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ABSTRACT Capsule network (CapsNet) is a novel type of network that can retain spatial information,
because each capsule can integrate more information than scalar-output features. However, the CapsNet
learns all the features in the input image due to the lack of pooling operation, and there is no connection
between different layers in the multi-layer network structure. In this paper, we propose an improved capsule
network (CapsNet) based on Capsule Filter Routing (CFR) to address this problem, namely CFR-CapsNet.
Firstly, we propose a new routing method called CFR for filtering capsules based on capsule activation
values, which can speed up the operation of the model, and then introduce a self-attention mechanism to
improve the performance of the primary capsule in the capsule space. Furthermore, in themulti-layer network
structure, we transmit the information of the classified capsule with the largest activation value in the previous
capsule layer to the primary capsules of the next layer, which improves the relevance of the overall structure.
We conduct experiments on Fashion-MNIST, SVHN, and CIFAR-10/100, and the experimental results show
that our method can improve the performance of the CapsNet more effectively than other state-of-the-arts.

INDEX TERMS Capsule network, capsule filter, self-attention, multi-layer network structure.

I. INTRODUCTION
With the emergence of a large number of images, deep learn-
ing has been widely applied in the field of computer vision,
and there are many tasks in different directions, such as
image classification [1]–[3], scene recognition [4], [5], object
detection [6], [7], image segmentation [8], etc. Convolutional
neural network (CNN) is one of the most important structures
to solve these tasks. From the initial deep learning network
model LeNet [9] to now, researchers have proposedmany new
CNN structures [10], and more variants are being proposed to
achieve emerging visual tasks.

In a typical CNN, pooling can greatly reduce the com-
putation, however, it is costly because pooling extracts the
maximum or average value of the pixel value, which makes
the network lose the specific location information of the
target. Moreover, the network only learns to check whether
the target exists in the input image, it does not pay attention
to the specific spatial information of the target in the image.
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When facing different angle samples of the same object,
humans form coordinate system to recognize the images and
memory the pictures they learn, but the CNN needs to learn
new parameters again to recognize. Although the structure
of CNNs can complete the existing image tasks, convolution,
as the basic architecture of deep learning image processing,
still needs to be improved. Hinton proposed the concept of a
capsule for the first time in 2011 [11]. It is suggested that in
some special tasks similar to facial recognition, the networks
need more attention to the spatial information of the target.
The original capsule network (CapsNet) [12] uses a vector-
output capsule instead of scalar-output feature detectors and
uses dynamic routing instead of max-pooling, which solves
the problem of lack of spatial information in a CNN.

The dynamic routing method for capsule information pro-
cessing is similar to the max-pooling that a way to deal with
the feature maps, it proves that routing method can be used
as an effective way to transfer low-level capsule information
although it has some disadvantage about that the training time
and efficiency when dealing with a large number of capsules.
Self-routing [13] is a novel routing that uses an extra matrix
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to avoid iterative methods. For the input capsule, it also uses
the convolution slide window method, which greatly speeds
up the routing. But it ignores some edge capsule information
and processes some information repeatedly.

The original CapsNet performs well on simple datasets,
such as MNIST [14]. However, the convolution layer in the
network uses two 9×9 convolution kernels, resulting in insuf-
ficient feature extraction. Also, many capsules represent an
entity of background information, which mislead the results
in the process of routing and affect the speed of dynamic
routing. A multi-level dense CapsNet [15] proposes a new
structure, which consists of three layers of dense blocks [16].
By connecting the blocks of each layer, it can extract richer
features for complicated datasets and reduce a lot of parame-
ters compared with ResNet [3].

In summary, the original CapsNet has the following short-
comings. First, the features extracted by the shallow con-
volutional network weaken the performance of the capsule.
Secondly, the iterative calculation of the coupling coefficient
of the routing algorithm makes the algorithm unable to con-
verge, and the number of iterations artificially determined
needs to be improved. Among the improvement research for
the CapsNet, improving the processing efficiency of primary
capsules is few, but it is crucial.

