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ABSTRACT Point clouds derived from LiDAR (Light Detection and Ranging) and photogrammetry systems
are used to extract building footprints in dense urban areas. Two extraction methods based on DSM
(Digital Surface Model) images and point clouds are comprehensively evaluated and compared. Firstly,
photogrammetric point clouds are generated from aerial images of downtown Guangzhou, China, and
compared with corresponding LiDAR point clouds. Then, DSM images are created using these point clouds
and a threshold segmentation method is applied for building extraction. Although regularized buildings
can be extracted according to the selection of appropriate height thresholds for the LiDAR DSM and
photogrammetric DSM, blurry building boundaries exist for results of photogrammetric DSM when high
trees are available nearby. LiDAR DSM extraction performs better in terms of Precision, Recall, and
F-score metrics. A DoN (Difference of Normals) approach based on point cloud datasets is also quantita-
tively and qualitatively demonstrated. Our experiments show that when a suitable radius threshold is selected,
the method provides satisfactorily normal calculation results and can successfully isolate building roofs from
other objects in densely built-up areas. The majority of building extraction results have a precision> 0.9 and
favorable Recall and F-score results. There is high consistency between photogrammetric and LiDAR point
clouds. Although LiDAR provides higher extraction accuracy, photogrammetry is also useful for its more
convenient acquisition and higher point cloud densities.

INDEX TERMS Photogrammetry, LiDAR, building extraction, digital surface model, difference of normals.

I. INTRODUCTION
The identification and extraction of buildings have become
crucial issues in many applications, such as urban basic
geodatabase updating, city planning management, disas-
ter assessment, digital mapping, transportation planning,
cadastral management, acoustic and energy studies, and
telecommunication network design [1]–[4]. Collecting build-
ing information by field survey is labor-intensive and
time-consuming. Building information updates occur slowly
compared to the rapid rate of urbanization, especially in
developing countries. To accommodate the demands of
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various applications, rapid, economical, and accurate build-
ing extraction is required. Nowadays, building extraction
from remote sensing data has received research attention
as it is rapid and cost-effective, and effective at large
scales [5]–[8]. For a long time, automatic approaches to
building detection have been difficult if not impossible due to
scene complexity, incomplete extraction, and sensor depen-
dencies, especially in big cities with dense buildings [9]–[11].

Methodologically, building extraction refers to the task of
dividing a given dataset into non-overlapping homogeneous
regions and recognizing the buildings from those regions.
Various image-recognition algorithms have been proposed
based on pixel features, geometric structure features,
and object-based identification. Pixel-based classification
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methods mainly analyze the features of each pixel in different
spectral channels, extract a large number of features from
the pixels, and then classify them. The level of recognition
accuracy is mainly determined by the features extracted from
the pixels and the classification method used, which include
the parallelepiped, minimum distance, maximum likelihood,
neural network, support vector machine, K-means and ISO-
DATA clusteringmethods [12]. Besides pixel-basedmethods,
geometric structure fitting has also been applied to extraction
due to the regularity of buildings. The edges, corners, and
contours of the buildings in an image can be extracted and a
featuremodelmatched and identified. Based on the geometric
features, Brédif et al. provided a fully automatic global opti-
mization framework to extract polygonal building footprints
from DSM (Digital Surface Model) [13]. Their experiments
proved that the contour vectorization accuracy was high.
Recently, object-based building identification methods have
emerged. In this process, an image is first divided into multi-
ple object patches, which include texture, shape, and spectral
features, using multi-scale segmentation. Then, a reliable
method is selected to complete the classification process.
Baatz et al. proposed a method based on a combination
of spectral, texture, and context features and obtained good
results with high-resolution remote sensing images [14]. The
main aspect of object-oriented classification and recognition
is to fully integrate the building’s spectral, geometric, texture,
and context features. Nowadays, deep learning techniques
are widely used because they can automatically utilize large
amounts of features to obtain high accuracy. Lin et al. pro-
posed an efficient network used in segmentation of remote
sensing images and achieved competitive results with much
lower number of parameters and faster inference speed [15].
Chen et al. proposed a dense residual neural network
(DR-Net), using a deeplabv3+Net encoder/decoder back-
bone with densely connected convolution neural net-
work (DCNN) and residual network (ResNet) structure [16].
Those related studies showed that deep learning could
improve the extraction accuracy. However, for the method,
there is a high requirement for the hardware and labor invest-
ment (training samples) and technique training. Moreover,
the building edges obtained from images are often thick
and noisy and require post-processing to obtain thin and
sharp boundaries. Abdollahi et al. introduced an end-to-end
convolutional neural network called Generative Adversarial
Network (GAN) to extract accurate building boundary [17].
Other researches had also designed specific convolution
features network to refine the building contour [18]–[21].
However, most of the studies were tested in theoretical
environment with high spatial resolution nadir remotely
sensed images. It is difficult to reach a satisfied effect in
the dense building area. Mostly, a polygonization step that
converts building pixels into polygons is used by imposing
a priori building properties that are manually defined and
automatically tuned [22]. This strategy is usually adapted to
building extraction in the densely-built areas of big cities,
because there are usually obstructions from surrounding

