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ABSTRACT This paper proposes a disturbance observer-based robust model predictive control (MPC) for
a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state
estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance
observer, considering the parameter mismatch along with the grid impedance variation, is also designed
to eliminate the steady-state error. A cost function, which consists of the error state and control input,
is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation,
lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem
based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted
to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage
observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed
control method is demonstrated in comparison with the proportional-integral (PI) approach and with a
controller recently proposed in the literature. Simulation and experimental results are presented to verify
the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations.

INDEX TERMS Sensorless model predictive control (MPC), disturbance observer, three-phase inverters,
inductive-capacitive-inductive (LCL).

I. INTRODUCTION
Recently, grid-voltage sensorless control has attracted much
attention for interfacing renewable energy sources (RESs)
to the utility grid [1]–[4], [6]–[14]. The primary purpose
of grid voltage measurements is to extract the grid phase
angle to synchronize the inverter to the utility grid. However,
the conventional grid voltage measurement method incurs a
high hardware cost and is relatively complex given the many
sensors that are required when using it. To overcome this
challenge, grid voltage estimation can be used to determine
the grid phase angle. Furthermore, voltage sensorless control
can mitigate electrical noise and failures of voltage sensors.

In grid-connected inverter (GCI) applications, the switch-
ing harmonics generated by the inverter can be attenuated by
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an inductor (L), an inductor-capacitor (LC), or an inductor-
capacitor-inductor (LCL) filter. Among them, the LCL fil-
ter is more widely employed because it can attenuate
high-frequency pulse-width-modulation (PWM) switching
harmonics and reduce the overall inductor size and hardware
cost compared to the L and LC filters [5].

However, an LCL filter’s underdamped characteristics,
caused by the filter resonant frequency, is an obstacle that pre-
vents the wider practical use of LCLfilters. System instability
can arise if the controller is improperly designed. Moreover,
most of the current control for a GCI is built based on a
mathematical model. Thus, the current control performance
is affected by the LCL parameter uncertainties and the grid
impedance variation.

In several earlier studies [6]–[10], adaptation law is
employed to estimate the grid voltage and to extract the
grid phase angle. In particular, an adaptive neural network
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is developed to estimate the grid voltage [6], allowing the
magnitude and phase of the fundamental grid voltage to be
extracted using an adaptive neural filter. This method guaran-
tees that the grid voltage can be obtained with high accuracy.
However, this study used an L filter. Furthermore, in other
work [9], a predictive current control is employed, and an
adaptive steepest descent method is used to estimate the
grid voltage. Another study investigates a frequency-adaptive
grid-voltage sensorless control in which the grid voltage and
the harmonics components are simultaneously estimated [7].
In particular, the system model is developed in a stationary
frame, and its full-state observer is therefore not affected
by the frequency [7]. In contrast, other researchers [8], [10]
present an observer-based grid-voltage sensorless scheme
that simultaneously estimates both positive and negative
sequences under an unbalanced grid condition. As a result,
a fast-tracking reference is achieved. Another work in [22]
presents the MPC of three-phase PWM under the unbalance
and distortion conditions. The cascaded delay signal cancel-
lation method is used to obtain the grid voltage. However,
the model uncertainties and variations in the grid impedance
were not taken into consideration in these studies [6]–[10]
and [22].

To deal with the LCL parameter uncertainties and grid
impedance variation, several strategies have been pro-
posed [11]–[16]. In particular, the concept of the lumped
disturbance, containing the grid voltage and LCL param-
eter uncertainties, has been obtained based on a neural
network [11], [12]. More specifically, the accurate grid volt-
age is extracted from the lumped disturbance based on the
filter. However, this method is proposed for an LC filter
as opposed to an LCL filter. Also in the literature is the
extended state observer (ESO) [13]–[15] as a promising solu-
tion for the voltage sensorless current control of a GCI. In this
method, the grid voltage is modeled as an extended state.
Specifically, robust current control is utilized for a voltage
sensorless GCI system with the grid voltage considered as
a disturbance [13], [14]. With the ESO, the full state and
grid voltage are estimated. Then, the disturbance observer
is updated to the system model to compensate for the actual
disturbance. Moreover, the observer and controller gains are
obtained by solving the LMI problem for robustness control.
As a result, good tracking performance is achieved, and the
filter resonant frequency is suppressed. However, the lumped
disturbance, which contains the LCL parameter uncertainties
and the grid impedance, has not been explicitly considered.
However, the lumped disturbance, which contains the mis-
match model and grid voltage, has been considered [15].
In this method, the estimated grid voltage is extracted from
the lumped disturbance, and a proportional-integral (PI) con-
troller is employed. Although the lumped disturbance, which
contains the mismatched model and grid impedance, is esti-
mated, a severe transient response may still arise due to the
unknown initial grid phase angle. Similarly, Tran et al. [23]
proposed an ADRC with resonant extended state observer
for a GCI. Moreover, the adaptive grid frequency is also

considered in order to deal with the different grid voltage
frequency levels.

