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ABSTRACT This paper is devoted to investigating the robust control problem for a class of singular systems
with model structure uncertainty and external disturbance. Firstly, the uncertainty and disturbance estimator
(UDE)-based robust control law is established for uncertain singular systems. Secondly, the two-degree-of-
freedom (2DOF) nature of singular systems under the UDE-based robust controller is revealed, which shows
that asymptotic reference tracking and disturbance rejection are decoupled. Additionally, on the basis of the
small-gain theorem, sufficient conditions are established to ensure robust stability of the closed-loop system
and to achieve asymptotic reference tracking and disturbance rejection. Finally, three numerical examples
and a practical application to the multi-agent supporting systems are provided to illustrate the validity of the
methods proposed.

INDEX TERMS Robust control, singular systems, two-degree-of-freedom, uncertainty and disturbance
estimator.

I. INTRODUCTION
Model uncertainty, external disturbance and parameter per-
turbation commonly exist in many practical applications,
which bring negative effects on the performance of the
control system. Therefore, robust control theory has gained
significant attention to deal with such uncertainties. For
classical state-space systems, a number of different tech-
niques have been presented to investigate the robust control
problem; see [1] for sliding mode control (SMC), [2] for
the adaptive control, [3] for the model predictive control
and [4] for the H∞ control. Since uncertainties are usually
unknown and unmeasurable, another class of approaches
has been proposed to estimate or compensate for the influ-
ence of uncertainties by using the measurable states and
known dynamics of systems. This kind of method can
be found in [5] for the active disturbance rejection con-
trol (ADRC), [6] for the disturbance-observer-based control
(DOBC), [7] for the equivalent input disturbance (EID), [8]
for the extended state observer (ESO) and [9] for the unknown
input observer (UIO).

Singular systems are also referred to as descriptor sys-
tems, differential algebraic systems, generalized systems and
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constrained systems. Singular systems consist of differential
and algebraic equations, which are different from state-space
systems, the solutions of singular systems always contain
impulses. In other words, state-space systems are a special
class of singular systems. Therefore, singular systems have
been widely researched over the last few decades because
they can describe more complex dynamical models [10]–[12]
in many practical applications, such as circuit systems, power
systems, robot systems, multi-agent systems, chemical pro-
cess, aircraft modeling and so on. However, the analysis and
design of singular systems are more complicated due to the
existence of impulse and algebraic modes. Finding regular
and impulse-free conditions and designing the controller so
that the closed-loop systems are regular, impulse-free and
stable are the focus of the study of singular systems, where
regularity and impulse-freeness ensure that the singular sys-
tems have a unique solution without impulse.

It is noteworthy that many meaningful disturbance atten-
uation control methods of uncertain state-space systems are
still effective for singular systems. Robust control conserva-
tively considers the worst-case scenario of model uncertainty,
and in detail, stability for uncertain singular systems was
reported by [13], the parameter uncertainty is assumed to
be time-varying and norm-bounded, the necessary and suf-
ficient conditions for quadratic stability and stabilization are
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proposed by using some matrix inequalities. The parameter
uncertainty is also considered to belong to a convex bounded
domain (polytopic type), and the robust stability condition is
proposed through the parameter-dependent Lyapunov func-
tional [14]. Robust H∞ control has been considered by [15],
[16], where the controlled system is quadratic stable or expo-
nential stable and satisfies an H∞ performance, the uncer-
tainty and disturbance considered herein are norm-bounded.
The robustness of the above robust control methods is usually
obtained at the expense of transient performance. Moreover,
adaptive control has been shown to ensure the robust stability
of singular systems by [17], [18], and such methods usually
rely on the identification of time-varying model parameters,
which cannot be used when they are difficult to identify
or estimate online. See also [19]–[21] for the SMC, which
can fully compensate for the matching uncertainties when
the closed-loop system enters a sliding mode, however, dis-
continuous control tends to lead to high-frequency chat-
tering in the system. Follow-up research on the uncertain
singular systems has been carried out in [22]–[24] by the
observer-based control method, and in [25], [26] for the
filtering methods, in these methods, the boundary assump-
tions of uncertainties and disturbances are necessary. In [27],
the problem of event-triggered H∞ control for the singular
systems with randomly occurring uncertainty and nonlin-
earity was investigated. However, all of the above papers
always assume that the uncertainties are known or bounded,
and the robust control problem was solved by the time
domainmethod, the robust stability conditions were proposed
in terms of linear matrix inequalities (LMIs). In practical
systems, the norm-bounded condition or convex bounded
condition may not be applicable and unknown external dis-
turbance inevitably appear in the controlled process. In this
situation, the LMI approach in the time domain may be
invalid.

The above traditional anti-disturbance methods suppress
disturbance through feedback control rather than feedfor-
ward compensation, and cannot respond directly or quickly
enough in the presence of strong disturbance. In order to over-
come the limitations of traditional anti-disturbance methods,
a class of methods so-called active anti-disturbance con-
trol (AADC) have been proposed [28]. In [29], the distur-
bance observer (DOB) based control was used to estimate
the disturbance by the nominal system model and a low-
pass filter, which implies that the system model needs to
be known exactly, however, it is sometimes not available.
Very recently, the EID-based control method was considered
for singular system in [30], which can reduce the influence
of uncertainties and disturbances, however, the disturbances
must be present on the same channel as the control input.
The ADRC method used in [5] was that total disturbance
were treated as a new state of extended system, and a state
observer was designed for the extended system to estimate
the disturbances in real time and reasonably compensate for
the effects caused by the disturbances. However, the deriva-
tives of disturbance needs to be bounded, which is difficult

to satisfy. Therefore, it is necessary to find a new method
to address the robust control problem for singular systems,
which inspires this study.