buildings and it is virtually unavoidable even in very
high-spatial resolution remote sensing images.

With the development of 3D scanners and the availability
of point cloud data, building extraction has been improved.
This has motivated a move towards using point clouds to
extract building features. There are two classical methods
that are widely used. The first employs the region growing
technique, while the other delineates regions by detecting
the edges in a dataset. The region growing approach starts
by selecting a seed point, calculating its properties, and
comparing them with those of adjacent points based on a
certain connectivity measure to form a region. One drawback
of region growing is that it usually fails when transition
between two regions is smooth and difficult to distinguish by
threshold parameters. It only works well when the initial seed
points are noise-free and it is prone to excessive growth [23].
Besides the region growing method, edge extraction has been
studied by many researchers [24]. Dorninger and Pfeifer
used mean shift segmentation to detect buildings and used
2D-shape generalization to extract initial roof outlines from
a point cloud obtained by airborne LiDAR (Light Detection
and Ranging) [25]. Sampath and Shan modified a convex
hull algorithm to extract building boundaries from raw point
cloud data and applied hierarchical least-squares analysis to
regularize the building outlines [26]. However, edge-based
methods are susceptible to outliers and incomplete edges
that do not form explicit segments. Among model-based
building extraction methods, a robust method is the RAN-
dom SAmple Consensus (RANSAC) approach [27], [28].
It randomly and iteratively samples the least number of data
points necessary to determine the model parameters. Several
researchers have presented the RANSAC paradigm for roof
plane segmentation [29]–[31]. However, RANSAC is prone
to finding pseudo-planes and its computational efficiency
decreases significantly as the amount of point cloud data
increases [32]. Classification or clustering techniques can
also be used for the segmentation of LiDAR points. A feature
vector is defined to characterize the object to be extracted as
uniquely as possible. References [33], [34] demonstrate the
use of clustering techniques for building extraction. In cases
with planar surfaces, the feature vector at each point can con-
sist of the surface normal and the location of the point [35].
A normal vector can be generated by selecting a neighbor-
hood around a selected location and fitting a plane based on
the least-squares method. Ioannou et al. proposed defining
a multi-scale operator for unorganized point clouds directly
using the estimated surface normal map of an unorganized
point cloud [36]. This works well for object extraction from
LiDAR point clouds.

