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ABSTRACT Wire bonding remains one of the most widely adopted interconnection techniques in the field of
electronic packaging. At present, the most effective way to ensure a long life and high reliability of wire bonds
is to improve the bonding quality. In this study, both experiments and finite element analysis (FEA) were
employed to develop a fundamental understanding of wire bond degradation. Sensors with two protective
silicone gels were loaded with the same thermal shock at a temperature ranging from —40°C to 125°C,
and the switching time was shorter than 10 s. The number of thermal shock cycles for the aluminum
wire covered with transparent silicone reached 1200, but the maximum number of cycles for the other
wire only reached 454. The experimental results indicated that the chosen transparent silicone performed
better than did the black silicone originally selected, which was also verified by the simulation results.
In addition, bond pull and shear tests were performed. The results revealed no degradation of either the
Ag-Al or Ni-Al bonding joints under thermal loading. In summary, the root cause of failure was found to
be improper protection silicone application, which, as often ignored in analysis, accelerated thermal fatigue
of the aluminum wires. An explanation of the observed trend and a recommended aluminum wire bonding
method were also provided.

INDEX TERMS Wire bonding, finite element analysis (FEA), pressure sensor, reliability.

I. INTRODUCTION

Wire bonding is a kind of bonding method that relies on thin
metal wires and applies heat, pressure and ultrasonic energy
to ensure a close bond between metal leads and base plate
welding pads to realize electrical interconnection between a
given chip and base plate and signal communication between
chips [1]-[5]. Failure of wire bonds in microelectronic com-
ponents in practice has been found to be attributed to the
excessive formation of intermetallic compounds (IMCs), oxi-
dation, corrosion, fatigue and electromigration [2]-[7]. These
failures occur throughout the lifetime of these components or
systems, including manufacturing, testing, storage and oper-
ation [6], [7], often resulting in interface separation or crack-
ing [8], [9]. At present, the most effective way to ensure a long
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life and high reliability of bonding is to improve the bonding
quality [10], which depends on the initial processing win-
dow parameters of bonding, such as power, pressure, time,
temperature, and selection of wire and bonding pad mate-
rials. Typically, bonding pull and shear tests are employed
to evaluate the bonding quality [1], [12], [13]. Reliability
evaluation has mainly been based on MIL-STD-883 [14] and
AEC-QI100 [15] in regard to automotive electronics.
Aluminum wires are widely implemented in interconnec-
tions between the module substrate and housing in automo-
tive pressure sensors [1], [12]. Regarding sensors, ensuring
the reliability of aluminum wire bonding in harsh environ-
ments is a great challenge for researchers and engineers. The
higher the reliability of a given product, the more successful it
is in the market. In terms of bonding failure, many researchers
and engineers have proposed various empirical equations to
predict the fatigue life and crack propagation of interfaces and
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studied the bonding process, including equipment principles,
tooling, and processing window parameters [17]-[21], [24].

However, failure analysis and research on aluminum
bond wires related to protection glue assembly methods
have rarely been reported in regard to automotive pres-
sure sensors. Protection in general is applied in almost all
microelectronics-related industries, and this approach is com-
monly adopted for moisture and dust protection purposes.
It is also necessary to protect automotive pressure sensors
against moisture intrusion due to the respiration effect [22],
even though high-grade waterproof connectors are com-
mon. The type of protection glue and thermal fatigue stress
issues have mostly been ignored, which could be critical
to guarantee the reliability of wire connections. Thermal
fatigue-related failure occurs due to unmatched materials
and structures under the poor working conditions of road
vehicles.

In this paper, we focused on the development of protection
glue assembly designs in automotive pressure sensors. There
are already approximately 22 applications in both commer-
cial vehicles and passenger cars. It has experienced a notable
increase since the early 2000s, when only 14 applications
were reported [23]. In this research, we employed both finite
element simulations [24] and experiments, conducted a com-
parative analysis of protective adhesives in our designs, and
investigated the root cause of failure. The simulation results
agreed well with the experimental results and could provide
a positive guiding effect on the design and manufacture of
automotive sensors.