In recent years, a new active anti-disturbance control
method based on uncertainty and disturbance estima-
tor (UDE) proposed by [31] has received much attention
due to its fast response and accurate estimation. The basic
idea is that the controller compensates for the influence of
uncertainties by estimating uncertainties from measurable
variables. One of the primary benefits of this method is that
the uncertainty can be quickly estimated on the basis of a
strictly-proper low pass filter. On the other hand, what we
need to know is only the frequency spectrum (bandwidth)
information of the sum term of uncertainties and disturbances
that can be measured in engineering, while the upper bound
of uncertainties is not essential. In addition, the UDE-based
control approach also does not require an accurate system
model and informations on the derivatives of disturbances,
which overcomes the drawbacks of DOBC and ADRC. The
UDE-based control approach has been applied in many pub-
lications due to its excellent performance, such as nonlin-
ear systems [32], the nonlinear functions were considered
as an additional unknown uncertainty term of the system,
which were estimated by the estimator. In [33], UDE-based
approach is used for the SMC, which overcomes the chatter-
ing phenomenon in the design of SMC. In [34], [35], by com-
bining with SMC method or dynamic feedback, the modified
UDE-based robust control laws were proposed for chaotic
systems; As reported by [36], the UDE-based control law has
also been extended to the stabilization of partial differential
equation systems which are more complex than ODEs. In the
light of the above statements, the UDE-based control strategy
has good robust control performance. However, to the best of
our knowledge, the UDE-based control has not been given for
singular systems, which also motivates our research. Moti-
vated by the above discussions, this article studies the robust
control problem for singular systems under the UDE-based
control strategy. There are still some issues that need to be
overcome: (1) How to design an UDE-based controller for
the singular system subject to model uncertainty and external
disturbance? (2) Whether the closed-loop singular systems
still have two-degree-of-freedom nature in the frequency
domain. (3) How to obtain admissibility conditions and how
to develop an algorithm to select the appropriate error feed-
back gain K? To address the above challenges, the main
contributions of this work are summarized as follows:
1) The UDE-based control law for singular systems with

model uncertainty and external disturbance is pre-
sented. The boundary assumption is removed when the
matching condition is satisfied, which is different from
norm-bounded uncertainties and polytopic type uncer-
tainties discussed in the existing literature [13], [14].
In addition, when the matching condition is not satis-
fied but the bounded assumption is satisfied, the pro-
posed UDE-based robust controller can still be designed
effectively.
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2) The 2DOF nature of controlled singular systems is
presented under the UDE-based controller. Asymptotic
reference tracking and disturbance rejection are decou-
pled in frequency domain, meanwhile, the lumped dis-
turbance can be attenuated by two decoupled designable
filters. Compared with uncertain systems addressed in
other work [37], the 2DOF nature considered in this
paper is more general.

3) The sufficient conditions are derived to guarantee the
robust stability and asymptotic performance of the
singular systems under the robust controller. Besides,
a novel design algorithm for error feedback gain K is
also presented to derive the trade-off between stability
conditions and attenuation filters.

4) Compared with the DOB-based robust H∞ control [29],
the UDE-based control approach does not require an
exact system model, only a suitable filter is needed,
which means that the UDE-based method is easier to
implement and has a wider range of applications.

The rest of this work is organized in what follows.
Section II formulates the robust control problem of singular
systems and presents essential preliminaries. Themain results
of UDE-based control for singular systems are presented in
Section III, which includes the controller design, two-degree-
of-freedom nature analysis, stability analysis, and error feed-
back gain design. In Section IV, illustrative examples along
with numerical and simulation results are provided. The con-
clusions are presented in Section V.

Notations: Rn×m, Rn, C and C− denote the set of all real
n × m matrices, n-dimensional real Euclidean space, the set
of all complex numbers and the open left half complex plane,
respectively. det(·) and deg(·) stand for the determinant of a
matrix and degree of a polynomial. For the column full rank
matrix B, B+ = (BTB)−1BT is the Moore–Penrose inverse of
B. I and 0 represent, respectively, the identity matrix and zero
matrix with appropriate dimensions. The symbol ‘‘*’’ is the
convolution operator. L−1{·} is the inverse Laplace transform
operator. H∞ norm of transfer matrix G(s) is defined in the
frequency domain as ‖G(s)‖∞ = sup

ω
σmax {G(jω)}, ρ(M ) is

the spectral radius of M ∈ Cn×n.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a class of time-invariant singular systems with
uncertainty and disturbance as follows

Eẋ(t) = (A+1A)x(t)+ Bu(t)+ w(t), (1)

where x(t) ∈ Rn is state vector, u(t) ∈ Rm is control input and
w(t) ∈ Rn is unpredictable external disturbance. E ∈ Rn×n is
a singular matrix with rank(E) = p < n, A ∈ Rn×n, 1A ∈
Rn×n is unknown matrix, and B ∈ Rn×m is of full column
rank.
Remark 1: In this work, the uncertainty 1A and dis-

turbance w(t) are not required to be bounded, only their
frequency range (bandwidth) needs to be known, which is
different from the assumptions of norm-bounded uncertainty,

convex bounded uncertainty and bounded disturbance dis-
cussed in [13], [14]. In addition, the controller parameter
perturbation is omitted to simplify the complexity of system,
which can be regarded as part of the external disturbance,
i.e.,w(t) = 1Bu(t)+ d(t).
Definition 1 [10], [12]: Singular system Eẋ(t) = Ax(t)

(or the pair (E,A) ) is said to be
(1) regular if the polynomial det(sE − A) is not identically

zero, s ∈ C.
(2) impulse-free if it is regular and deg(det(sE − A)) =

rank(E), s ∈ C.
(3) stable if σ (E,A) ⊂ C−, where σ (E,A) = {s|s ∈ C,

det(sE − A) = 0}.
(4) admissible if it is regular, impulse-free and stable.
Definition 2 [12]: Singular system (1) with u(t) = 0 is said

to be robustly stable if it is regular, impulse-free and stable
for all uncertainties and disturbances.
Assumption 1: The pair (E,A,B) is impulse controllable

and R-controllable, i.e., there exists a control input formed
with u(t) = Kx(t) such that closed-loop system (1) under
1A = 0 and w(t) = 0 is regular, impulse-free and stable.
Remark 2: Different from linear systems, singular systems

need to consider regularity and non-impulsiveness besides
stability, where regularity guarantees the existence and
uniqueness of solution of the system, and non-impulsiveness
guarantees that the unique solution contains no impulse
terms. In order to establish the solvable conditions of robust
stability problem for system (1), Assumption 1 is necessary
to guarantee that an admissible closed-loop system (1) can be
obtained.
Assumption 2: The spectrum information of the lumped

of uncertainties 1Ax(t) and external disturbance w(t) are
available in the frequency domain.
Remark 3: Different from the traditional methods in the

time domain, the boundary assumption of disturbance is
unnecessary and only their bandwidth information needs to
be known for the design. In fact, it is easy to be measured in
engineering. Assumption 2 always holds in this paper.