LiDAR can provide accurate 3D point clouds for build-
ing extraction; however, airborne LiDAR acquisitions remain
very costly, especially in big cities with complex surround-
ings. Typical commercial aerial LiDAR acquisitions cost at
least $20,000 per flight regardless of study area size [37],
representing a significant barrier to its widespread applica-
tion [38]. Moreover, there are various roof types in urban
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areas, making it difficult to achieve automatic building detec-
tion in complex scenes.Many existing algorithms are intricate
and often fail in very complex inner-city environments with-
out enough points [39]. To overcome the cost and logistical
barriers to routine and frequent acquisition of high-spatial-
resolution 3D datasets, aerial photogrammetric point clouds
can be used. High-spatial-resolution 3D point clouds can
be produced by applying the SfM (Structure from Motion)
method to large areas [40], [41]. In particular, methods of
dense point-cloud generation (dense image matching) are
increasingly available for professional and amateur applica-
tions, such as 3D modeling and mapping, robotics, medical
imaging, surveillance, tracking, and navigation [42]. Never-
theless, the reliability of photogrammetric point clouds for
building extraction need be evaluated because of the existence
of noisy points [43].

Several recent studies have compared LiDAR and pho-
togrammetry techniques based on factors such as accu-
racy, resolution, and dense 3D reconstructions of small
scenes [38], [44]. However, only a few have reported their
differences when applied to the extraction of real, dense urban
buildings. Here, we demonstrate and evaluate a practical
method of urban building extraction in Guangzhou, China.
With its rapid development, the city urgently requires build-
ing information for urban spatial planning, land use man-
agement, disaster prevention, and emergency management.
Section 2 introduces the study area and 3D point cloud
datasets obtained from LiDAR scanning and image-based
matching methods. The methods and results are presented in
Sections 3 and 4, respectively. In Section 5, the point clouds
obtained from the aerial photogrammetric dense matching
method are analyzed and evaluated in detail. Finally, some
conclusions are presented regarding the application of pho-
togrammetric dense matching point clouds to urban building
extraction.

II. STUDY AREA AND DATA
A. STUDY AREA
The study area was Guangzhou (23◦ 6’ N, 113◦ 45’ E), south-
ern China. Guangzhou is located at the north-central edge
of the Pearl River Delta facing Hong Kong and Macau and
is one of the most important transportation hubs in southern
China. At the end of 2018, the permanent resident population
was about 14 million according to demographic inventory.
The city presented a high urban density and buildings with
diverse and complex sizes and shapes. The average relative
humidity was 77% and annual rainfall was about 1736 mm.
The abundant rainfall and heat benefit the growth of plants,
but clouds sometimes make aerial photography difficult. It is
difficult to obtain consecutive clear days for aerial data col-
lection. Additionally, the presence of high trees makes it hard
to scan complete buildings, especially their facades.

The study area was located in the central business dis-
trict (Figure 1). This area contains several kinds of com-
mercial and residential buildings. LiDAR and aerial oblique

FIGURE 1. Aerial photograph of the three study areas.

photogrammetric image datasets were obtained. Due to the
cost of LiDAR and oblique photogrammetry data acquisition,
only a few data with same coverage were obtained in the
experiments. Three plots labeled A, B, and C were selected
in this area for building-extraction purposes.

B. DATA
A set of aerial images and a LiDAR dataset covering an
area of approximately 10 km2 were available. Data acqui-
sition was carried out by a Bell 407 helicopter flying at an
average altitude of 1500 m above ground level in Decem-
ber 2016. A Leica RCD30 photogrammetry system was used,
which comprised five 80-megapixel full-frame professional
aerial cameras; one vertical and four oblique. Parallel flight
paths were set in an east-west orientation with 159 m inter-
vals between neighboring paths. There were large overlaps
between adjacent strips to ensure data capture of build-
ing facades and other vertical surfaces. Such arrangements,
along with oblique cameras, increase the sampling density
of the captured surfaces. This pattern was designed to allow
each area to be photographed from multiple angles. Using
GPS accessories, image capture locations were recorded as
meta-data in JPEG-formatted images. The specifications of
the imaging sensor and resulting images are summarized
in Table 1.

III. METHOD
A workflow was designed to compare the two types of data
used for building extraction (Figure 2). Firstly, 3D scenes
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TABLE 1. Specifications of the imaging sensor and acquired images.

FIGURE 2. Workflow of the study.

were reconstructed using photogrammetry images and SfM
algorithms. Then, dense point clouds were generated using
the dense matching method. These and LiDAR point clouds
were preprocessed and features such as DSM and DoN (Dif-
ference of Normals) were extracted. Finally, the results were
compared and evaluated.