In order to better use the advantage of keeping space
information of capsules, we propose two methods in the
capsule layer to enhance the presentation ability of the pri-
mary capsule based on the multi-level dense CapsNet. Firstly,
an Enhanced Capsule Attention Module (ECAM) is intro-
duced when the feature maps reshaped into primary capsules.
It assigns weight to different capsules based on the size
of capsule activation value, for example, the capsules with
larger activation value have greater weight. At the same time,
we reassign the weight of each dimension of the capsule
and scale the weight to prevent a change in the direction
of the capsule vector. Previous attention methods [17]–[19]
highlight more effective featuremaps, while ECAMcan show
more active capsules in capsule space. Also, we introduce a
mechanism about capsule information supplement between
different capsule layer. In particular, we transfer the classified
capsule from the upper layer to the primary capsules layer
of the next layer instead of calculating the loss directly, and
adjust the weight of other capsules in the routing process
which can guide the routing direction of other capsules.

In the processing methods of many features in the network,
most of the pruning methods are proposed to reduce the
complexity of networks [20], [21]. Besides, there are some
pruning methods to select features, such as dropout [22],
which has big randomness. Our modified algorithm is a cap-
sule filtering routing based on the pruning method. Specifi-
cally, the capsule filter is a way to delete the capsules with
lower activation values adaptively. We combine the capsule
filter with the self-routing [13] to avoid the repetition of
capsule information transmission, and the routing uses more
useful capsules on the basis of global capsule information
processing without iterative calculation.

Based on the combination of the previousmethods, we pro-
pose a routing method based on activation value filter, which
deletes some fewer effective capsules. The enhanced capsule
attention module (ECAM) is introduced into capsule space to
improve the performance of the primary capsule. Meanwhile,
a new capsule supplement mechanism (CSM) is proposed to
establish the relationship between capsule layers. The major
contributions of this work are as follows:

1) We propose an improved capsule network (CapsNet)
based on Capsule Filter Routing (CFR), namely
CFR-CapsNet.

2) We propose a Capsule Filter Routing (CFR) based
on activation value, and the filtering proportion can
be adjusted automatically for different input images.
The combination of the filtering method and routing
improves the efficiency of the network.

3) The self-attention mechanism is introduced in the cap-
sule space to improve the performance of the primary
capsule. And the weight distribution method is based
on the size of the activation value.

4) We propose a new Capsule Supplement Mechanism
(CSM), which combines the classified capsule formed
by the integration of low-level information with the
primary capsule of high-level information to enhance
the connection between different capsule layers.

5) We combine the proposed methods and new routing
in the multi-layer network structure to experiment on
different classification datasets, and the results show
that our routing method is more efficient than other
routing methods, and the two methods proposed in the
network also improve the accuracy.

The rest of the paper is organized as follows. Section II
introduces related works. In Section III, we describe our
structure and routing methods in detail. Section IV shows the
results of the experiments. Finally, Section V concludes the
paper.

II. RELATED WORKS
A. CAPSULE NETWORKS
Capsule network (CapsNet) with dynamic routing is firstly
introduced by Sabour et al. [12]. This makes many
researchers realize the shortcomings of CNNs and have a new
research direction.

A complete CapsNet mainly includes feature extraction of
convolution layer and capsule information transmission of
capsule layer. However, in recent years, there are different
promotion ideas for the original CapsNet in order to adapt
to more complex tasks. In convolutional layer, the capsule
is obtained based on the feature maps that formed by the
convolution operation of the input images. Many improved
CapsNets add new convolution modules, such as the intro-
duction of DenseNet [15], Res2Net [23] and U-Net [24],
to enhance the feature extraction. Besides, the design of
multi-scale method can also increase the effect of the feature
extraction, Xiang et al. [25] use multi-scale feature extraction
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to transform the feature maps into different dimensions of the
primary capsule.