This paper proposes a disturbance observer-based robust
model predictive control for a voltage sensorless GCI with
an LCL filter considering the parameter uncertainties and
grid impedance variation explicitly. Unlike earlier work in
this area [14], the inverter-side inductance levels and grid
impedance variations are considered in this paper. It is
essential to consider parameter uncertainties during the
design of an estimator and controller for an LCL-filtered
grid-connected inverter. Significantly, the grid impedance is
uncertain, and this factor can change the parameters of an
LCL filter.

The cost function, which consists of the state error and the
control input, is employed in our scheme to design a robust
current control for the GCI system under a mismatch model
with grid impedance variation. Furthermore, the full-state
variable and the grid voltage are simultaneously estimated
to reduce the number of sensors. Grid voltage estimation is
used to extract the grid phase angle using a phase-locked
loop (PLL) to facilitate synchronization. The initial grid
phase angle is detected using the grid-side current sensor,
allowing the inverter to be easily synchronized with the grid
during the start-up process. A lumped disturbance observer
is presented to compensate for the mismatched model and
grid impedance variation. Notably, a systematic way to obtain
the full-state observer, voltage observer, lumped disturbance,
and the robust controller gains is provided by leveraging
Lyapunov stability theory. The LMI optimization problem
is also applied to achieve rapid convergence rates of the
states and grid voltages. Moreover, a robust MPC strategy
combined with the lumped disturbance is shown to be capable
of fast tracking with zero steady-state error. Simulations and
experiments are conducted to validate the efficacy of the
proposed control scheme under grid impedance and model
parameter uncertainties.

The rest of this paper is organized as follows. In Section II,
a mathematical model and the modeling of the uncer-
tainties are presented. Section III describes the full-state
observer, grid voltage estimator, and the lumped disturbance
observer. The robust MPC is designed in Section IV, and
the frequency response analysis is presented in Section V.
Simulation and experimental results are shown in Section VI.
Finally, Section VII concludes this paper.

II. SYSTEM DESCRIPTION
A. MATHEMATICS MODEL
A three-phase GCI interfaced with the utility grid through
an LCL filter along with the proposed control structure is
illustrated in Fig. 1. In Fig. 1, L1 and L2 represent the filter
inductors, whose parasitic resistances are denoted by R1 and
R2, respectively, and Cf is the filter capacitor. VDC and
Lg represent the voltage source and uncertain grid induc-
tance, respectively. In this paper, only the grid-side current
and VDC voltage are measured, and the grid-side currents
are converted into d-q values of the synchronous reference
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FIGURE 1. The power circuit of a three-phase grid-connected inverter
with LCL filters.

frame (SRF). Therefore, the predictive model controller, the
full-state observer, the grid voltage estimation, and the robust
disturbance observer are designed based on the d-q frame
model. Furthermore, voltage estimation is done to extract the
grid phase angle for synchronization from the inverter to the
grid voltage.

FromFig. 1, the state space equations of the inverter system
can be given in SRF as

ẋ (t) = φcx (t)+ 0cu (t)+ Hce (t) (1)

y (t) = Ccx (t) (2)

where x =
[
iq2 i

d
2 i

q
1 i

d
1 v

q
c vdc

]T
, u =

[
vqin v

d
in

]T
, and e =[

eq ed
]T , with i2, i1, vc, vin, and e being the grid-side current,

inverter-side current, capacitor voltage, control input, and
the unknown grid voltage, respectively. The control objective
is to ensure that the grid-side currents (iq2 i

d
2 ) approach the

desired values (iqo2 ido2 ) as closely as possible in the presence
of the parameter and grid impedance uncertainties.

The parametric matrices in (1)-(2) are expressed as
follows:

φc =


−R2/Lf −ω 0 0 1/Lf 0
ω −R2/Lf 0 0 0 1/Lf
0 0 −R1/L1 −ω −1/L1 0
0 0 ω −R1/L1 0 −1/L1

−1/Cf 0 1/Cf 0 0 −ω

0 −1/Cf 0 1/Cf ω 0

,

0c =


0 0
0 0

1/L1 0
0 1/L1
0 0
0 0

 , Hc =


−1/Lf 0

0 − 1/Lf
0 0
0 0
0 0
0 0

 , and

Cc =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
,

where ω is an angular frequency of the grid voltage and Lf =
L2 + Lg.

For digital implementation, a continuous-time model
(1)-(2) is transformed into a discrete-time model with

consideration of the input time delay, as follows:

x (k + 1) = φdx (k)+ 0du (k − 1)+ Hde (k) (3)

y (k) = Cdx (k) (4)

where the matrices 8d , 0d , Cd and Hd are given as

φd = I6×6+φcTs, 0d = 0cTs, Cd=Cc, and Hd = HcTs,

respectively, and Ts is the sampling time.

