. TEST CASES AND NUMERICAL RESULTS
In order to verify and show the advantages of the proposed
strategy, two different analyses are carried out. In the first
analysis, the hosting capacity of DGs and EVs is estimated
under different test cases. In the second analysis, the penetra-
tion level of EVs is gradually increased to assess its effects
on the DG hosting capacity.

A. ANALYSIS CONSIDERING DIFFERENT TEST
CONDITIONS
For this analysis, four cases are studied under different test
conditions to investigate the DG and EV hosting capacity in
the 33-bus EDS. These cases are explained as follows:

• Case I estimates only the wind-based DG hosting capac-
ity, disregarding PV-based DG and EVs.

• Case II seeks to estimate simultaneously the wind-based
DG and EV hosting capacity. However, the EVs are
charged without any control scheme.

• Case III considers the same conditions as Case II; how-
ever, the PV-based DG is added as a decision variable.

• Case IV involves the same technologies as Case III.
Nevertheless, the EV aggregators can coordinate the
charging of EVs.

The results obtained for each case are shown in Table 2.
From the solution of Case I, it can be observed that the
current infrastructure of the 33-bus EDS can accommodate
wind-based DGwith a capacity of 4.6 MW. This DG capacity
increases by 30% when 3300 EVs are connected through
aggregators into the EDS, as determined in the solution of
Case II. The increase in DG capacity is a consequence of tak-
ing advantage of the availability of wind generation, as seen
in Figs 6.a e 6.b, where the injection of wind power increases
to meet the demand for EV aggregators. Note that the DG
power injection is located at the top of these figures and
the demand of the EV aggregators is located at the bottom.
However, in this solution, it can be highlighted that this

TABLE 2. Summary of the results obtained for each case for the 33-bus
EDS.

FIGURE 5. Minimum Voltage profile for Cases III and IV.

increase in DG capacity leads to a 36.56 % increase in energy
losses compared with Case I.

When the PV-based DG is considered in Case III and
its solution is compared with that of Case II, increments
of 9.59% and 17.5% in the total installed DG capacity and in
the EV penetration are achieved, respectively. Additionally,
due to the complementarity in the capacity factor of these
DG technologies (wind and PV), energy losses are reduced
by 77.62 %. For Case IV, the flexibility of a charging coor-
dination scheme for EVs is explored; the solution shows
that, compared with Case III, the installed DG capacity is
increased by 21.34%. The charging coordination scheme for
the EV populations proves to be efficient to take advantage
of those time intervals with higher availability of DG power
production and lower conventional demand (Fig. 4.a and 4.b).

Comparing power dispatches between DG units and aggre-
gators, shown in Figs 6.c and 6.d, the coordination of
the power drawn by the aggregators implies increasing the
installed DG capacity and taking advantage of time intervals
in which there is an availability of wind power production.
In addition, this EV demand coordination reduces energy
losses by 39.69% and improves the voltage magnitude pro-
file, as shown in Fig. 5. This figure shows the minimum
voltage profiles for Cases III and IV, where it is observed
that, when the EVs are charged without any control scheme,
the voltage profile tends to the minimum limit.

The developed methodology determines simultaneously
the DG and EV hosting capacity of the 33-bus system. The
solution of each case presented different combinations of
the installed DG capacity and the number of EVs that are
connected in each aggregator. This information is presented
in Fig. 7 where, comparing the solution obtained for Cases I
and II, it is observed that, with the integration of EVs,
the wind-based DG wind unit located at bus 10 presents a
significant increase compared with the capacity determined
in the solution of Case I. On the other hand, when the
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FIGURE 6. Power exchanges of DG units and EV aggregators for a) Case I, b) Case II, c) Case III, and d) Case IV.

FIGURE 7. Installed DG capacity and accommodated EVs for each aggregator for a) Case I, b) Case II, c) Case III, and d) Case IV
studied in the 33-bus EDS.

capacities of the PV-based DG units are dimensioned in the
solution of Case III, the aggregator located at bus 18 can
accommodate twice the number of EVs that were determined
in the solution of Case II. Finally, when comparing the solu-
tions for Cases III and IV, the controlled charging of EVs
via aggregators determines a configuration that increases the
installed capacity for the wind-based DG.

B. COMPARATIVE ANALYSIS INCREASING THE
PENETRATION LEVEL OF EVs
The solutions obtained for Cases III and IV determine that
a total demand of EVs of 16 MW is accommodated to the
33-bus EDS. For this analysis, this value is adopted as 100%
of the penetration level of EVs. In order to assess the effects
of increasing penetration levels of EVs on the DG hosting
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FIGURE 8. Installed DG capacity vs different percentages of EV
penetration a) without any charging coordination scheme, and b) via
charging coordination scheme by aggregators.

capacity (wind and PV), this penetration level is gradually
increased by 25% until reaching 100%. For comparative
purposes, the effects of controlled and uncontrolled charging
of each EV penetration are analyzed. When the controlled
charging option is not available, the range of EV penetration
from 25 to 75 % does not maximize the installed DG capacity
as shown in blue in Fig. 8. However, coordinating the charg-
ing of EVs through aggregators, behavior that is depicted in

black in Fig. 8, enables increasing the installed DG capacity
for all EV penetrations under study.