In the capsule layer, the primary capsules are processed
by some methods, such as pruning [26] or merging [27],
to reduce the calculation cost of routing and accelerate
capsule processing [28]. In addition, the representation
ability of capsules also promoted by the attention mod-
ules [29], the space promotion module [30], and several
methods of interaction between capsules [31]. What’s more,
the definition and the equivariance of capsules are reconsid-
ered [32], [33].

Dynamic routing is an iterative algorithm that constantly
correct the weight distribution of each capsule, it can pro-
cess the information of primary capsules and generate clas-
sification capsule, but it is not efficient enough. Based
on the iteration methods to train a coupling coefficient,
Rajasegaran et al. [34] propose a new dynamic routing based
on 3D convolution, which predicts each capsule 3D convo-
lution operation. Mandal et al. [35] divide dynamic routing
into two steps to calculate the consistency between different
levels of capsules. Also, the attention mechanism [36], [37]
is introduced into the routing to deal with the primary cap-
sules which have more information. Some details in dynamic
routing, for example, the calculation method of coupling
coefficient [28], [38], the consistency calculation between
parent and child capsules are improved to handle capsules
more effectively [39], [40].

The reconstruction part plays a regularizing role in the
original CapsNet, but the parameters introduced by fully con-
nected layers are toomuch. Rajasegaran et al. [34] reconstruct
the classification capsule with the largest module length,
which greatly reduces the number of full connection param-
eters. In [41], they introduce reconstruction into routing as a
constraint.

CapsNet also has many applications in other direc-
tions [42]–[44]. Such as few-shot learning [45], unsupervised
learning [46], GAN [47] and so on. In [48], they use improved
dynamic routing for legal judgment of predicting charges.
Yang et al. [49] use CapsNet to help graph network better
extract hierarchical graph features.

B. DYNAMIC ROUTING AND SELF-ROUTING
Hinton uses dynamic routing [12] to replace the max-pooling
for delivering the information of capsules. The vector-output
capsule, where the direction of the vector represents the
properties of the entity, and the length of the vector represents
the probability of the entity. In the initial stage of dynamic
routing, all child capsules in the lower layer i have equal
connection probabilities bij with the next layer j. The coupling
coefficient cij is the normalization of the connection prob-
ability in the low-level capsule layer. Then, the parent cap-
sule is multiplied by the predicted capsule and the coupling
coefficient. Also, the bij and cij are updated by the agreement
between the parent capsules and the prediction capsules for
k iterations. Multiple iterations can find a more accurate

coupling coefficient, but it also increases the computation and
reduces the efficiency.

Self-routing [13] uses capsules that separately defines the
activation scalar. At the same time, it abandons the iteration
way and uses an additional weight matrix to train the coupling
coefficient. The obtained coupling coefficient is used to cal-
culate the direction, size, and corresponding activation value
of the high-layer capsule. The method about slide window is
used for partial selection to the generated convolution block.
Each convolution block with corresponding depth is regarded
as multiple capsule blocks, and each capsule block get own
classified capsule. Finally, the high-level capsule and the cor-
responding activation value are generated. The convolution
slide window speeds up the routing, but it performs locally,
and lacks of connection between capsules.

III. PROPOSED METHODS
A. NETWORK ARCHITECTURE
The structure of our proposed multi-layer network
CFR-CapsNet is shown in Figure 1. The whole structure
is based on a three-layer dense CNN structure [15]. The
feature maps obtained by each layer are reshaped to get the
primary capsule, and the classified capsules are obtained by
routing. After getting the primary capsule, we firstly use the
Enhanced Capsule Attention Module (ECAM) that will be
described in Section III-A-(2)-a to operate on the primary
capsule, the purpose is to adjust the weight of the capsule
number dimension and the direction dimension. Then we
filter the promoted primary capsules and use the Capsule
Supplement Mechanism (CSM) that will be described in
Section III-A-(2)-b to concatenate the classified capsules
obtained from the upper layer with the primary capsules to
obtain the classified capsules of this layer. After ECAM,
it is more helpful for the implementation of Capsule Filter
Routing (CFR) described in Section III-B-(2) and reducing
the wrong deletion of some capsules. The sum of the margin
losses of the last three layers is used as the total loss of the
network for backpropagation.