The reference model of singular systems is given as

Eẋr (t) = Arxr (t)+ Brr(t), (2)

where xr (t) ∈ Rn is the state of reference system, r(t) ∈ Rm

is the given reference input. Ar ∈ Rn×n and Br ∈ Rn×m are
selected to satisfy the specified performance characteristics.
Obviously, (E,Ar ) is chosen to be admissible, which ensures
that desired performance could be achieved.

The purpose of this work is to develop a physically imple-
mentable controller u(t) such that system (1) asymptotically
tracks reference system (2), that is, the tracking error between
reference system (2) and system (1)

θ (t) = xr (t)− x(t), (3)

is asymptotically stable, to this end, let θ (t) satisfy the fol-
lowing error dynamic system form directly

E θ̇ (t) = (Ar + K )θ (t), (4)
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where K ∈ Rn×n is an error feedback gain matrix which
needs to be designed so that (E,Ar + K ) is admissible.
Remark 4: The purpose of this work is to develop a phys-

ically implementable controller u(t) to make system (1) pos-
sess the same dynamic performance as reference model (2),
which has the desired performance such as admissibility,
overshoot and settling time. To achieve above control objec-
tive, an appropriate controller u(t) can be designed such that
the state of system (1) asymptotically tracks the state of
reference system (2), i.e., lim

t→∞
‖ θ (t) ‖= 0. For convenience,

the error dynamics system can be chosen as the form of (4) to
meet the control objective. Since (E,Ar ) is admissible, it is
easy to find an appropriate K such that the error system (4) is
admissible, which ensures that error state θ (t) asymptotically
converges to 0. In addition, K can be used to adjust the
performance of the error system.

III. MAIN RESULTS
In this section, first of all, an UDE-based control law is
presented to ensure that the uncertain singular system (1) is
stable, and the state x(t) asymptotically tracks the state xr (t)
of reference model. It is then shown that 2DOF nature of
singular systems under theUDE-based controller is proposed.
Finally, stability conditions and a design algorithm of error
feedback gain are given.

A. UDE-BASED CONTROL LAW OF SINGULAR SYSTEMS
From (1)-(3), it is clear that

E θ̇ (t) = Arθ (t)+ Arx(t)+ Brr(t)

−Ax(t)−1Ax(t)− Bu(t)− w(t), (5)

together with (4), one has that

Arx(t)+Brr(t)−Ax(t)−Bu(t)−1Ax(t)−w(t) = Kθ (t).

(6)

Further, based on (6), the controller u(t) is derived as

u(t) = B+ (Arx(t)+ Brr(t)− Ax(t)−1Ax(t)

−w(t)− Kθ (t)) , (7)

substituting (7) into (6), we can obtain the following struc-
tural constraint

(I − BB+)(Arx(t)+ Brr(t)− Ax(t)− Kθ (t)

−w(t)−1Ax(t)) = 0. (8)

Clearly, if condition (8) is satisfied, (7) is the exact solution
of equation (6). Otherwise, it is just the least squares approx-
imate solution of equation (6). In particular, it must satisfy
structural constraint (8) if B is invertible. As reported by [38],
structural constraint (8) can be considered as a matching
condition, which means that all uncertainties and external
disturbances exist on the identical channels as the control
input.

In this paper, the sum of uncertainty 1Ax(t) and external
disturbancew(t) can be regarded as a generalized disturbance,

which can be described as

uw(t) = 1Ax(t)+ w(t), (9)

then from (1), it can be obtained that

uw(t) = Eẋ(t)− Ax(t)− Bu(t). (10)

According to [31], there exists a strictly-proper filter Gf (s)
with unit steady-state gain (Gf (0) = 1) and a sufficiently
large bandwidth such that uw(t) can be estimated by ûw(t)
described as follows

ûw(t) = uw(t) ∗ gf (t) = (Eẋ(t)− Ax(t)− Bu(t)) ∗ gf (t),

(11)

where gf (t) = L−1
{
Gf (s)

}
.

Remark 5: Generally, on the basis of [39], [40], for the
most commonly used reference input signals and disturbance
signals such as unit step functions (1(t)) and sine functions
(A sinωt), the filter Gf (s) can be selected as follows:
1) Both the reference input signals and the disturbance are

step signals, the first-order filter is

Gf 1(s) =
a

s+ a
.

2) Both the reference input signals and the disturbance are
sine signals with frequency ω0, the second-order filter is

Gf 2(s) =
a1s+ a2 − ω2

0

s2 + a1s+ a2
.

3) One of the reference input signal and the disturbance is
a sine signal with the measurable frequency ω0 and the
other is a step signal, the form of filter is

Gf 3(s) =
(a+ a1)s2 + (a2 + aa1 − ω2

0)s+ aa2
(s+ a)(s2 + a1s+ a2)

.

Thus, the uncertainties uw(t) in (7) can be replaced by the
estimation ûw(t). Taking (11) into consideration, the modified
controller u(t) can be rewritten as

u(t) = B+ (Arx(t)+ Brr(t)− Ax(t)− Kθ (t)

− (Eẋ(t)− Ax(t)− Bu(t)) ∗ gf (t)
)
, (12)

similar to [31], from (12), the UDE-based controller of sin-
gular system (1) is derived as

u(t) = B+
(
−L−1

{
sGf (s)

1− Gf (s)

}
∗ Ex(t)− Ax(t)

+L−1
{

1
1− Gf (s)

}
∗ (Arx(t)+ Brr(t)− Kθ (t))

)
.

(13)

Obviously, the design of controller (13) is only related to
the reference system, the feedback gainK and the filterGf (s),
it is independent of uncertainty and disturbance.
Since there is no unknown dynamics in controller (13), it is

not change if the uncertainty1A or external disturbance w(t)
is zero. Specially, when 1A = 0 and w(t) = 0, the robust
control problem translates directly into the tracking problem
and controller (13) can be reduced to

u(t) = B+ (Arx(t)+ Brr(t)− Ax(t)− Kθ (t)) ,
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where the error feedback gain K is the unique parameter to
be designed. Moreover, the problem is transformed into the
stabilization of singular systems if the tracking problem is
not considered. The controller is given that

u(t) = B+ (−Ax(t)+ Kx(t)) , (14)

which is a state feedback controller, and we can derive the
closed-loop system as

Eẋ(t) = (I − BB+)Ax(t)+ BB+Kx(t). (15)

Remark 6: For controller u(t) given in (14), we have the
following interpretations:
(1) If B is invertible, controller (14) is an exact solution.
(2) If B is not invertible, controller (14) is an exact solution

if the structural constraint(
I − BB+

)
(−Ax(t)+ Kx(t)) = 0 (16)

is satisfied. In this case, the controlled system (15) is
reduced to

Eẋ(t) = Kx(t), (17)

and the design of K in (17) is simpler than the general
state feedback matrix.