B. MODELING OF UNCERTAINTIES
There are various uncertainties, including the LCL filter
parameter uncertainties and the grid impedance variation (3).
To reflect these uncertainties, we assume that [17]

(L1)n /µ ≤ L1 ≤ (L1)n ∗ µ (5)

(L2)n /µ ≤ L2 ≤ (L2)n ∗ µ (6)(
Cf
)
n /µ ≤ Cf ≤

(
Cf
)
n ∗ µ (7)

(R1)n /µ ≤ R1 ≤ (R1)n ∗ µ (8)

(R2)n /µ ≤ R2 ≤ (R2)n ∗ µ (9)

where (·)n indicates the nominal value in each case. The scalar
value µ(>1) is used to define the lower and upper bound for
the LCL parameter uncertainties. Moreover, µ is used as a
design knob to adjust the performances of the full-state feed-
back observer, controller, and disturbance observer. In this
paper, different values ofµ are used for the full-state feedback
observer, controller, and disturbance observer. How to obtain
the best values ofµwill be presented in the sectionVI.A. This
assumption implies that L1,L2,Cf ,R1 and R2 are affected by
uncertainties, i.e.,

5 =

( p∑
i=1

δi (φdi, 0di,Hdi)

∣∣∣∣∣
p∑
i=1

δi = 1, δi > 0

)
(10)

p = 25 = 32.
The system model (3) can be described in the nominal

model and lumped disturbance dL (k) as follows:

x (k + 1) = φnx (k)+0nu (k − 1)+ Hne (k)+dL (k) (11)

where (·)n denotes a nominal value and dL (k) is given as

dL (k) = 1φx (k)+10u (k)+1He (k) (12)

with 1φ = φd − φn, 10 = 0d − 0n, and 1H = Hd − Hn.

III. FULL-STATE ESTIMATION AND DISTURBANCE
OBSERVER DESIGN
In the presence of LCL parameter uncertainties, the full-
state and grid voltage (FSGV) estimator introduced in earlier
work [14] cannot be used. Thus, in this section, a lumped
disturbance observer is designed based on an FSGV esti-
mator. This lumped disturbance observer will estimate the
effects of LCL parameter uncertainties and grid impedance
variations to remove the steady-state FSGV estimation error.
First, the design procedure of the FSGV estimator from the
aforementioned study [14] is described briefly.
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A. FULL-STATE AND GRID VOLTAGE ESTIMATION [14]
It is assumed that the unknown grid voltage in (3) is constant,
i.e.,

e (k + 1) = e (k) . (13)

Two equations (3) and (13) can be combined in a compact
form, as follows:

z (k + 1) = φzz (k)+ 0zu (k) . (14)

y (z) = [Cd 02x2]
[
x (k)
e (k)

]
= Czz (k) (15)

where

z (k) =
[
x (k)
e (k)

]
, 8z =

[
φd Hd
02x6 I2x2

]
,

0z =

[
0d
02x2

]
, and Cz = [Cd 02x2] .

The full-state and grid voltage estimations are designed
based on the measurement y (k) as

x̂ (k + 1) = φd x̂ (k)+ 0du (k − 1)+ Hd ê (k)

+Lx
(
y (k)− Cd x̂ (k)

)
(16)

ê (k + 1) = ê (k)+ Le
(
y (k)− Cd x̂ (k)

)
(17)

where x̂ (k) and ê (k) represent the estimated state and grid
voltage observer, respectively. Furthermore, Lx and Le are the
observer gains. From (16)-(17), an augmented form can be
expressed as

ẑ (k + 1) = φzẑ (k)+ 0zu (k − 1)+ Lz
(
yz (k)− Czẑ (k)

)
(18)

where ẑ (k) =
[
x̂(k) ê (k)

]T and Lz =
[
Lx Le

]T .
To obtain the observer gain Lz, an error dynamic ez (k) =

z (k)− ẑ(k) is formed by subtracting (18) from (14); i.e.,

ez (k + 1) = (φz − LzCz) ez (k) (19)

To ensure the asymptotic stability in (19), Lz must be
selected such that (φz − LzCz) is a Hurwitz matrix. This
condition guarantees that all the eigenvalues of (19) lie inside
the unit circle. An objective function is then selected with the
positive definite matrixW as

V (k) = ez (k + 1)TWez (k + 1) . (20)

The task now is to determine the weighting matrix W
and the observer gain Lz so that the object function V (k)
monotonically decreases i.e., (V (k)− V (k − 1) < 0).

V (k)− V (k − 1)

= ez (k)T
(
(8z − LzCz)T W (8z − LzCz)−W

)
ez (k) < 0

(21)

Inequality (21) is ensured if

W − (8z − LzCz)T W (8z − LzCz) > 0. (22)

The convergence rate ρ(0 ≤ ρ < 1) can be inserted into
(22) as:

W − (8z − LzCz)T W (8z − LzCz) > ρ2W . (23)

From (23) indicates that the maximum convergence rate ρ
will make the largest gap in (22). Obviously, (23) is guar-
anteed if there exist 0 < W 0 <

(
1− ρ2

)
W . As a result,

we have

W0 − (8z − LzCz)T W (8z − LzCz) > 0. (24)

By applying the Schur complement, (24) can be rewritten
as [

W0 (W8z − YLCz)T

(W8z − YLCz) W

]
> 0. (25)

where YL = WLz. Because (8d ,Hd ) belongs to uncertain-
ties set (10), it is guaranteed that (25) will satisfy for all
(8d ,Hd ) ∈ 5 by the following LMIs:[

W0
(
Wφzi − YLCz

)T(
Wφzi − YLCz

)
W

]
> 0,

i = 1, 2 . . . , 32 (26)

By replacing α = 1 − ρ2, the matrices W and YL can
be calculated by minimizing α in the following optimization
problem.

min α subject to (26)

W0 > 0

W0 < αW (27)

Then, the optimal observer gain is computed as Lz =
W−1YL .
As soon as the grid voltage estimation is completed,

the grid voltage estimation êq(k) is used to extract the grid
phase angle using the PLL as shown in Fig.2.