1) CONVOLUTIONAL LAYERS
In our model, we use the same way as in [15] to extract
the features in the input image, the difference is that the
dimensionality of the capsules increases with the deepening
of the convolutional layer. The specific convolution process
and parameter setting are shown in Figure 2.

2) CAPSULE LAYERS
a: ENHANCED CAPSULE ATTENTION MODULE (ECAM)
Inspired by the self-attention and channel attention mech-
anisms in computer vision tasks, we introduce a new self-
attention module to enhance the performance of capsules in
the primary capsule layer.

Most attention mechanisms focus on the relationship
between feature maps. Through training, we can get a feature
map with a larger weight, so as to find the important feature
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FIGURE 1. An overview of our CFR-CapsNet structure.

FIGURE 2. The convolutional network structure for CFR-CapsNet. The
dimensions of the generated capsule blocks are expressed respectively
(number of capsule blocks, dimension of capsules, height of capsule
blocks, width of capsule blocks), for example, Primary Caps1 (12,8,14,14).

map. Similarly, the weight of capsule is different during rout-
ing. And each dimension in each capsule also has different
weights to influence the direction of the capsule vector (the
entity represented). So, we use a self-attention module based
on capsule activation value to adjust the weight of different
primary capsules, and introduce a new weight value to adjust
the weight of different dimensions in the capsule for correct-
ing the direction of the vector-output capsule. The structure
diagram of ECAM is shown in Figure 3.

The primary capsule reshaped by feature maps is carried on
matrix transformation for new capsule spaces Q, K. In cap-
sule space Q, we compress its own dimension to 1 for each
capsule.

uQ = W 1×d
Q ui (1)

And the capsules transformed into capsule space K are
divided into two parts: one is used to calculate attention with
the capsule in capsule space Q, and the other is used to adjust
the weight of each dimension of the capsule.

uK1 = W d×d
K1 ui, uK2 = W d×d

K2 ui (2)

Then, we multiply the activation value (aK1) of the capsule
corresponding to uK1 by the capsules in the capsule space Q,
and use SoftMax function to assign weight between the inter-
capsules with a larger activation value. At the same time,

FIGURE 3. The proposed enhanced capsule attention module (ECAM).
⊗ and ⊕ represent matrix multiplication and addition of multiple items
respectively. ak1 is calculated from the modules of the capsule
transformed by Wk1. The blue box indicates that the inter-capsules
attention mechanism for weight distribution, and the green box indicates
that the intra-capsules methods for weight distribution.

we directly use the SoftMax function for uK2 to distribute the
weight of each dimension of the intra-capsules.

att1 = SoftMax
(
uQ � aK1

)
(3)

att2 = SoftMax (uK2) (4)

After that, we can obtain enhanced primary capsules by
combining the weight coefficient with the primary capsules.

uV = W d×d
V ui (5)

ūi = ρ � uV � att1+ σ � att2+ ui (6)

where ρ and σ are learnable scalar and they are initialized
as 0. By using the ECAM for the primary capsules, the weight
of the capsules in each layer can be reallocated to improve the
effect of primary capsules.
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b: CAPSULE SUPPLEMENT MECHANISM (CSM)
In the multi-layer network structure, the features that can be
represented by the featuremaps gradually change from partial
to global. Although the capsules formed by the transforma-
tion of the deep featuremaps have a stronger ability to express
more information, the details in the shallow feature maps can
also play a role in the classification. At present, many fusion
mechanisms are proposed to represent the combination of the
deep feature map and the shallow feature map, such as the
feature pyramid network structure [50].