(3) If B is not invertible and structural constraint (16) is not
satisfied, controller (14) is only an approximate solution.
In this situation, the control performance of u(t) can be
improved by adjusting the feedback gain K .

B. TWO-DEGREE-OF-FREEDOM NATURE OF SINGULAR
SYSTEMS
In the following, the 2DOF nature analysis of singular sys-
tems under UDE-based robust controller is discussed.

Assuming that constraint condition (8) is satisfied, substi-
tuting (8)-(12) into system (1) yields

Eẋ(t) = Arx(t)+ Brr(t)− Kθ (t)

+BB+uw(t)− BB+uw(t) ∗ gf (t), (18)

when Ex(0) = 0, applying the Laplace transform to (18),
it can be obtained that

sEX (s) = ArX (s)+ BrR(s)− K2(s)

+BB+
(
1− Gf (s)

)
Uw(s). (19)

When Exr (0) = 0, the reference model can be represented
as

sEXr (s) = ArXr (s)+ BrR(s), (20)

it follows from (20) that

sEXr (s) = ArXr (s)+ BrR(s), (21)

HRXr (s) = (sE − Ar )
−1 Br , (22)

in which, the transfer matrix from R(s) to Xr (s) denoted by
HRXr . Since (E,Ar ) is regular and impulse-free, (sE − Ar )−1

exists and is proper.

Substituting (3) and (21) into (19), one has

X (s) = (sE − (Ar + K ))−1
(
I − K (sE − Ar )−1

)
BrR(s)

+ (sE − (Ar + K ))−1 BB+
(
1− Gf (s)

)
Uw(s), (23)

where (E,Ar + K ) is admissible so that (sE − (Ar + K ))−1

exists and is proper. Let Hr (s) denotes the transfer matrix
fromR(s) toX (s), andHw(s) denotes the transfer matrixUw(s)
to X (s), it gives that

Hr (s) = (sE − (Ar + K ))−1
(
I − K (sE − Ar )−1

)
Br

= (sE − (Ar + K ))−1

× (sE − Ar − K ) (sE − Ar )−1 Br
= (sE − Ar )−1 Br ,

Hw(s) = (sE − (Ar + K ))−1 BB+
(
1− Gf (s)

)
.

It is obvious that Hr (s) = HRXr , which indicates that
they have the same transfer matrix from R(s) to X (s) and
Xr (s), thus, for a reference input R(s), X (s) can asymptoti-
cally track Xr (s) without all uncertainties and external dis-
turbances. Moreover, the design of the reference system is
independent of the gain K . It can be concluded from (23)
that disturbance rejection and asymptotic reference tracking
of uncertain singular systems are decoupled.

Substituting (13) into (5) and combining with (3),
the actual error dynamics is obtained as

E θ̇ − (Ar + K )θ (t)

= Arx(t)− Ax(t)+ Brr(t)− Bu(t)− Kθ (t)− uw(t)

= −BB+uw(t)+ BB+uw(t) ∗ gf (t). (24)

Applying the Laplace transform to (24), in the frequency
domain, the actual error dynamics can be described as

sE2(s) = (Ar + K )2(s)+ BB+
[
Gf (s)− 1

]
Uw(s),

where the actual error state is derived

2(s) = −Hw(s)Uw(s)

= − (sE − (Ar+K ))−1 BB+
(
1−Gf (s)

)
Uw(s), (25)

Hk (s) = (sE − (Ar + K ))−1 , (26)

Hf (s) = BB+
(
1− Gf (s)

)
, (27)

as a consequence, the transfer matrix from −Uw(s) to 2(s)
can be written as

Hw(s) = Hk (s) · Hf (s).

It is worth noting that the transfer matrix from −Uw(s) to
2(s) is same as that from Uw(s) to X (s). Therefore, the con-
trol goal is to eliminate the influence of Uw(s) on system
state and error state by adjusting the transfer matrix Hw(s)
approaches to 0. When Uw(s) is unknown and nonzero, Hk (s)
and Hf (s) can be chosen to converge to 0 that can satisfy
above condition. As a matter of fact, signal Uw(s) contains
two parts: high frequency signal and low frequency signal.
The low-frequency signal of Uw(s) are attenuated by Hf (s),
and the high-frequency signal of Uw(s) are attenuated by
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Hk (s) with a low-pass filter form such that the gain of Hk (s)
is designed to be small. Hence, K and Gf (s) are designed
to satisfy the above conditions to make the tracking error
converges to 0 and suppress disturbance. Algorithm 1 for
designing K is given in the next subsection.
Remark 7: It should be noted that the design of filterGf (s)

does not need to consider the amplitude range of disturbance
signal, only need to know the generalized disturbance fre-
quency range (bandwidth) and it is generally measurable. It is
a very important feature of UDE-based controller design.

C. STABILITY ANALYSIS
In general, structural constraint (8) is not easily satisfied,
which means that controller (13) is the least squares solution
of (7) and matching condition is not satisfied. In view of this,
several sufficient conditions for robust stability are given.
Theorem 1: Under Assumption 1, the closed-loop system

formed by singular system (1) with bounded 1A and con-
troller (13) is regular, impulse-free and robustly stable if
(1) (E,Ar + K ) is admissible.
(2)

‖Hk (s) ·M1(s)‖∞ < 1, (28)

where M1(s) = BB+
(
1− Gf (s)

)
1A − (I − BB+)

(Ar + K − A−1A), Hk (s) is shown in (26).
Proof: Applying the Laplace transform to (1), (9), (12),

we have that

sEX (s) = (A+1A)X (s)+ BU (s)+W (s), (29)

Uw(s) = 1AX (s)+W (s), (30)

U (s) = B+(ArX (s)+ BrR(s)− AX (s)

−K2(s)− Uw(s)Gf (s)). (31)

Substituting (30) and (31) into (29), the closed-loop system
is obtained that

sEX (s) = AX (s)+ BB+
(
ArX (s)+ BrR(s)− AX (s)

−K2(s)− Gf (s)Uw(s)
)
+ Uw(s). (32)

Since2(s) = Xr (s)−X (s) and sEXr (s) = ArXr (s)+BrR(s)
from (3) and (2), the closed-loop system of the actual error is

sE2(s) = ArXr (s)+ BrR(s)− AX (s)− Uw(s)