A. AERIAL PHOTOGRAMMETRIC POINT CLOUDS
The photogrammetric point cloud data were generated from
aerial images using the SfM algorithm. SfM computes an
external camera pose for each image (indicating motion)
and a 3D point cloud (indicating structure) to represent the
pictured scene [45], [46]. The whole process yields a 3D
point cloud (Figure 3a), as well as the camera poses, with
re-projection residuals of 0.52 pixels. Then, the patch-match
dense matching method was used to densify the point clouds.
The patch-match dense matching method is an efficient
patch-based stereo-matching plus depth-map refinement pro-
cess that enforces consistency over multiple views [43]. For
each image in the input image set, a reference image was
selected to form a stereo pair for depth-map computation.
Then, all of the depth maps were calculated. Since these raw
depth maps generated by stereo vision may contain noise and

FIGURE 3. (A) Sparse and (B) dense point clouds of the study area.

errors, each was refined by consistency checking using its
neighboring depth maps. Finally, all the refined depth maps
were merged to obtain the final dense matching point cloud
(Figure 3b).

Computation was conducted using a desktop computer
system (Table 2). The whole SfM process took 18 hours,
including 1 hour for feature extraction, 1 hour for matching,
and 16 hours for bundle adjustment. In this process, all of
the images were calibrated and 1,510,309 sparse point clouds
were generated. The dense matching took 3 hours and gener-
ated 127,228,537 points for the entire 10 km2 area.

TABLE 2. Specifications of the computer used in the experiment.

B. EXTRACTION OF METRICS
Points generated using photogrammetric techniques typically
contained noise and errors. This complicates the estimation
of metrics such as DTM (Digital Terrain Model), DSM, and
so on, leading to erroneous values [47]. Here, a statistical
method was used to trim noise that did not meet a certain
criterion. Sparse outlier removal is based on computation of
the distribution of point-to-neighbor distances in an input
dataset [48]. By assuming that the resulting distribution is
Gaussian with a mean of 50 and a standard deviation of 1,
all points with mean distances that were outside an interval
defined by the global distance mean and standard deviation
were considered outliers and were trimmed from the dataset.
After the noise-removal process, 90% of the points were
retained. Although the point densities decreased after this
process, theywere still denser than those of the corresponding
LiDAR point clouds (Table 3).

To obtain the metrics, the same procedures were carried
out for the LiDAR and photogrammetric point clouds. Firstly,
ground points and non-ground points were distinguished
based on the cloth simulation filter (CSF) algorithm [49].
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TABLE 3. Densities (spaces) of the LiDAR and photogrammetric point
clouds (pts/m2).

Considering the point density and plot size, a cloth resolution
of 10 m was chosen. The maximum iteration number was set
to 500 and the classification threshold was 1. Height attribute
was simply calculated as the difference between the elevation
of the point and the terrain elevation estimated by the DTM.
In this study, a DTM raster with a 0.5-m cell size was gener-
ated using ground points. Due to the irregular distribution of
LiDAR data, the same size DSM raster was generated using
non-ground point clouds based on the Delaunay triangula-
tion (DT) algorithm. Quantitative statistics can be generated
from point cloud and DSM data. Buildings can be extracted
from DSM data based on the height distribution and prior
knowledge. In our experiment, the height threshold method
was applied for building extraction and certain metrics were
selected for evaluation.