In a multi-level CapsNet, the capsules obtained from
the shallow feature map can also play a considerable role
in the classification, even if the final result is mainly based on
the high-level capsule to show the global feature of the entity.
So, in our model, the dimension of the capsule gradually
increases because the feature represented by the feature map
is more global with the deepening of convolution operation,
and the dimension of the classified capsule of routing result
is consistent with the dimension of the primary capsule in the
next layer. In other words, the dimension of classified capsule
in the previous layer is the same as the primary capsule of the
next layer.

We propose away to supply the capsule information, which
combines the capsule with the largest module value in the
classified capsule of the previous layer with the primary
capsules of the next layer to implement routing together. The
specific combination of CSM is shown in Figure 4. In the
process of combination, we train a weight coefficient α to
enlarge or reduce the classified capsule of the previous layer l,
so as to improve the effect of combination with the primary
capsule.

ul+1n = ul+1m + α � vl (7)

where (l+1) refers to the higher layer, u and v are the primary
capsules and classified capsules, m and n are the number of
capsules in the layer.

B. ROUTING ALGORITHM
1) CAPSULE FILTER
The primary capsules are reshaped by the feature map
obtained by the convolution operation of the input image.
We use the feature maps of different channels at the same
position to obtain a capsule. It is proved that such capsule for-
mation method is more effective than other methods of cap-
sule expression in [27]. The length of the capsule determines
the probability of the appearance of the entity. By reshaping
all the primary capsules and screening the activation value of
all the primary capsules, a certain proportion of the primary
capsules with higher activation value can be selected. We call
the way dealing with capsules as CapsFilter.

It has been proven that only a part of the primary capsules
works in routing [26]. However, most of the current filter
ratios are determined by experimental results, which have
great uncertainty in different datasets. So, we propose a new
method to choose an appropriate proportion. For example,

FIGURE 4. Supplement of upper layer classified capsule to next layer
primary capsule. amax is the maximum activation values in classified
capsules. α and β are trainable parameters used to expand or scale the
size of the capsule.

in our model for CIFAR-10, the number of capsules in the
three-layer capsule is 2352, 300, and 108, respectively. Due
to the large difference in the activation value of capsules,
the average value of the activation value is very small. In a
group of data, median is the middle representative value of
all data, and has low sensitivity which means that is not
affected by the maximum or minimum value of data distribu-
tion. Therefore, we sort the activation value of each capsule
and take the median of the activation value as the basis of
screening, and we divide it by the maximum activation value
to ensure that it is a proportional value within (0, 1). The
proportion of screening increases when the activation value
represented by the median is closer to the maximum activa-
tion value. The filtering ratio is adjusted adaptively according
to each input image, so that the computational pressure of
the model is not increased. Although most of the proportion
can be calculated to a specific range, we set the scope of
application of the ratio artificially in order to prevent too few
capsules from affecting the accuracy of the training process.
The specific steps of our CapsFilter are shown in Figure 5.

r =


0.1, r < 0.1
amed
amax

, 0.1 < r < 0.8

0.8, r > 0.8

(8)

where amed and amax represent the median and maximum
activation values of capsules respectively.

2) CAPSULE FILTER ROUTING (CFR)
Inspired by the CapsFilter and the additional weights which
are used to train the coupling coefficient, a new routing
method CFR is proposed. Themodule value (a) of the capsule
represents the size of the vector. In our routing, we use the
activation value as the length of the capsule. At the same time,
it can also represent the probability of the existence of the
instance, which is more interpretable.
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Algorithm 1 Capsule Filter Routing Algorithm
Input: ui
Output: vj
1: for all capsule i in layer l:
2: uk = CapsFilter(ui)
3: end for
4: for all capsule k in layer l:
5: ûj|k = W 1

kjuk
6: ckj = softmax(W 2

kjuk )j
7: end for
8: vj =

∑
k∈l ckjak ûj|k∑
k∈l ckjak

9: return vj

FIGURE 5. The process of screening a certain proportion of capsules. The
‘‘PCaps’’ means primary capsules.