Il. STRUCTURE, MATERIALS AND METHOD

A. STRUCTURE AND SPECIMENS

The specimens included dual pressure sensors that instantly
transformed two independent pneumatic pressure signals in
the air reservoirs of brake systems into two independent volt-
age signals at their terminal pins. The two sensors consist of a
measuring cell for calibration and temperature compensation
features and aluminum wires providing signal interconnec-
tion. Fig. 1 (a) shows the structure of the pressure sensor
applied in commercial vehicles. An image of a failed sensor
(Fig. 1 (b)) is also provided.

B. EXPERIMENTS AND ELECTRICAL MEASUREMENTS

As pressure sensors are applied to control and monitor the
brake system of commercial vehicles, the experiments were
based on IEC 60068-2-14 [25]. This standard provides a test
platform to verify the ability of components, equipment or
other articles to withstand rapid changes in ambient temper-
ature. The test is accelerated because the number of severe
changes in temperature during a given period is larger than
that under field conditions. The test parameters include high
and low temperatures, exposure duration, transfer time or
rate of change and number of test cycles. Each specimen
should be visually inspected and electrically and mechan-
ically assessed, as required by the relevant specification.
The test procedure involves first placing specimens in the
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FIGURE 1. In-service failed sensor assembly: (a) structure of the pressure
sensor, (b) failed sensor.
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FIGURE 2. Test cycles based on IEC 60068-2-14.

testing chamber, which can maintain the appropriate temper-
ature. Then, we set the test parameters as mentioned above.
Fig. 2 shows the test cycles. Finally, the specimens should
be recovered under standard atmospheric conditions for
testing.

A thermal shock experiment was designed to verify the
reliability of the tested sensors. The temperature ranged from
Tmin (—40°C) to Tmax (125°C), the hold time of the two
temperature points was 30 minutes, and the switching time
was shorter than 10 s. The number of cycles was 500. The
sensors were kept in a powered temperature chamber, and
signals were continuously monitored during the whole test
process. The test profile and actual temperature profile are
shown in Fig. 3 (a) and Fig. 3 (b), respectively, and the test
facility is shown in Fig. 3 (c).
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FIGURE 3. Test platform: (a) test profile, (b) actual measuring profile, and
(c) test facility.

In this study, 10 sensors with two types of protection
glues suitable for aluminum wire bonding were prepared.
Five sensors, 15455_BS007-BS011, were protected by black
glue (silicone A), and the remaining sensors, 15442_BS001-
BS005, were protected by transparent glue (silicone B),
as shown in Fig. 4.

Electrical signal measurements were performed during the
thermal shock test, and the data are listed in Table 1 and
Fig. 5. The electrical output signals of the samples were
continuously monitored with a multimeter throughout the
whole thermal shock test. The sensors were powered by
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FIGURE 4. Two types of sensor assemblies: (a) black protection glue,
(b) transparent protection glue, and (c) test specimens.

a 5-V DC current, and the expected output ranged from
0.9~1.10 V. The sensors have a diagnostic function, namely,
when the internal electrical joint is open, the output reaches
< 0.5 V or >4.5 V. The required test cycles are 500.
As indicated in Table 1, the “‘sensor #” item indicates the
digital number of the specimens, which facilitates conve-
nient identification, and the ‘“‘sensor name’ item indicates
the specimen name. The “‘signal # 21 and “‘signal # 22”
items denote the output signals of the specimens because
each specimen provides 2 signal outputs. The “‘signal during
thermal shock test #21/22” item denotes the test result of the
two output signals during the thermal shock test. The ““status
of Al wire #21/22” item indicates the mechanical test result.
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TABLE 1. Test results of the functional and mechanical tests.

Electrical result Mechanical result

B Sensor name Signal during
# Signal Signal  thermal shock Status of Al wire
#21 #22 test #21/22
#21/22

1 15442 BS001 AD10 ADO09  Passed/Passed Good/Good
2 15442_BS002 ADI15 ADI16  Passed/Passed Good/Good
3 15442_BS003 AD19 AD20  Passed/Passed Good/Good d
4 15442_BS004 ADO08 ADO7  Passed/Passed Good/Good
5 15442_BS005 ADI17 ADI18  Passed/Passed Good/Good d
6 15455_BS007 AD22 AD21 Failed/Failed Failed/Failed
7 15455 _BS008 AD23 AD24  Failed/Passed Failed/Good
8 15455_BS009 ADI14 ADI3 Passed/Failed Good/Failed
9 15455_BS010 ADI12 ADII Passed/Failed Good/Failed
10 15455 BS011 AD04 ADO3 Failed/Failed Failed/Failed