C. SCALABILITY OF THE PROPOSED STRATEGY
In order to evaluate and validate the scalability of the pro-
posed algorithm, tests are carried out using two distribution
systems: the 83-bus [36] system and the 135-bus [37] system.
The 83-bus system contains 11 feeders with a nominal voltage
of 11.40 kV, and a peak demand of 28.35MWand 20.7MVAr.
The upper and lower limits for the voltage magnitude are set
to 1.05 and 0.93 p.u., respectively, and the thermal limit for
the conductors is set to 350 A. Candidate DG locations are
defined at buses 24, 37, and 70 for PV-based DG units and
at buses 10, 42, and 80 for wind-based DG. In addition, six
aggregators are located at buses 8, 21, 40, 53, 72, and 82.

The 135-bus EDS contains a substation with a nominal
voltage of 13.8 kV, tthe peak demand for this system is
6.499 MW and 2.769 MVAr. The upper and lower voltage
limits of 1.05 and 0.95 p.u. are adopted, respectively, and the
EDS circuits have a thermal limit of 250 A. DG locations are
defined as candidate buses to connect new renewable-based
DG units. PV-based DG units can be connected at buses 111,

FIGURE 9. Convergence of the proposed strategy for Case IV for the a) 33-bus EDS, b) 83-bus EDS, and c) 135-bus EDS.
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90, and 129, while wind-basedDGunits at buses 125, 116, 95,
and 133. EV populations can be connected in eight different
aggregators that are located at buses 88, 121, 130, 94, 70, 87,
114, and 100. It is worth mentioning that for test purposes
here, the same percentage of 7% of generation curtailment
and the same set of EV populations presented for the 33-bus
EDS are adopted for these systems. In addition, the same
expected profiles for demand and DG are used.

The solutions obtained for the 83-bus EDS are summarized
in Table 3. The results show that in Case III, a total DG
capacity of 13.26 MW is installed, where 6 MW corresponds
to the PV-based DG and 7.26 MW to wind-based DG. How-
ever, when aggregators can coordinate the charging of EV
populations, such capacity is increased by 19.93%, while
energy losses decrease by 11.40%. On the other hand, when
simulations are carried out on the 135-bus system, the solu-
tion of Case III installs a PV-based DG capacity of 6 MW and
9.24 MW of wind-based DG capacity, totaling 15.24 MW of
DG capacity. In addition, the solution of this case determines
that 30 MW of demand can be accommodated. Nevertheless,
the charging coordination of EV populations via aggregators
leads to an increase in the installed DG capacity by 10.46%
and EV demand by 6.25%. Consequently, by coordinating the
EV demand, energy losses can be reduced up to 92.49%.

TABLE 3. Summary of obtained results for Cases III and IV for the 83-bus
and 135-bus EDSs.

D. CONVERGENCE OF THE PROPOSED STRATEGY
In summary, the proposed strategy has been assessed under
different test conditions using the 33-bus system, for which
the hosting capacity of DG and EVs was estimated. In addi-
tion, the scalability of the proposed algorithm was evaluated
using two EDSs: the 83-bus system and the 135-bus system.
Therefore, given that the proposed strategy consists of an
iterative algorithm, a convergence analysis is presented in
Fig. 9 for Case IV. In Fig. 9.a and 9.b, it is observed that,
for the 33- and 83-bus systems, the algorithm converges in
few iterations, being needed only 6 and 3 iterations (com-
putational times of 80.95 and 288.67 seconds), respectively.
When the algorithm is implemented in the 135-bus system,
a computational effort of 602.81 seconds is required, given
that the convergence is achieved in 39 iterations as shown
in Fig 9.c.

VI. CONCLUSION
A strategy, formulated from the point of view of the distribu-
tion system operator (DSO), to estimate the hosting capacity
of renewable-based distributed generation (DG) and electric
vehicles (EV) in electric distribution systems (EDSs) was

presented in this work. To represent the effects of EVs, vari-
ability of demand consumption, and DG power production,
a multiperiod formulation was developed. The EVs were
grouped into different populations that can be accommodated
to different EDS locations, and their charging coordination
was managed by an aggregator. To maximize the hosting
capacity of DG and EVs, operational resources such as gener-
ation curtailment and charging coordination schemes of EVs
were optimized to guarantee the EDS operation, avoiding
technical limit violations and minimizing energy losses.

The proposed strategy was tested on a 33-bus EDS under
different test conditions, and the obtained results show that
large penetrations of DG and EVs can be connected to the
existing EDS infrastructure. The results also show that by
applying a coordinated charging scheme for EV populations,
the installed capacity of DG was increased by up to 20%,
compared with an uncontrolled charging approach of EVs.
A comparative analysis showed that, without a coordinated
charging scheme for electric vehicles, increases in the per-
centages of EV penetration do not necessarily lead to an
increase in the installed DG capacity. For validation purposes,
the scalability of the proposed strategy was studied using the
83-bus and 135-bus EDSs. Results show that, with a low com-
putational effort and requiring few iterations, the developed
algorithm determined the solution of the problem.

Directions for future work should include other operational
resources, such as the operation of devices for voltage and
reactive control and energy storage systems. The GRASP-TS
metaheuristic should be recast to address the uncertainties
associated with renewable-based DG power production and
demand consumption. In addition, for validation and compar-
ative purposes, other solution techniques (i.e., metaheuristics
or classical optimization tools) could be implemented to solve
the DG and EV hosting capacity problem.
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