In addition to building extraction based on DSM images,
a point cloud segmentation strategy called the DoN was
also tested [36]. The concept of DoN defines a multi-scale
operator directly using the estimated surface normal map of
point clouds. The surface normals estimated at any given
radius reflect the underlying geometry of the surface at the
scale of the support radius. If the directions of the two sur-
face normals are nearly identical, then the structure of the
surface does not change significantly from the first radius
to the second. If the structure of the larger neighborhood is
significantly different from that of the smaller neighborhood,
then the direction of the two estimated normal are likely to
vary dramatically. In the extraction of building roofs, we can
compare the response of the normal across two different radii:
r1 < r2. In the process, the DoN is first calculated for each
point within its multi-scale neighbors to separate the points
based on the surface normal difference. Then, the DoNs of
all points are clustered with the Euclidean distance thresh-
old segmentation method. The final step of segmentation
separates the planar and nonplanar segments based on their
distances and connectivity, respectively. The calculation of
the DoN operator 1n̂ for any point p in a point cloud P,
is defined as:

1n̂ (p,r1, r2) =
n̂ (p, r1)− n̂ (p, r2)

2
(1)

where r1, r2∈R, r1 < r2, and n̂ (p, r) is the surface normal
estimation at point p, given the support radius r . For a given
r1 and r2, the result of applying the 1n̂ operator to all the
points is a vector map, where a DoN vector is assigned to
each point. Since each DoN is the normalized sum of two
unit normal vectors, the magnitudes of the 1n̂ vectors are

always within [0,1]. In our building extraction, the DoN
vectors were selected based on their magnitudes ‖1n̂ (p)‖.
After computation, a simple Euclidean distance threshold-
based clustering algorithm [50] was applied with a distance
tolerance to extract the buildings.

IV. RESULTS
A. EXTRACTION BASED ON DSM
The DSMs generated from the LiDAR and photogrammetric
point clouds are shown in Figure 4. The photogrammet-
ric DSM contains a clear saw-tooth effect (blurry building
boundaries). The LiDAR DSM is clear and represents the
building boundaries accurately. Although the structure pat-
terns are similar, the LiDAR DSM has a clear and descriptive
structure. This is because there were many noisy and outly-
ing data points in the photogrammetric point clouds, even
after the noise-removal process. Although there is a higher
density in the photogrammetric point clouds, their geometric
accuracy is lower than that of LiDAR. Spectral or color
information is an advantage of photogrammetric point clouds
that is not available in LiDAR data. However, this mostly only
improves the visualization effect.

FIGURE 4. DSM obtained from (A) LiDAR and (B) photogrammetric point
clouds.

DSM is a priority feature for extracting building bound-
aries, and a straightforward threshold method was applied.
In order to evaluate the results, the building truth was labeled
manually using the GIS processing software QGIS (v3.4).
The Precision, Recall, and F-score performance metrics were
calculated for each of the three selected sections and the
extraction results are shown in Figures 5, 6, and 7.

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

FScore = 2×
Precision× Recall
Precision+ Recall

(4)

where TP is the number of true positives; FP is the number of
false positives; and FN is the number of false negatives.

Based on prior knowledge obtained from the urban survey,
heights of the trees were between 5 m to 25 m, so height
thresholds of 5 m to 25 m were selected for comparison.
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FIGURE 5. building extraction result of section A from LiDAR (A, B, C) and
photogrammetric (D, E, F) DSMs based on height thresholds of 15 m
(A, D), 20 m (B, E), and 25 m (C, F).

FIGURE 6. building extraction results of section B from LiDAR (A, B, C)
and photogrammetric (D, E, F) DSMs based on height thresholds of 15 m
(A, D), 20 m (B, E), and 25 m (C, F).

Regularized buildings could be extractedwhen a 25-m thresh-
old was selected in section A (Figures 5), B (Figures 6) and
section C (Figures 7). However, the building boundaries of
the photogrammetric DSMwere blurry, especially when high
trees or other buildings were nearby. Indeed, the selected
threshold may greatly affect the extraction result.

When a low height threshold was chosen, true positive
numbers improved greatly and the Precision score of extrac-
tion was also high. However, the Recall and F-scores were
low when a low threshold was chosen. With the 5-m thresh-
old, nearly all of the buildings could be extracted. However,
trees and other objects were also classified as buildings. Mis-
classification was lesser with the 25-m threshold, although
a few buildings could not be extracted. So, it is difficult to
select the optimal threshold for building extraction with this
method without prior knowledge about the study area.