For the input low-level capsules, as indicated in
Algorithm 1, the proposed capsule filter method is used to
screen the capsules, and some capsules with low activation
value are deleted, which can eliminate some possible inter-
ference and also improve the speed of the routing process.
we discard the square function in order to show the perfor-
mance of capsule filter. Compared with the operation of the
convolution slide window, the capsule with high activation
value is more useful in routing process.

uk = CapsFilter (ui) (9)

Then we divide the routing process into two steps, one step
is the prediction: the primary capsule is predicted to get the
high-dimensional capsule, and the coupling coefficient nor-
malized by SoftMax is predicted by another matrix; the other
step is routing: the high-level classified capsule is obtained
from the generated predicted capsule, the module value
of the original primary capsule and the predicted coupling
coefficient.

vj =

∑
k∈�l ckjak ûj|k∑
k∈�l ckjak

(10)

Two transformation matrices are updated by
backpropagation.

C. LOSS FUNCTION
We regard the digital capsule with the largest activation value
as the final result of classification. The margin loss [12] can
train the capsules which have a length for the true class. In our
network, we use three margin losses for the existence of digit
capsules.

Lk = Tkmax
(
0,m+ − ‖vk‖

)2
+ λ (1− Tk)max

(
0, ‖vk‖ − m−

)2 (11)

Tk = 1 if the class k is present. We use m+ = 0.9 and
m− = 0.1, and the λ is set to 0.5 to decrease the influence of
false class.

IV. EXPERIMENTS
A. DATASETS
We conduct various experiments in four datasets to ver-
ify the performance of our model. We use Fashion-MNIST
(FMNIST) [51] instead of MNIST, where the image size,
the division of training set, and test set are consistent with
MNIST. There are 60,000 training images and 10,000 test
images, with an image size of 28 × 28. FMNIST is more
complicated than MNIST because the content of the pic-
tures are different clothing products. SVHN is also a dig-
ital dataset, which includes 73,257 training images and
26,032 test images. The numbers in the dataset images come
from the number of street view house numbers. The realness
of the image is stronger, which increases the difficulty of
model recognition. CIFAR-10 [52] is a standard dataset used
to test the effect of themodel. It is composed of 60,000 images
with a size of 32 × 32 × 3, of which 50,000 are used for
training and 10,000 for testing. CIFAR-100 [52] is a more
complex dataset than CIFAR-10. It has 100 classes, but each
class corresponds to 600 images, 500 for training and 100 for
testing. The number of images in each category is relatively
small.

B. EXPERIMENTAL SETUP
In our model, we set the total number of epochs to 40,
batch size to 50, and the initial learning rate to 0.001. Our
experimental environment is PyTorch, and the whole net-
work model is implemented on Tesla T4 with 16GB RAM
in Google Colaboratory. The Adam [53] is used as our
optimizer. We use the warm-up [54] method for the first
five epochs. With the progress of training, the learning rate
becomes 0.1 times the original after every 20 epochs. A data
enhancement method is adopted for the input image, which
is mainly to randomly flip the image horizontally. For each
experiment, we conduct several experiments, and remove
the maximum and minimum values in the results, then take
the average value as the final result. In our model, we use the
total loss of the three layers is trained as the loss of the model.
When the loss is basically unchanged for 10 epochs, we stop
training the model.