s 11 —AD10
> Output of passed sensors —ADO9
5 AD15
£ 105 3 g AD16
g A AL Bl A AP — W —AD19
: ; —AD20
] —ADO8
© —ADO7
—AD17
0.95 —BiI
—AD24
0.9 : —AD14
. Output of failed sensors AD12
£ 5 ———— —AD11
M
g 4 —ADO4
3 3 —ADO3
3 —AD22
£ 2 AD21
3
T T —AD23
0 —AD13
Numbers of cycles Timing of first failure (in cycles):
500 ADO3 @ 97
400 AD04 @ 347
AD11 @ 282
300 AD13 @ 454
200 AD21 @ 419
AD22 @ 419
100 AD23 @ 370

FIGURE 5. Timing of failure in the cycles.

Five specimens, namely, 15442_BS001-15442_BS005,
exhibited no failure after the thermal shock test. The other
5 specimens, namely, 15442_BS007-15442_BSO011, failed
after the test. Fig. 4 shows details of the sensors with and
without failure after the thermal shock test. We conducted
the test in 2 steps. The first 400 cycles were completed in the
first step, and the remaining 100 cycles were completed in the
second step. The cycles for the failed specimens ranged from
97 to 454. The minimum number of cycles reached only 97,
revealing the poorer protection ability of the black glue than
that of the transparent glue.

C. MEASUREMENTS AND SEM OBSERVATION

To identify the failure mode of the sensors, bonding wire
pull tests and shear tests were first performed according to
MIL-STD-883 [13] and JESD 22B116B (April 2017) [14].
These two standards are the most prevalent and important
tests to evaluate the reliability of wire bonding. Fig. 6 shows
the results for the 10 specimens and 2 unaged specimens.
In each part, there are 6 wires, so there are 6 pull force
values and 12 shear force values. The criteria for the bond pull
force and shear force indicate that these two forces at failure
must be higher than 140 grams and 600 grams, respectively.
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FIGURE 6. Test results: (a) bond pull force test, (b) bond shear force test.

Optical inspection and scanning electron microscopy (SEM)
were employed to observe the damaged aluminum wires,
as shown in Fig. 7. The failure mode of the specimens was Al
wire breakage at the neck position of the first bonding joint.
To better observe the specimen microstructure, the protective
silicone gel was removed from the bonding wires with a
solvent.

D. FEA MODELS

Since assembled components are subject to high road envi-
ronment loads in vehicles, aluminum bond wires comprise
the electrical connection of choice. As shown in Fig. 8, bond
wires connected adjacent contact pads, with one wire at the
ceramic substrate and the other at the pin in plastic housing.
As a consequence, these wires were bent in an arch shape.
The ceramic substrate was affixed onto the housing with a
specific silicone. The silicone material is a one-part, gray
adhesive with a high tensile strength, and the thickness is
50 pum based on the measurement result. Fig. 8 also shows
the detailed model of this bond wire. The wire was affixed
via wedge bonds on both sides. In this case, the bond wire
was a Heraeus ALW-49P, with a thickness of 300 xm, con-
sisting of high-purity Al. The density of Al was 2.7 g/cm3,
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FIGURE 7. (a) Optical inspection and (b) SEM images of the failed Al wire.

the Poisson’s ratio was 0.33 and the Young’s modulus was
70.0 GPa. Given the same symmetrical structure, the alu-
minum wire was simplified and modeled with ANSYS soft-
ware [28], and the detailed dimensions of the Cu-Ni-Al joint
are listed in Table 2. To investigate the behavior of the alu-
minum bond wires in a thermal shock-loaded environment,
first, wire shape stress analysis was performed. Next, the
performance of the bond wires covered with the 2 types of
silicone were analyzed. Both silicone cuboids were assumed
to exhibit two shapes: one shape was an overall arch with a
height of 1.6 mm, a width of 1.6 mm and a length of 5.5 mm
(as shown in Fig. 9 (a)), and the other shape was a half bridge
with a height of 1.2 mm, a width of 1.6 mm and a length
of 2.5 mm (please refer to Fig. 9 (b)).