The effects of the threshold setting on precision of section
A are shown in Figure 8. It shows that the F-score peaks at a
threshold of 25 m and then decreases, while Recall peaks at
25m and remains high at greater thresholds. It also shows that

FIGURE 7. building extraction results of section C from LiDAR (A, B, C)
and photogrammetric (D, E, F) DSMs based on height thresholds of 15 m
(A, D), 20 m (B, E), and 25 m (C, F).

the F-score of photogrammetric DSM extraction is always
lower than that of LiDAR DSM extraction regardless of the
threshold selected.

B. EXTRACTION BASED ON POINT CLOUDS
In the DoN implementation, the small radius (r1) and large
radius (r2) were set to 1 m and 10 m, respectively. Such
DoN parameters settings have been found to provide good
isolation of points in urban LiDAR scenes. Applying the
Euclidean cluster extraction method to the resulting point
cloud, building roofs were clearly clustered with the scene.
For segmentation, a threshold value of 0.1 was applied for
building roofs and 0.4 for trees. The building roof extraction
results are shown in Figures 9 and 10. It shows that most
of the buildings could be successfully extracted from both
types of point clouds. After comparison with the true building
boundaries of sections A, B, and C, we find that the FP ratio
is rather low.

An evaluation was also carried out to compare DoN seg-
mentation with the two types of data. Table 4 illustrates the
results of our evaluation in the form of a Precision/Recall/
F-score over ground truth objects. For each cluster, the point
classification was compared with each of the ground truth
labels. It was found that the majority of the results had
a precision > 0.9. The Recall and F-score results also
appear favorable. Overall, the LiDAR extraction results have
some advantages over the photogrammetric ones in terms of
F-scores.

V. DISCUSSION
In this study, photogrammetric point clouds were obtained
indirectly from images. This required a process of both aerial
triangulation and dense matching. Many factors, such as fea-
ture selection, corresponding matches, and patch-matching

111828 VOLUME 9, 2021



L. Guo et al.: Extraction of Dense Urban Buildings From Photogrammetric and LiDAR Point Clouds

FIGURE 8. Precision (A), Recall (B) and F -scores (C) in relation to height
threshold for LiDAR and photogrammetric DSM extraction results.

affect the quality of the point clouds. However, LiDAR can
directly measure distances so, theoretically, fewer factors
affect the geometric accuracy. Although the point density
of photogrammetric point clouds was high, there was low
geometric accuracy due to greater noise. Compared to the

FIGURE 9. Building extraction based on LiDAR point clouds for sections
A, B, and C.

photogrammetric point clouds, the LiDAR point clouds had
better accuracy and structure.

In this study, DSMs were calculated to extract buildings.
A closer look at the DSMs revealed that photogrammetric
DSMs contained noise and outliers along building bound-
aries. These are the main causes of the saw-tooth appear-
ance of the photogrammetric DSM. Such artifacts degrade
the quality of photogrammetric DSMs and hamper their
reliable usage in urban building extraction. Here, buildings
were extracted based on DSM thresholds for both LiDAR-
and photogrammetry-generated point clouds. Although their
structural patterns were similar, the LiDAR DSM had a
clearer and more descriptive structure. Compared with pho-
togrammetric DSM, LiDAR DSM appears to provide a bet-
ter building extraction result. After evaluation, it was found
that regularized buildings could be extracted with different
thresholds selected for different sections. Moreover, building
boundaries were blurry, especially when high trees, nearby
buildings, and other relief displacements existed. When a
low height threshold was chosen, numbers of true positives
improved greatly and extraction precision was also high.
However, the Recall and F-scores were low when a low
threshold was chosen. So, it is difficult to select the optimal
DSM threshold for building extraction. It was also found that
the F-score of photogrammetric DSM extraction was always
lower than that of LiDAR DSM due to various influences.
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FIGURE 10. Building extraction based on photogrammetric point clouds
for sections A, B, and C.

TABLE 4. Classification results and performance metrics.