FIGURE 2. Block diagram of the PLL scheme.

B. LUMPED DISTURBANCE OBSERVER DESIGN
The FSGV estimator (16) cannot be implemented in the
presence of parameter uncertainties. FSGV estimator should
be rewritten using the nominal model and lumped disturbance
as follows:

x̂ (k + 1) = φnx̂ (k)+ 0nu (k − 1)+ Hnê (k)

+Lx
(
y (k)− Cd x̂ (k)

)
+ d̂L (k) . (28)
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Note that lumped disturbance estimation d̂L (k) was used
instead of dL (k) in (28). A lumped disturbance observer can
be designed with the observer gain Ld as follows [16]:

d̂L (k + 1) = d̂L (k)+ Ld
(
dL (k)− d̂L (k)

)
. (29)

From (11), the expression for the lumped disturbance can
be rewritten as

dL (k) = x (k + 1)−φnx (k)−0nu (k − 1)−Hne (k) . (30)

Substituting dL (k) from (30) into (29), we have

d̂L (k + 1) = d̂L (k)+ Ld (x (k + 1)− φnx (k)

−0nu (k − 1)− Hne (k)− d̂L (k)). (31)

To determine the lumped disturbance observer, the state
x(k) and grid voltage e (k) in (31) are at this point replaced by
the x̂(k) and ê (k), respectively, as estimated in the previous
section. Then, (31) can be rewritten as

d̂L (k + 1) = d̂L (k)+ Ld (x̂ (k + 1)− φnx̂ (k)

−0nu (k − 1)− Hnê (k)− d̂L (k)). (32)

At this stage, we provide a systematic way to obtain the
observer gain Ld . The models (3) and (11) can be rewritten in
steady-state values as follows.

xo = φdxo + 0du0 + Hdeo (33)

and

xo = φnxo + 0nu0 + Hnê(k)+ doL , (34)

respectively, where xo =
[
iqo2 ido2 iqo1 ido1 vqoc vdoc

]T
and u0 =

[uq0 ud0]
T
. Subtracting (34) from (33) yields:

1φxo +10uo +1Heo − doL = 0. (35)

By inserting (3) and (35) into (31), the lumped disturbance
observer can be written as

d̂L (k + 1) = d̂L (k)+ Ld (1φẽx (k)+10δu (k)

− (d̂L (k)− d
o
L))+ Ld1Hδe

o. (36)

u(k) will be determined via u (k) = u0+Kδẽx (k), δu (k) =
u (k) − u0, where u0 is the steady-state input to maintain
the desired reference states iqo2 and ido2 and K is the optimal
feedback gain of the MPC. The method used to obtain u0 and
K will be described in the next section.
Assuming that grid voltage estimation converges well to

the actual value, a dynamic state error is then defined by
subtracting (33) from (3), as follows:

ẽx (k + 1) = x (k + 1)− xo = (φd + 0dK ) ẽx (k) (37)

We now define d̃L (k) = d̂L (k)− doL ; subtracting d
o
L from

both sides of (36) will yield

d̃L (k + 1) = (I − Ld ) d̃L (k)+ Ld (1φ +10K ) ẽx (k)

+Ld1Hδeo. (38)

These two error equations (37) and (38) can be combined
to yield[
d̃L (k + 1)
ẽx (k + 1)

]
=

[
I − Ld Ld (1φ +10K )

0 φd + 0dK

] [
d̃L (k)
ẽx (k)

]
+

[
Ld1H

0

]
δeo (39)

We define a new variable ed (k) =
[
d̃L (k) ẽx (k)

]T
for

(39) to check the stability of its homogeneous response.

ed (k + 1) = ψed (k) (40)

where

ψ =

[
I − Ld Ld (1φ +10K )

0 φd + 0dK

]
.

By following an approach similar to that in (19)-(26),
the stability condition for the dynamic error in (40) can be
expressed as follows: Mo[

M1 − Yd Yd (1φi +10iK )
0 M2(φdi + 0diK )

]
[
M1 − Yd Yd (1φi +10iK )

0 M2(φdi + 0diK )

]T
M

 > 0, i = 1, . . . , 32

(41)

Mo < ξM (42)

where Yd = M1Ld .

M =
[
M1 0
0 M2

]
andM0 =

[
M01 0
0 M02

]
are diagonal matrices. The matrices M1 and Yd can be
obtained by solving the following optimization problem:

min ξ Mo, M > 0

subject to (41) and (42) (43)

where ξ denotes the decay rate of the tracking error (40). (43)
means that Mo,M are chosen so that ξ is minimized while
satisfying (41) and (42). The minimum ξ will yield the fastest
convergence for the calculated errors.

As a result, the robust optimal disturbance observer gain
can be determined as Ld = M−11 Yd .