−BB+
(
ArX (s)+ BrR(s)− AX (s)

−K2(s)− Gf (s)Uw(s)
)

= (Ar + K )2(s)− BB+
(
1− Gf (s)

)
Uw(s)

+(I − BB+)
(
ArX (s)+ BrR(s)− AX (s)

−Uw(s)− K2(s)
)
. (33)

Therefore, the dynamics of actual error system from (33)
can be rewritten as(

I − (sE − (Ar + K ))−1
(
BB+

(
1− Gf (s)

)
1A

−(I − BB+)(Ar + K − A−1A)
))
X (s)

= (sE − (Ar + K ))−1 BB+ (BrR(s)− KXr (s))

+ (sE − (Ar + K ))−1
(
I − BB+Gf (s)

)
W (s), (34)

that is

X (s) = (I − Hk (s)M1(s))−1 Hk (s)Ue(s)

+ (I − Hk (s)M1(s))−1 Hk (s)De(s), (35)

where Ue(s) = BB+ (BrR(s)− KXr (s)) and De(s) =(
I − BB+Gf (s)

)
W (s) denote the equivalent input and the

equivalent disturbance, respectively. The equivalent structure
diagram of system (35) is illustrated in Figure 1.

FIGURE 1. The equivalent structure diagram of system (35).

From (28), one has

ρ (Hk (∞)M1(∞)) ≤ ‖Hk (∞)M1(∞)‖∞ < 1,

then, it can be shown that I − Hk (∞)M1(∞) is invert-
ible. According to Lemma 5.1 in [4], the closed-loop sys-
tem is well-posed, which is equivalent to the condition that
(I − Hk (s)M1(s))−1 exists and is proper. Since (E,Ar + K )
is admissible, Hk (s) is proper, closed-loop transfer function
(I − Hk (s)M1(s))−1 Hk (s) is proper, closed-loop system (35)
is regular and impulse-free [10], [11].

If uncertain 1A is bounded, it is easily obtained that
‖M1(s)‖∞ <∞. On the basis of the small-gain theorem [4],
the closed-loop system is stable if the condition (28) holds.
Therefore, closed-loop system (35) is robustly stable. This
completes the proof.
Remark 8: For a singular system, regularity and non-

impulsiveness are essential to ensure the existence and
uniqueness of solution of system and the solution does not
contain impulse terms. The conditions are developed in the
frequency domain, which reduce the computational com-
plexity and avoid some of the numerical problems caused
by decomposing singular systems instead of the dynamic
decomposition form as literature [10], [11]. It should be
noted that (E,Ar + K ) is easily designed to be admissible,
because (E,Ar ) is admissible. Furthermore, admissibility
condition (28) does not depend on external disturbance w(t),
but depends on the feedback gain K , filter Gf (s) and model
uncertainty 1A. Indeed, Hk (s) is the transfer matrix of
(E,Ar + K ), M1(s) is related to 1A, Gf (s) and K , if 1A is
bounded, it is easily obtained that the gain of M1(s) is norm
bounded. Therefore, the closed-loop system (35) remains
stable so long as the total gain of the closed-loop is less than 1.
A design method of feedback gain K is given in Algorithm 1.

In system (1), if 1A = 0, from Theorem 1, it can be
obtained the following result.
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Corollary 1: Singular system (1) without uncertainty
(1A = 0) satisfies Assumption 1 is regular, impulse-free
and robustly stable under the controller (13) if (E,Ar + K )
is admissible and

‖Hk (s) ·M2‖∞ < 1, (36)

where M2 = (I − BB+)(Ar + K − A).
Remark 9: When 1A = 0, the stability conditions are

only dependent on feedback gain K . The robust control prob-
lem for system (1) can be solved by H∞ control [12], H∞
filtering [25] and unknown input observer [22]. However,
In [12], [25], the external disturbance w(t) was assumed
to belong to L2[0,∞) and the problem was mainly solved
by finding equivalent feasibility conditions of linear matrix
inequality (LMI). In [22], the conditions of observability or
detectability were necessary for the existence of observers for
singular systems, and some matching conditions are assumed
to be satisfied. Comparedwith above approaches, the result of
UDE-based control method is less conservative and compu-
tationally complex since the estimator could achieve accurate
estimation without the upper bound information.

The following theorem shows that if constraint (8) is
satisfied, i.e., controller (13) is the exact solution of (7),
the uncertainties and external disturbances satisfy the match-
ing condition. The asymptotic performance of uncertain sin-
gular system (1) under controller (13) can be guaranteed.
Theorem 2: For the uncertain singular system (1) satisfies

Assumption 1, if constraint condition (8) is satisfied, then the
closed-loop system formed by system (1) and controller (13)
is regular, impulse-free and robustly stable, and achieves
asymptotic reference tracking and disturbance rejection if
(1) (E,Ar + K ) is admissible.
(2) The state xr (t) of reference system (2) asymptotically

tracks the command signal r(t).
(3)

‖Hk (s) ·M3(s)‖∞ < 1, (37)

whereM3(s) = BB+
(
1− Gf (s)

)
1A, Hk (s) is shown in (26).

Proof: Applying the Laplace transform to (8) and substi-
tuting it into (33), the actual tracking error dynamics is given
as

sE2(s) = (Ar + K )2(s)− BB+
(
1− Gf (s)

)
Uw(s), (38)

and the closed-loop system from (38) is(
I − (sE − (Ar + K ))−1

(
BB+

(
1− Gf (s)

)
1A

))
X (s)

= (sE − (Ar + K ))−1 (BrR(s)− KXr (s))

+ (sE − (Ar + K ))−1 BB+
(
1− Gf (s)

)
W (s). (39)

which can be rewritten as

X (s) = (I − Hk (s)M3(s))−1 Hk (s) (BrR(s)− KXr (s))

+ (I − Hk (s)M3(s))−1 Hk (s)BB+
(
1− Gf (s)

)
W (s).

(40)

Similar to the proof of Theorem 2, it follows that
(I − Hk (s)M3(s))−1 is proper. Thus, the closed-loop trans-
fer function (I − Hk (s)M3(s))−1 Hk (s) is proper, closed-loop
system (40) is regular and impulse-free. On the basis of the
small-gain theorem, the controlled system (40) is robustly
stable if the condition (37) holds.