The material data were obtained from the suppliers and
some of their properties were tested in house and are
listed [29], [30]. The glass transition temperature of the sil-
icone A and silicone B is —55°C and —60°C respectively.
The constitutive models adopted were established as follows:
regarding the metallic materials involved, constitutive models
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FIGURE 8. Simplified FE model: aluminum wire bonding of the pressure
sensor.

TABLE 2. Detailed dimensions.

Item Dimensions (mm)
Bonding pad (second) 1.81*1.81*0.013
Ceramic board 6*%6*1
Bonding pad (first) 3%2*0.01
CuSn6 3%2%0.8
PBT-GF30 12.5%10
Aluminum wire diameter 0.3
Fully covered silicone 1.6*¥5.5*%1.6
Partly covered silicone 1.6%2.5%1.2

TABLE 3. Major properties of the materials [29], [30].

Densit E CTE Thermal Yield
Material (gel::l%, (GPa) v 10 Conductivity Strength
£/°C) (W/m-K) (MPa)
CuSn6 3.83 110 03 172 98 400
Ni 8.8 201 0.31 9.2 90.7 59
Al 2.7 70 0.33 23.6 247 20
Ag 11 71 0.37 20 420 35
ALOs 3.7 300 0.26 6.5 21 69
PBT-GF30 1.53 9.8 0.39 25 0.27 46
Silicone A 1.29 0.01 0.48 350 0.2 -
Silicone B 0.95 6x10° 0.49 335 0.195

of bilinear isotropic hardening behavior were assumed
(Al Ni, Ag, and CuSn6). The other materials were assumed
to be linear elastic. Regarding plastic or polymer films, only
thermoelasticity behavior was assumed due to the small thick-
ness of the silicone films. More robust constitutive models
will be used in future work, which will require notable test-
ing work to obtain rate- and temperature-dependent material
properties.

Mesh dependence was checked for comparison, as shown
in Table 4. It shows that the error between the maximum strain
value of the simulation in this study and that of the simulation
with refine grid is only 1.26%, which is acceptable.

The numerical solution from finite element model and
the measurement results of actual sample were analyzed and
compared in order to prove the validation of the established
FEA model. The result of the force-displacement curve was
obtained by solving for the reaction force. Fig. 10(a) shows
the FEA result of pull force of aluminum wire, Fig.10(b)
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FIGURE 9. Assumed FE models of silicone cuboids: (a) fully covered
aluminum wire and (b) partially covered aluminum wire.

TABLE 4. Influence of mesh effect.

Model Medium Fine mesh Error
mesh
Number of elements 12451 103105 -
Minimum element — ge. 10 3 1 .06x10-3mm -
size(mm)
Maximum strain 0.008397 0.008503 1.26%

shows the actual test sample and measuring equipment, and
Fig. 10(c) presents the comparison of simulation results and
experimental measurement results, from which it can be
found that the actual experimental test results are consistent
well with the simulation results. Therefore, the validation of
the FEA model was proven.

IIl. RESULTS AND DISCUSSION

A. VISUAL INSPECTION AND SEM OBSERVATION OF
ALUMINUM WIRE BONDS

Fig. 11 shows the bonding surface after the shear test.
Fig. 11 (a) shows the bonding surface of the ceramic board
pad, and Fig. 11 (b) shows the bonding surface of the pins in
the housing. As described in section 2.3 regarding the test
data, the 5 failed parts resulted in the same failure mode,
i.e., wire neck fracture, under a pull force lower than 50 g.
However, the shear force still met the requirements for solid
metallurgical bonds at the interface. This indicated that the
bond strength of the aluminum wires degraded after thermal
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FIGURE 10. Validation of FEA model: (a) FEA result of pull force of
aluminum wire, (b) actual test equipment, (c) compared result of test and
simulation.

aging with improper protective glue, and the applied glue
accelerated the degradation process and yielded a reduced
reliability.