IV. PROPOSED CONTROL DESIGN
A. DESIRED STEADY-STATE CONDITION
It is assumed that with Lg = 0, the states and control
input in steady-state can be obtained from (34) following the
reference currents iqo2 and ido2

vqoc = (R2)n i
qo
2 + (L2)n ωi

do
2 + e

qo
−
(L2)n
Ts

doL (1) (44)

vdoc = − (L2)nωi
qo
2 + (R2)n i

do
2 + e

do
−
(L2)n
Ts

doL (2) (45)

iqo1 = iqo2 +
(
Cf
)
n ωv

do
c −

(
Cf
)
n

Ts
doL (5) (46)
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ido1 = ido2 −
(
Cf
)
n ωv

qo
c −

(
Cf
)
n

Ts
doL (6) . (47)

Moreover, the steady-state control input values can be
determined as

uqo = (R1)n i
qo
1 + (L1)n ωi

do
1 + v

qo
c −

(L1)n
Ts

doL (3) (48)

udo = − (L1)n ωi
qo
1 + (R1)n i

do
1 + v

do
c −

(L1)n
Ts

doL (4) . (49)

To implement the steady-state values from (44) – (49), eo

and doL are replaced by the grid voltage estimation ê (k) and
lumped disturbance observer d̂L (k).

B. ROBUST CONTROLLER GAIN DESIGN
It is assumed here that the control input is designed as follows:

u (k) = Kẽx (k)+ u0, (50)

A cost function can be established based on the dynamic
state error and control input, as follows:

J (k) = ẽx (k + 1)TPẽx (k + 1)+ δu(k)TRδu(k) (51)

where P is a diagonal matrix and R is symmetric.
To ensure the stability of the system, the weighting matri-

ces P and R and the controller gain K must be determined
such that the cost function J (k) monotonically decreases; i.e.,

J (k)− J (k − 1) < 0

⇐⇒ ẽTx (k)
[
(φd + 0dK )T P (φd + 0dK )+ KTRK − P

]
× ẽx (k)− ẽTx (k − 1)KTRKẽx (k − 1) < 0, ∀k.

(52)

It can be seen that the second term on the right-hand side
of (52) is negative definite. To satisfy the condition of (52),
the conditions of the first term should be satisfied:

P− (φd + 0dK )T P (φd + 0dK )− KTRK > 0. (53)

The convergence rate ξ can be inserted into (53) as follows:

P− (φd + 0dK )T P (φd + 0dK )− KTRK >
(
1− ξ2

)
P

(54)

with 0 < ξ < 1. Let Po = ξ2P, and (54) can be rewritten as

Po − (φd + 0dK )T P (φd + 0dK )− KTRK > 0. (55)

Let Q−1o = Po, Q−1 = P. By multiplying Qo on the left-
and right-hand sides of each term of (55), we have

Qo − (φdQo + 0dYk)T Q−1 (φdQo + 0dYk)− Y Tk RYk>0

(56)

where Yk = KQo. Applying the Schur complement, (56) can
be rewritten as Qo Y Tk (φdQo + 0dYk)T

Yk R−1 02x6
φdQo + 0dYk 06x2 Q

 > 0. (57)

Because the system is affected by the model uncertainties,
we propose that all possibilities of (8di, 0di) should be con-
sidered, i.e., (8di, 0di) , i = 1, . . . , p, in (57). To this end,
we consider the revised system model of Qo Y Tk (φdiQo + 0diYk)T

Yk R−1 02x6
φdiQo + 0diYk 06x2 Q

 > 0. (58)

To minimize the control input with regard to the selected
convergence rate ξ , the robust controller gain K with the
presence of uncertainties can be obtained by solving the LMIs
optimization problem as

min −trace(Qo) subject to (58)

Q,Qo > 0 (59)

As long as Q0 and Yk are determined using the SeDuMi
toolbox [18], the robust controller gain can then be computed
as

K = YkQ
−1
0 . (60)

Consequently, the cost function (51) monotonically
decreases; thus, a robust controller gain K guarantees the
stability of the system.

The design process of the proposed control method can be
summarized as follows.
Step 1: Derive the discretized model (14)-(18).
Step 2: Solve (27) to obtainLz with initial values ofµx = 1.

Increase µx if the observer performance is not robust to
changes in the LCL parameter uncertainties and the grid
impedance.
Step 3: Solve (43) and (59) to obtain the lumped distur-

bance Ld , and controller gains K with an initial value of
µk = 1, Increase µk if the system performance is not robust
to changes in the LCL parameter uncertainties and the grid
impedance.

V. FREQUENCY RESPONSE ANALYSIS
In the previous section, all of the observer and controller
gains were obtained separately. This section presents the
entire closed-loop system frequency response to demonstrate
reference tracking and disturbance rejection.

TABLE 1. Parameters of the three-phase Inverter.