Because of the filter Gf (s) with unit steady-state gain is
strictly-proper, and covers the spectrum of the generalized
disturbance, we have that

lim
s→0

s
(
1− Gf (s)

)
Uw(s) = 0. (41)

Closed-loop system (40) achieves disturbance rejection,
as stated in the previous subsection that (38) is equivalent
to (25), according to (25), (41), and the final value theorem,
it follows that

lim
t→∞

θ (t) = lim
s→0

s2(s) = 0, (42)

that is, x(t) asymptotically tracks xr (t), xr (t) asymptotically
tracks the reference input signal by the internal model princi-
ple [41]. x(t) asymptotically tracks r(t) achieves asymptotic
tracking, since they have the same transfer matrices from R(s)
to X (s) and Xr (s), i.e.,

lim
t→∞

x(t) = lim
t→∞

xr (t) = lim
t→∞

r(t). (43)

Therefore, closed-loop system (40) achieves asymptotic
reference tracking. This completes the proof.
Remark 10: It should be mentioned that Theorem 2

guarantees the stability of closed-loop system (40) and
the static-free tracking (simultaneously achieves asymptotic
tracking and disturbance rejection) for the given reference
input, which is very significant in practical applications. Due
to the influence of mismatched disturbances, the two-degree-
of-freedom nature of closed-loop system (32) is vanished, the
state of system (32) cannot asymptotically track the input
signal r(t), but it can still suppress disturbances and ensure
that the closed-loop system (32) is stable. In other words,
Theorem 1 can guarantee the anti-disturbance performance
but cannot realize the tracking of the reference input signals.
Remark 11: The robust problem for uncertain singular

system (1) can be resolved by generalized quadratic stability
problem [13] and robust H∞ control [15]. The uncertain
parameter 1A is considered to be norm-bounded with the
form 1A = MF(σ )N , where the norm-bounded uncertain
matrix F(σ ) is required to satisfy F(σ )TF(σ ) < I and
the transfer matrix needs to satisfy a disturbance attenuation
constant γ for all uncertainties. Additionally, the uncertain
parameter is also considered to belong to a convex bounded
domain A =

{
A(t)|A(t) =

∑m
i=1 αiAi;

∑m
i=1 αi = 1

}
(poly-

topic type) [14]. The external disturbance w(t) is always
assumed to belong to L2[0,∞) ( the set of signals whose
L2 norm is bounded). The stability conditions are given
by parameter-independent or parameter-dependent Lyapunov
matrix, and all of the stability conditions are presented in
terms of LMIs. As we all know, the introduction of LMI
brings an increase in computational complexity, and the
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results obtained increase conservativeness or even have no
solution. Compared with above control methods, the UDE-
based robust control approach does not require knowledge
of the boundary of uncertain matrix, and achieves robust
stability with less conservatism.

In this paper, for simplicity of presentation, K can be
decided by using the algorithm sketch below. The core idea of
the algorithm is to find an appropriate K so that (E,Ar + K )
is admissible and the gain value of Hk is as small as possible,
that is, ‖Hk (s)‖∞ < ε, where ε is a sufficiently small positive
number. Meanwhile, the conditions of theorems should be
satisfied.
Remark 12: Algorithm 1 is designed to be simple to under-

stand and has low computational complexity. Specially, when
E = I , (E,Ar + K ) can be reduced to (I ,Ar + K ), which
implies that the equivalent transformation is not necessary
and Hk (s) = (sI − (Ar + K ))−1. In Theorem 2, K can be
designed to place the poles of Hk (s) at the open left half
complex plane and the condition ‖Hk (s)‖∞ < ε is satisfied.
Actually, for a linear system, the above conditions can be
easily satisfied by designing the poles ofHk (s) are away from
the imaginary axis.

IV. SIMULATION EXAMPLES
In this section, three numerical examples and a practical
application are presented. The first example illustrates the
effectiveness of Theorem 1 with mismatched uncertainties
and is compared with the robustH∞ control method. The sec-
ond example illustrates the validity of Theorem 2 with
matched different types of uncertainties and disturbances.
The third example compares UDE-based method with the
DOB-based robust H∞ control method. The fourth example
shows the application to the multi-agent supporting systems
with unbounded disturbances and is compared with the SMC
method.
Example 1: Consider the unstable system (1) with model

mismatch1A and the system parameters are given as follows

E =
[
1 0
0 0

]
, A =

[
1 0
1 1

]
, 1A =

[
0.2 0.3
0.4 0.6

]
,

B =
[
1
0

]
, w(t) =

[
w1(t)
0

]
.

w1(t) is unknown external disturbance, the admissible refer-
ence system (2) is chosen as

Ar =
[
−1 0
1 1

]
, Br =

[
1
0

]
,

where the compatible initial values are Ex(0) = [0 0]T ,
Exr (0) = [0 0]T . For comparison, assume that the com-
mand signal r(t) = 0, the mismatched 1A always exist in
the simulation process, and the bounded disturbance w1(t) =
sin(3t) is imposed on the system (1). The filter would be
selected as

Gf 1(s) =
1

Ts+ 1
,

Algorithm 1
1) Ensure that (E,Ar + K ) is admissible. There exists a

nonsingular matrix Q and an orthogonal matrix V such
that

Ē = QEV =
[
Ip 0
0 0

]
, Ār = QArV =

[
Ar1 0
Ar3 Ar4

]
,

K̄ = QKV =
[
K1 K2
K3 K4

]
,

where the partitions are in appropriate dimensions, it is
obtained that

Ār + K̄ =
[
Ar1 + K1 K2
Ar3 + K3 Ar4 + K4

]
,

without loss of generality, let

K2 = 0,K3 = −Ar3.

Since (E,Ar ) is admissible, it is easy to find K1, K4 such
that

σ (E,Ar + K ) = σ (Ar1 + K1) ⊂ C−, (44)

and

det(Ar4 + K4) 6= 0. (45)

Therefore, (E,Ar+K ) is stable, impluse-free and admis-
sible.