B. EFFECTS OF THE PROTECTION SILICONES

Figs. 12 (a) and (b) show the equivalent plastic strain in
the aluminum wire with the different finite element models.
There was no major difference between the results of these
two models. Both models show the maximum plastic strain
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FIGURE 11. Bonding surfaces: (a) bonding pads of the ceramic board,
(b) bonding pads of the pins in the housing, (c) SEM images of the front
and cross section of the bonding pad of the failed aluminum wire.

occurred at the neck of the bonding wire. It was the same
position as in the failure of the experimental results. However,
for a different type of silicone, the results for the maximum
plastic strain at the neck of the aluminum wire with silicone
A indicated a value up to 0.024196, while the maximum
plastic strain with silicone B indicated a value of 0.0076436.
The results were summarized in the Table 5. This occurred
because of the different CTE and E values of the adjacent
materials. The silicone A was hard after curing and the sili-
cone B was soft after curing. The hard glue had a large stress
on the aluminum wire under the thermal shock test, while
the soft glue had a small stress on the aluminum wire. With
the test time increased, the accumulated plastic strain tended
to increase, which would eventually cause the corresponding
failure.

C. EFFECTS OF THE SILICONE MATERIALS ON THE
THERMAL FATIGUE LIFE

Table 5 summarizes the FEA results of the fatigue life
regarding the effects of the adopted silicone on the bond
reliability under thermal shock loading, which is based on
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FIGURE 12. FEA results for the both models.

the Coffin-Manson model. The cycles of fatigue life can be
calculated under the condition of the effective bonding plastic
strain with the following equation:

Nf = 0.5(Ay /2ep)'/€

where Nt is the mean number of cycles to failure, Ay is the
bonding plastic strain, &f is the fatigue ductility coefficient
and C is the fatigue ductility exponent. In this study, ef was
set to 3.09, and C was set to 0.673 [11]-[13]. The FEA results
obtained with the 2 models considering different coating
structures are listed below. Cases 1 and 2 involved the FE
models with silicone covering.

The predicted lifetime for silicone A (black silicone) was
834 cycles, compared to the predicted lifetime of 4623 cycles
for silicone B (transparent silicone). The fatigue life of the
silicone A partial coating model was predicted to be longer
than that predicted with the full coating model. It was obvious
that the adopted silicone with a lower E value resulted in a
longer fatigue life of the aluminum wire. This was highly
consistent with the experimental results. The aluminum wires
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TABLE 5. Summary of the FEA results of the fatigue life.

Maximum Cyctles
Item Structure Silicone Plastic N
Strain Fatigue
Life
Silicone
B 0.0076436 4623
1
Silicone 4 104196 834
A
Silicone
B 0.008397 4020
2
S‘h[i"ne 0.013879 1905
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FIGURE 13. Output results of the pressure sensors.

covered with black silicone all failed and exhibited the same
failure mode of neck fracture. The minimum number of fail-
ure cycles was only 97, and the maximum number of failure
cycles was 454. The aluminum wires covered with transpar-
ent silicone, however, remained intact with a high reliability,
and the number of thermal shock cycles reached up to 1200.
No mechanical nor electrical signal failures were observed.
The output voltage test results are shown in Fig. 13. The
test results of the 10 improved sensors covered with trans-
parent protective glue are shown. The thermal shock test
was repeated and completed on the customer side. A total
of 1200 cycles was conducted, far more than the engineering
requirements. The signal output remained suitable throughout
the whole test. This trend is consistent with the simulation
results, but we could not perform more cycles because the
test cost associated with the completion of 4623 cycles was
extremely high.

IV. CONCLUSION

The root cause of aluminum wire failure was investigated
via visual inspection, SEM observation, design of exper-
iments (DOE) test, and numerical DOE modeling experi-
ments. It was concluded that the improper protective silicone
covering the aluminum wire led to a reduction in sensor life.
This suggested that an unmatched glue with an unsuitable
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CTE value accelerated the thermal fatigue process of alu-
minum wire under thermal shock loading. The axial loading
was very high and exceeded the axial tension value, and
the degree of forced elongation of the Al wire in the pro-
cess of expansion and contraction resulted in wire fracture.
In addition, the shear force test results after thermal shock
testing were very close to the shear force results of unaged
bonds. In particular, no apparent degradation of the bonding
point was observed. This demonstrated that the shear force,
as tested based on bonding qualification, is not a necessary
condition but a sufficient condition. The pull force test is a
necessary test in mass production.

The preliminary FE simulation results supported the exper-
imental results of aluminum wire bonding under thermal
shock loading, which indicated that virtual testing model-
ing could facilitate large-scale production of highly sensitive
Sensors.
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