Inserting x̂(k + 1) from (28) into (32) will yield the
following:

d̂L (k + 1) = d̂L (k)+ LdLx
(
y (k)− ŷ (k)

)
(61)
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The entire system can be established by combining the
dynamics system (11), the observer dynamics (17), (28), and
(61) using the control input (50).

x (k + 1) = φnx (k)+0nu (k−1)+Hne (k)+ dL (k)
x̂ (k + 1) = φnx̂ (k)+ 0nu (k − 1)+ Hnê (k)

+Lx
(
y (k)− Cd x̂ (k)

)
+ d̂L (k)

ê (k + 1) = ê (k)+ Le
(
y (k)− Cd x̂ (k)

)
d̂L (k + 1) = d̂L (k)+ LdLx

(
y (k)− Cd x̂ (k)

)
(62)

The overall system (62) can be represented as block dia-
gram as shown in Fig. 3.

FIGURE 3. Detailed block diagram of the proposed MPC controller along
with the full-state and disturbance observer.

The steady-state values in (44)-(49) can be rewritten as

xo = Nr +Mê+ F1d̂L (63)

and

uo = Gxo + F2d̂L (64)

where

N =


1 0
0 1

1− Cf ω2L2 Cf ωR2
−Cf ωR2 1− Cf ω2L2

R2 L2ω
−L2ω R2

 , M =


0 0
0 0
0 Cf ω
−Cf ω 0

1 0
0 1

,

F1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 −Cf ωL2/Ts 0 0 −Cf /Ts 0

Cf ωL2/Ts 0 0 0 0 −Cf /Ts
−L2/Ts 0 0 0 0 0

0 −L2/Ts 0 0 0 0

 ,

G =
[
0 0 R1 L1ω 1 0
0 0 −L1ω R1 0 1

]
, and

F2 =
[
0 0 −L1/Ts 0 0 0
0 0 0 −L1/Ts 0 0

]
.

We consider the open-loop and closed-loop frequency
responses to verify the effect of the proposed control scheme

in the frequency domain. The closed-loop system is obtained
by inserting (50), (63), and (64) into (62). The open-loop
system is obtained from the closed-loop system in which the
feedback loops from x̂ (k) and ê (k) are disconnected. Then,
the closed-loop and open-loop systems can be expressed
correspondingly as

xclk+1 = φclx
cl
k + 0clucl (65)

yclk = Cclxclk (66)

and

xolk+1 = φolx
ol
k + 0oluol (67)

yolk = Colxolk (68)

where

xclk = xolk =
[
x (k) x̂ (k) ê (k) d̂L (k)

]T
,

ucl = uol =
[
r(k) e(k) dl(k)

]T
,

0cl = 0ol =


0n(GN − KN ) Hn I6x6
0n(GN − KN ) 06x2 06x6

02x2 02x2 02x6
06x2 06x2 06x6

 ,

φcl =


φn 0nK
LxCd φn + 0nK − LxCd
LeCd −LeCd
LdLxCd −LdLxCd
0n(GM − KM ) 0n(GF1 + F2 − KF1)

0n (GM − KM)+ Hn 0n (GF1+F2−KF1)+I6x6
I2x2 02x6
06x2 I6x6



φol =


φn 06x6
LxCd φn − LxCd
LeCd −LeCd
LdLxCd −LdLxCd

06x2 0n(GF1 + F2 − KF1)
06x2 0n (GF1 + F2 − KF1)+ I6x6
I2x2 02x6
06x2 I6x6


The transfer function in the z-domain of the closed-loop

and open-loop systems can be expressed as follows:

Gcl = Ccl (zI − φcl)−1 0cl (69)

and

Gol = Col (zI − φol)−1 0ol (70)

Note that the transfer function in (69) and (70) describe the
transfer function from r =

[
iqo2 ido2

]T to y (k) (reference
tracking) and e =

[
eq ed

]T to y(k) (disturbance rejection).
Fig. 4a shows the reference tracking of the open-loop and
closed-loop systems, respectively. It can be seen that the
uncertain parameter L1 = 2.3 mH (increasing 165%) and the
presence of grid impedance Lg = 4.15 mH are adequately
offset, with zero phases and gain nearly at unity in terms of
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FIGURE 4. Frequency responses of the open-loop and closed-loop
systems with SCR = 3.67. (a) Control to output responses from r (k) to
y (k). (b) Disturbance rejection response from e(k) to y (k).

the magnitude leading to excellent tracking performance at
the fundamental frequency.

The frequency responses of the grid voltage to the output
system are presented in Fig. 4b to verify the disturbance
rejection. This figure indicates that the magnitude of the
open-loop system is greater than zero at the LCL resonance;
however, the magnitude of the closed-loop system is less than
zero in all frequency ranges. It can be concluded that the pro-
posed control scheme effectively eliminates the disturbance
rejection issue.

To further investigate the stability analysis of the overall
system against with the variation of the parameter uncertain-
ties, eigenvalues of the error dynamics are exhibits as follows.
First, the error dynamics of the full-state and grid voltage
observer (19) and the lumped disturbance observer (40) are
augmented as:

[
ez (k + 1)
ed (k + 1)

]
=

[
φz − LzCz 012×8
08×12 ψ

] [
ez (k)
ed (k)

]
(71)

FIGURE 5. Eigenvalues of the entire error dynamics system under
proposed observer and controller.