2) Let ‖Hk (s)‖∞ as small as possible and satisfy the con-
ditions of Theorem 1-2. It is obtained that

‖Hk (s)‖∞

=

∥∥∥(sE − (A+ K ))−1
∥∥∥
∞

=

∥∥∥∥[(sIp − (Ar1 + K1)
)−1 0

0 (Ar4 + K4)−1

]∥∥∥∥
∞

(46)

(a) In Theorem 1, ‖Hk (s)‖∞ is not only small, but
also satisfies condition (28). In order to have a smaller
‖Hk (s)‖∞, K1 can be chosen so that the poles of(
sIp − (Ar1 + K1)

)−1 are away from the imaginary axis.
And K4 can be selected to make σmin(Ar4 + K4) large
enough due to σmax(Ar4+K4)−1 = (σmin(Ar4+K4))−1.
However, the selection method will result in a larger
‖M1(s)‖∞. Thus, the choice of K1 and K4 is a trade-off
between ‖Hk (s)‖∞ and ‖M1(s)‖∞ such that the condi-
tion (28) is satisfied.
(b) In Theorem 2, Hk (s) and M3(s) are decoupled. The
choice of K does not affect theM3(s). Therefore, K1 can
be selected so that the poles of

(
sIp − (Ar1 + K1)

)−1 are
away from the imaginary axis and K4 can be selected
to make σmin(Ar4 + K4) large enough, while the condi-
tion (37) is easily satisfied.

3) Give the gain matrix K . The gain K can be acquired in
the following ways

K = Q−1K̄V−1 = Q−1
[
K1 0
−Ar3 K4

]
V−1.

where K1,K4 satisfy (44), (45) and Step 2.
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FIGURE 2. Simulation results with model mismatch. (a) The state
trajectories without control input. (b)The state trajectories under
UDE-based control and Robust H∞ control with γ = 0.05.

where T = 1/200π is small enough such that the band-
width of filter can cover the spectrum of the generalized
disturbance. The stability of singular system (1) under the
UDE-based controller is discussed by choosing the choose

feedback gain matrix as K =
[
−12 0
−1 10

]
, which yields that

(E,Ar + K ) is admissible. Moreover, conditon (28) is satis-
fied. Thus, from Theorem 1, it is clear that the closed-loop
system is robustly stable.

The Robust H∞ control method with γ = 0.05 proposed
in [15] is taken as the comparison. The simulation results are
depicted in Figure 2. It can be observed from Figure 2(a)
that the open-loop system is unstable. As can be seen in
Figure 2(b), a bounded external disturbance is imposed at
t = 2s, x(t) rapidly converges to 0, which means that both
of these methods can be effective.

When unbounded disturbance w1(t) = 10+ 5t is imposed
on the system (1), the simulation results under UDE-based
control are shown in Figure 3. The generalized disturbance
ud1 is unbounded, the tracking error tends to zero, and the

FIGURE 3. Simulation results with unbounded disturbance under
UDE-based control. (a)The generalized disturbance with
unbounded w1(t). (b)The state trajectories. (c)The tracking error θ(t).

controlled system is robustly stable, which means Theorem 1
is effective.

Compared with the work of [13], [15], for the
norm-bounded uncertainties and unknown external distur-
bances, the UDE-based control method has the same robust-
ness as the robust H∞ method. However, when the unknown
disturbances is added, the robust stability problem cannot be
solved by the work of [13], [15], so that the method is also
invalid for unbounded disturbance.
Example 2: Consider unstable singular system (1)with the

following parameters:

E =
[
1 0
2 0

]
, A =

[
−1 1
0 1

]
, 1A =

[
6 7
0 0

]
,

B =
[
1
0

]
, w(t) =

[
w2(t)
0

]
.
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w2(t) is unknown disturbance, admissible referencemodel (2)
is chosen as

Ar =
[
1 1
0 1

]
, Br =

[
−1
0

]
,

where the compatible initial values are Ex(0) = [0 0]T ,

Exr (0) = [0 0]T .K is chosen as
[
10 0
0 0.5

]
, it can be checked

that (E,Ar + K ) is admissible.
Case 1: External disturbance and reference input are step

signals
In this case, the uncertainty 1A always exists in the sim-

ulation process, the disturbance signal w2(t) = 100 is added
at time t = 2s, command signal r(t) steps from 0 to 1 at time
t = 4s. The filter is selected as

Gf 1(s) =
1

Ts+ 1
,

where T = 1/200π is small enough such that the bandwidth
of filter can cover the spectrum of the generalized distur-
bance. Hence, condition (37) is satisfied. By Theorem 2,
the controlled system is robustly stable, and achieves asymp-
totic reference tracking and disturbance rejection.

The simulation results with matched model and tracking
a step signal are shown in Figure 4. From Figure 4(a) and
Figure 4(b), for 2s < t < 4s, the state x1(t) and the tracking
error e1 are suddenly changed due to step disturbance, state
x1(t) asymptotically tracks state xr1(t) and quickly converges
to zero. At t = 4s, a step input r(t) is put on the reference
model, the states x1(t) and xr1(t) can track the reference
signal. From Figure 4(c), the UDE estimator can accurately
estimate the generalized disturbance, and the UDE-based
controller can keep good robust performance.
Case 2: External disturbance and reference input are sine

signals
In such case, in addition to the step signal, the sine signal

with obvious periodic characteristics is the commonly used
signal. In this case, the uncertainty 1A and external distur-
bance w2(t) = 1.5 sin(1.9π t + π/3) + 2t + 10 always exist
in the simulation process, the command signal r(t) is a sine
signal with a period of 2π and an amplitude of 1 added at time
t = 4s. The filter is selected as a second-order filter

Gf 2(s) =
a1s+ a2 − ω0

2

s2 + a1s+ a2
,

where a1 = 100ω0, a2 = 100ω0
2, ω0 = 2π . Therefore, from

Theorem 2, it follows that condition (37) is satisfied.
The simulation results with matched model and tracking

a sine signal are illustrated in Figure 5. As shown in Fig-
ure 5(a) and Figure 5(b), a sine input r(t) is imposed on
the reference model at t = 4s, x(t) can still track the state
xr (t) and reference input r(t) accurately, and the tracking
error closes to 0. Figure 5(c) shows that the uncertainties
and external disturbances have always existed and the UDE
estimator can accurately estimate them from the beginning
to the end, meanwhile, the controller effectively suppresses

FIGURE 4. Simulation results with matched model and tracking a step
signal. (a) State trajectories of x1, xr1 and r . (b) Tracking error θ1.
(c) Control input u, the generalized disturbance uw , and its
estimation ûw .

disturbances. Hence, for matched uncertainties, the proposed
approach is effective.