Building roof extraction based on DSM could not compre-
hensively utilize the 3D information, so the algorithm based
on point clouds was also tested for both LiDAR and pho-
togrammetric data. In this study, the DoN segmentation strat-
egy was shown to be surprisingly powerful in extracting point
features according to their scale. Selecting the parameters r1
and r2 for DoN may cause a large response in the surface of
interest. Selection of the neighborhood affects the calculation
of the normals and, hence, the segmentation results. In the
extraction of building roofs, we compared the responses of the
normals across two different radii r1 < r2. A low threshold
may result in a planar region being classified as trees, while
a high one will cause the opposite. Our experiments with
different buildings found that using r1 = 1 m and r2 = 10 m
gives satisfactory results [36]. These small radii were chosen
because there were enough neighbor points to calculate point
normals. This can provide a good estimation of the surface
normal. It can balance the two types of errors—false positives
and false negatives. Such DoN parameter settings were found
to provide good isolation of points in urban LiDAR scenes.

Appropriate parameter selection can maximize the difference
in the DoN magnitudes of building roofs and other objects.

After applying the euclidean cluster extraction method to
the resulting point cloud, clear clustering could be generated
in a scene. For each point clouds cluster, a threshold value
of 0.1 m was applied for building roof planar fitting. A low
measure threshold (0.1) yielded horizontal and planar sur-
faces that were mostly classified as buildings. On the other
hand, a high value (0.4) yielded rough or vertical surfaces,
which may indicate that the points represent trees or the
vertical facets of buildings. The potential-based clustering
approach can reduce the effect of such off-center outliers
that are mixed in with the data points, and correctly deter-
mine the numbers and locations of these clusters. The cluster
extraction algorithms do not necessarily take into account
the diversity of the geospatial nature of LiDAR datasets,
such as returns from trees, vertical walls, chimneys, curved
structures, and other irregular objects, in addition to the noise
present in the data. It should be noted that curved build-
ing surfaces can lead to over-segmentation. In this scenario,
the LiDAR points of a curved surface will be segmented into
more than one planar piece within a certain tolerance.

The segmentation quality was quantitatively evaluated on
the photogrammetric and LiDAR point cloud datasets. Build-
ing roofs were automatically segmented from these datasets.
It was shown that the majority of the results had a precision
> 0.9, and the Recall and F-score results appear favorable.
Overall, the LiDAR extraction results have some advantages
over the photogrammetric ones, considering the comprehen-
sive F-score metric.

VI. CONCLUSION
In this paper, photogrammetric and LiDAR point clouds were
used to extract building data from aerial imagery. Two meth-
ods based on DSM images and point clouds were tested. The
comprehensive analysis showed good consistency between
the two types of data. However, compared to LiDAR data,
photogrammetric point clouds provide poor building extrac-
tion accuracy. There were some differences between the
LiDAR and photogrammetricmethods. From a practical point
of view, the trade-off between effective cost and extraction
accuracy should be exhaustively considered. Compared with
DSM image extraction, using DoN as a multi-scale operator
can obtain the advantages of 3D point clouds. Applying the
methods to LiDAR and photogrammetric data of real urban
areas qualitatively demonstrated the effectiveness of DoN
segmentation in classifying building roofs.

It should be noted that photogrammetric point clouds pro-
vide lower geometric accuracy than LiDAR ones. However,
the point density of photogrammetric point clouds is much
higher and may include much more redundant data. The
DoN was proven to be a theoretically sound and practically
effective technique for satisfactorily detecting these nonpla-
nar points. However, the size of the neighborhood must be
specified for surface normal estimation.
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In summary, when extracting buildings from imaging
datasets, photogrammetric point clouds are a good option if
LiDAR data are unavailable. However, for urban building
extraction based on photogrammetric point clouds, multi-
view images should be considered, and noise removal should
be carried out. At the same time, color information could
be used in future to improve the accuracy of extracting the
related metrics. Future work should exploit the DoN scale
operator over several radii for building extraction and inte-
grate it with cluster-recognition methods.
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