By checking the eigenvalues of this overall error dynamics
(71) under grid impedance variations, we can conclude that
the overall system is stable with the grid impedance less than
Lg = 4.15 mH.
The eigenvalues of the entire error dynamics system are

shown in Fig.5. It can be observed that all the eigenvalues
stay inside the boundary of the unit circle under the grid
impedance variation (Lg = 0.0 mH , Lg = 4.15 mH , and
L1 = 2.0 mH ,Lg = 4.15mH ), which indicates that the entire
system is stable.

FIGURE 6. Experimental setup.

VI. SIMULATION AND EXPERIMENTAL RESULTS
In this section, simulation and experiment results are pre-
sented to demonstrate the effectiveness of the proposed
control scheme. Fig.6 shows the experimental setup, con-
sisting of a voltage source (batteries - LIFePO4 - 105V),
a three-phase LCL filter, current sensors, and a DSP
TMS320F28377 device. In order to meet the DC voltage
of battery pack, an isolation transformer is used to lower
the grid voltage to 40 V. Fluke434 power quality analysis
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FIGURE 7. Simulation results regarding tuning the grid voltage observer
using various of µ.

and Multi-Can analyzer devices were employed to save the
experimental results.

A. TUNING FOR CURENT CONTROL
The best values of µ are obtained as follows:
In Fig.7, the grid voltage estimation versus different values

of µ is presented. The figure indicates that as the values of
µ decreases from 1.08 to 1.04, the better voltage estimation
performance is achieved. However, when the µ is lesser than
1.04, overshoot increases as the values of µ reduce further.
Based on this observation, the observer gain Lz withµ = 1.06
is selected for the best performance.

Similarly, the proposed controller gain K and lumped dis-
turbance observer gain Ld are found by tuningµ. Fig.8 shows
the grid-side current along the d-axis and q-axis for different
values of µ when the grid impedance changes at t = 0.2 s.
It can be observed that the controller and lumped disturbance
observer gains with µ = 3.0 exhibit a better performance
than that with other µ.

FIGURE 8. Simulation results regarding tuning performance of the current
controller using various of µ considering a grid impedance change from
0 to 4.15 mH at t = 0.2 s. (a) Grid current along q-axis. (b) Grid current
along the d-axis.

B. SIMULATION RESULTS
To highlight the efficacy of the proposed control scheme, a
proportional-integral controller (PI) [19] and an MPC devel-
oped [14] in earlier work are compared to the proposed
control method. For a fair comparison, the PI controller gains
are tuned according to symmetrical optimum in the former
study [19], and feedforward terms are added to the controller.
The PI gains are set to Kp = 1.25 and Ki = 252.

FIGURE 9. Simulation results for current control with and without grid
impedance (Lg = 4.15 mH): (a) Grid-side current along the q-axis, and
(b) Grid-side current along the d-axis.

Fig. 9 shows the grid-side current along the dq-axis during
the start-up process with and without the presence of grid
impedance. The system works with nominal values from
t = 0.05 s to t = 0.15 s, and the system operates with
Lg = 4.15mH from t = 0.15 s to t = 0.3 s. It can be seen that
all controllers work well with the conditions of the nominal
parameters. However, the proposed robust control scheme
exhibits the fastest transient response along the d-axis and the
lowest overshoot along the q-axis among the three controllers.
Moreover, when grid impedance is added at t = 0.15 s,
the PI controller undergoes larger oscillation. This also causes
grid-current oscillation of the MPC and the proposed control
scheme; however, the proposed control method exhibits less
oscillation compared to the MPC case under grid impedance,
as shown in Figs. 9a and 9b.

FIGURE 10. Simulation results. (a) The measured and estimated grid
voltage. (b) The measured and estimated grid phase angle.

To verify the optimal observer gain, the measured and
estimated grid voltages are shown in Fig. 10a. This clearly
shows that the estimated grid voltage immediately converges
to the actual voltage. Similarly, the estimated grid phase angle
tracks the actual value, as shown in Fig. 10b. It should be
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FIGURE 11. Simulation results of proposed control scheme under grid
voltage variation. (a) Grid-side current and grid phase angle. (a) Grid
voltage sudden drop of 30% the magnitude.

noted that the initial grid phase angle is detected before the
system starts using grid current sensors.

Fig.11 shows the grid-side current and grid phase angle
under the grid voltage dip of 30% on three-phase at t = 0.2 s.
It can be seen that a sudden drop in the magnitude of the grid
voltage, as shown in Fig.11a causes a slight oscillation on the
grid-side current, and it take about 0.003 s for the grid-side
current to converge to the steady-state values. In addition,
the sudden change of the grid voltage does not affect the grid
phase angle.

FIGURE 12. Simulation results of proposed control scheme under the
rapid phase jump of 30o at t = 0.2 s. (a) Grid-side current and grid phase
angle. (a) Grid voltage.

Fig.12 shows the performance of the grid-side current
when the grid phase angle jumps rapidly by 30o at t = 0.2 s.
It can be observed that the sudden change of the phase leads
to a slight overshoot on the grid-side current as well as causes
a slight oscillation on the grid voltage. However, they rapidly
converge to the steady-state values after a short time. It can be
concluded that the proposed control scheme can deal with the
variations amplitude and the phase angle of the grid voltage.