Although the uncertainty 1A in this example is bounded,
its norm is relatively large, a suitable controller can be chosen
so that closed-loop system is robustly stable. The conditions
of Theorem 2 have no requirement on the norm of1A, which
is different from the work of [13], [15].
Example 3: Singular system (1) with the following param-

eters from the literature [29]:

E =

1 0 0
0 1 0
0 0 0

 , A =

−4 0 0
0 −5 0
1 1 −1

 ,
B =

1 0
0 1
0 0

 , 1A = 0,w(t) =

w1(t)
w2(t)
0

 ,
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FIGURE 5. Simulation results with matched model and tracking a sine
signal. (a) State trajectories of x and xr . (b) Tracking error θ . (c) Control
input u, the generalized disturbance uw , and its estimation ûw .

for comparison, the reference system (2) is chosen with the
same form as the nominal system (1) as

Ar =

−4 0 0
0 −5 0
1 1 −1

 , Br =

1 0
0 1
0 0

 ,
and the command signal r(t) = 0. The disturbances at the
initial time are w1(t) = 1 + 0.02 sin(0.1t) + 0.03 cos(0.1t)
andw2(t) = −1+0.05 cos(0.1t), after 10 seconds, the distur-
bances changed tow1(t) = 2+0.02 sin(0.1t)+0.03 cos(0.1t)
andw2(t) = −2+0.05 cos(0.1t). The filter would be selected
as

Gf 1(s) =
1

Ts+ 1
,

FIGURE 6. Simulation results based on UDE and DOB. (a) State
trajectories. (b) the disturbance uw and its estimation. (c) Estimation
error.

where T = 1/200π and K is chosen as 0, which yields that
(E,Ar + K ) is admissible. Moreover, conditon (36) is satis-
fied. Thus, from Corollary 1, it is clear that the closed-loop
system is robustly stable.

The DOB-based robust H∞ control approach proposed
in [29] is taken as the comparison, and system (1) takes the
same initial value as [29], i.e., Ex(0) = [0.5 0.5 0]T ,
Exr (0) = [0.5 0.5 0]T . The simulation results based on
UDE and DOB are shown in Figure 6. From Figure 6(a),
it can be seen that the system states converge quickly under
the both control methods, and the disturbances change at
10 seconds, the UDE-basedmethod is less affected. As shown
in Figure 6(b) and Figure 6(c), the UDE-based estimation
is faster and the estimation error is smaller. Compared with
the DOB-based robust H∞ control approach, the UDE-based
method has better anti-disturbance performance.
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FIGURE 7. The model of each block in an MASS.

Example 4: In order to illustrate the applications of the
UDE-based control approach, a practical application to the
multi-agent supporting systems (MASSs) is given, which
is from the work of [20]. It was shown that the MASSs
can be applied to large phased array radar, earthquake
damage-preventing buildings and aperture spherical radio
telescope. An MASS is composed of a number of separate
blocks, each supported by two pillars which can be referred
to as Unit 1 andUnit 2, as illustrated in Figure 7. The damping
coefficient, stiffness coefficient, and mass are denoted by
d̄ , k̄ and m̄, respectively. On the ground of the above dis-
cussions, each block can be described by a singular system.
Furthermore, it is essential to consider the uncertainty and
external disturbance in such systems. The block model can
be described by

Eẋ(t) = (A+1A)x(t)+ Bu(t)+ w(t), (47)

where x(t) = [xi1(t) vi1(t) xi2(t) vi2(t)]T is the state
vector, xi1(t), vi1(t), xi2(t), vi2(t) denote the heights and veloc-
ities of each Unit, respectively. u(t) denotes control input,
1A is model uncertainty, w(t) is unknown disturbance. A and
B denote the state matrix and control matrix, such as

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A =


0 1 0 0

−
k̄
m̄
−
d̄
m̄

0 0

−1 0 1 0
0 −1 0 1

 ,

B =


0
1
0
0

 , 1A =


0 0 0 0
0.2 0.5 0 0
0 0 0 0
0 0 0 0

 ,

w(t) =


0

w3(t)
0
0

 .
The system parameters are selected as k̄ = 12,

d̄ = −25 and m̄ = 16. In the beginning, the block
is disturbed by model internal uncertainty but is sta-
ble, after 1 seconds, the unbounded external disturbance

FIGURE 8. Simulation results. (a)State trajectories under the UDE-based
controller and SMC controller. (b)Tracking error θ(t) under the UDE-based
controller. (c)Control input, the generalized disturbance uw and its
estimation ûw .

w3(t) = 3sin(1.5π t + 2) + 5(t − 5) is added. The reference
system is given as

Eẋr (t) = Arxr (t)+ Brr(t), (48)

where Ar and Br are given as

Ar =


0 1 0 0

−
3
2
−
3
2

0 0

−1 0 1 0
0 −1 0 1

 , Br =


0
1
0
0

 ,
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On the basis of the actual requirements, the command input
signal is chosen as r(t) = 0, and the asymptotic stability
of the reference model can be ensured easily. K is chosen
as 0, it follows that (E,Ar + K ) is admissible. Based on
all coefficient matrices, obviously, constraint condition (8) is
satisfied. The choice of filter is crucial to verify that stability
condition (3) in Theorem 2, which can be selected as

Gf 1(s) =
1

Ts+ 1
,

where T = 1/200π . By Theorem 2, condition (37) is satis-
fied. Given the compatible initial value Ex(0) = [0 0 0 0]T

and Exr (0) = [0 0 0 0]T .
The control approach proposed in [20] is taken as the com-

parison. As is illustrated in Figure 8(a), after the unbounded
external disturbance is put into the system, the uncertain
system can also be stabilized quickly under the UDE-based
controller, while sliding mode controller is failed. From
Figure 8(b), the tracking error θ (t) is very small. It is shown
that the filter estimator presented in this paper can accurately
estimate the generalized disturbance in Figure 8(c). It also
demonstrates that the controller u1 can effectively offset
the impact of all uncertainties, which implies the effective-
ness of the UDE-based control method for the unbounded
disturbance.

Compared with the SMC method in [20], the uncertainties
are required to be bounded and the external disturbances are
not considered. However, when the unknown disturbances are
added, the robust stability problem cannot be solved by the
work of [20].

V. CONCLUSION
In this work, we adopt UDE-based robust control strategy to
stabilize the singular systems with the structure uncertainty
and external disturbance. The control law is proposed by
using the spectrum information of sum term of all uncertain-
ties and unknown disturbances to construct an estimator. The
reference tracking and disturbance rejection are decoupled
based on the 2DOF nature. Besides, it is then shown that
sufficient conditions are presented to ensure that the uncertain
singular systems are stable and achieve reference tracking and
disturbance rejection.Moreover, an algorithm is identified for
the error feedback control gain K . Finally, three numerical
examples and a practical application are provided to show the
effectiveness of the proposed methods.
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