C. EXPERIMENTAL RESULTS
For further verification of the proposed control scheme,
experiments were carried out under conditions similar to

FIGURE 13. Experimental results for the grid current control along the
dq-axis during the start-up at t = 10 s.

those used in the simulations. It should be noted that a prac-
tical grid is used. It is difficult to change the grid impedance
suddenly, and for this reason, the experiments will be verified
in different conditions separately.

Fig. 13 shows the grid-side current along the dq-axis during
start-up at t = 10 s without the presence of grid impedance.
It can be seen that the MPC as developed in earlier work [14]
and the proposed method are quite similar. Both control
methods exhibit a rapid transient response without overshoot.

To demonstrate synchronization with the grid and verify
the robust optimal observer gain, Fig. 14 shows the measured
and estimated grid phase angle and grid voltage. It can be
observed that the estimated grid phase angle and estimated
grid voltage quickly converge to the actual values. The esti-
mated grid phase angle immediately reaches the actual grid
phase angle, as shown in Fig. 14(a). Likewise, the estimated
grid voltage requires less than half of the number of cycles to
converge to the actual voltage, as shown in Fig. 14(b).

FIGURE 14. Experimental results for the measured and estimated grid
phase angle (a) and the measured and estimated grid voltage (b).

To validate the robustness of the proposed control method
to the presence of grid impedance, Fig.15 presents the exper-
imental results for the grid-side current in the presence of
grid impedance, with Lg = 4.15 mH. It can be seen that
the MPC [14] and the proposed control scheme operate well
under grid impedance at t = 10 s. However, the MPC [14]
exhibits current overshoot on both the d-axis and q-axis, and
it takes 0.3 s to converge to steady-state values. In contrast,
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FIGURE 15. Experimental results for the current control during the
start-up at t = 10 s with Lg = 4.15 mH. (a) Grid-side current along q-axis.
(b) Grid-side current along d-axis.

FIGURE 16. Experimental result for the measured and estimated grid
phase angle with Lg = 4.15 mH.

FIGURE 17. Experimental result for the grid-side current in a steady-state
with Lg = 4.15 mH: (a) Measured and estimated grid-side current along
the dq-axis, and (b) Estimated grid-side current in the waveform.

the proposed control method exhibits an excellent transient
response. Fig. 8 indicates that the dq-axis undergoes minimal
overshoot, taking 0.02 s to converge to steady-state values.
Similarly, the estimated grid phase angle is well matched with
the actual grid phase angle, even when grid impedance is
added, as shown in Fig.16.

To examine whether the state observer is working well,
Fig. 17 shows the estimated grid-side current on the dq-axis in
the presence of grid impedance, indicating that the reference

FIGURE 18. Experimental results for the grid-side current by the MPC
developed in earlier work [14] and the proposed control scheme under
LCL parameter uncertainties and the presence of grid impedance: (a) Grid
current along the q-axis, and (b) Grid current along the d-axis.

FIGURE 19. Experimental results for the measured and estimated grid
phase angles by the MPC from the literature [14] and the proposed
control scheme under LCL parameter uncertainties and in the presence of
grid impedance: (a) Proposed control scheme, and (b) MPC [14].

currents change from 4 A to 7 A at t = 20 s. The fig-
ure shows that the estimated grid-side current coincides with
the actual current values, as shown in Fig. 17(a). Moreover,
the estimated grid-side current in the waveform is shown
in Fig. 17(b).

To confirm the robustness of the proposed control scheme,
the inductor L1 and Lg are changed from nominal values
(L1 = 1.4 mH and Lg = 0.0 mH) to new values (L1 =
2.3 mH, representing an increase of 165% compared to the
nominal values and grid impedance Lg = 4.15 mH) at the
beginning of the experiment. Fig. 18 shows the experimental
results for the grid-side current along the dq-axis. It can
be seen that the MPC [14] exhibits a transient overshoot
response on both the d-axis and q-axis. It takes 0.4 s to
return to steady-state values. For this reason, the estimated
grid phase angle does not match the actual value upon a
transient response, as shown in Fig. 19(b). On the other hand,
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the proposed method exhibits a fast transient response with
a slight overshoot and only takes 0.1 s to converge to the
steady-state values, as shown in Fig. 18. The estimated grid
phase angle is well matched with the actual values, as shown
in Fig. 19(a). The estimated grid phase angle immediately
converges to the actual values because the initial grid phase
angle is detected before the system start-up process. It can
be concluded that the proposed control scheme can handle
parameter uncertainties and grid impedance variations.

VII. CONCLUSION
This paper has presented a disturbance observer-based robust
model predictive control scheme for a grid-voltage sensor-
less inverter that works without grid voltage measurements.
It was demonstrated that the proposed control scheme could
estimate not only the grid voltage but also the lumped distur-
bance to eliminate steady-state errors in the inverter system.
Using the grid-side current sensor, the grid phase angle is
detected before the system starts; thus, the transient response
of the system is improved. A frequency response analysis
proved that complete system stability, reference tracking, and
disturbance rejection are achieved. Simulation and experi-
mental results demonstrated the validity and effectiveness of
the proposed control scheme. Additionally, the efficacy of
the proposed method as demonstrated in the simulation and
experimental results was compared with a similar strategy
recently proposed in the literature [14] and with the conven-
tional PI method [19].
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