C. EXPERIMENTS RESULTS
1) CAPSULE FILTER
We compare the results before and after using CapsFilter in
different datasets and find that when the accuracy reached a
certain degree, the proportion of network screening capsules
tends to be stable. The comparison of the corresponding scale,
speed, and accuracy is shown in Table 2. In the Filter Ratio
section, we also show the proportion of the first two layers,
which can more intuitive to see the proportion of the selected
capsules in different capsule layers.
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FIGURE 6. Convergence curves of CFR-CapsNet with different routing on CIFAR-10, SVHN, FMNIST and CIFAR-100. (a) CFR-CapsNet on CIFAR-10.
(b) CFR-CapsNet on SVHN. (c) CFR-CapsNet on FMNIST. (d) CFR-CapsNet on CIFAR-100.

TABLE 1. Speed and effect comparison of different routing on different datasets. (s/E means second/epoch).

TABLE 2. Comparison of capsule filter method on CIFAR-10, SVHN,
FMNIST and CIFAR-100. (s/E means second/epoch).

We delete some capsules with low activation values, which
represents low probability existence of an entity, such as
some capsules describing the background in the input image.
On four different datasets, it can improve the running speed
by 40% - 50%, and the classification accuracy can reach the
same or even higher accuracy that without this method.

Table 1 shows the classification accuracy of three different
routing methods and the running speed of the model under
the same network structure in different datasets. It can be
found that our routing method reduces the training time by
20% - 40%. On the CIFAR-10, the accuracy is improved by
1.07% compared with dynamic routing, and 0.8% higher than
self-routing.

Our routing method has been significantly improved on
four datasets. Dynamic routing needs multiple iterations to
get a more accurate coupling coefficient, so the training time
is longer. Self-routing removes the iterative method, and the
convolution slide window method speeds up the training
speed. However, the global feature representation still needs
to be strengthened because the way of extracted features is
still local. Our routing method takes advantage of self-routing
and operates all input capsules at the same time. It can not
only operate based on all capsules but also reduce iterative
training and speed up training.

Next, we show the results of the third capsule layer of
the three routing methods on different datasets. In Figure 6,
it can more intuitively reflect the effects of different routing
methods under the same network structure and the same train-
ing method. It can be seen from the figure that the dynamic
routing has low starting accuracy and large oscillation.

FIGURE 7. The loss curves of the three routing methods on CIFAR-10.

In contrast, our routing method is more stable, which is
improved based on self-routing.

The training loss curves of the three routes in CIFAR-10 are
also shown in Figure 7. It can be seen that our routing method
has a smaller training loss and a more stable decline rate
compared with the other two routing methods.

2) EVALUATION ON CIFAR-10
a: RESULTS OF ECAM
We apply the Self-Attention mechanism in our model and add
a weight to adjust the weight of the internal dimensions of
the capsule. Our ECAM redistributes the weight of capsule
quantity and direction dimension so that the network can pay
more attention to the capsules with more information.

In Table 4, we compare the difference between the network
with and without ECAM modules. Since 2,352 capsules are
generated in the capsule layer of the first layer, the module
significantly increases the training time. We also conduct a
comparative experiment that uses the module only in the sec-
ond and third layer, and the results show that the accuracy
is improved when the training time is basically the same as
without ECAM.

b: RESULTS OF CSM
The proposed CSM supplies the information from the classi-
fication capsule with the largest activation value in the upper
layer to the capsule in the next layer. At the same time,
the classification capsule with the largest module value can
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TABLE 3. Effect comparison of our proposed methods on CIFAR-10. ‘‘X’’ means that we use this method. ‘‘Para’’ is the parameter of the network. The
‘‘C10’’ represents the performance in the CIFAR-10, and the ‘‘C10+’’ adds data enhancement method that randomly flip the image horizontally, the
‘‘Warm-up’’ represents the warm-up training method, the ‘‘All-TM’’ represents all the training methods includes the data enhancement and the warm-up
method. (M means millions).

TABLE 4. Comparison of our ECAM on CIFAR-10. The number in () denotes
the layer where the ECAM module used. (s/E means second/epoch).

TABLE 5. Effect comparison of different CSM on CIFAR-10. The numbers
in the table indicate the number of capsule layers, and 1→2 indicate that
the subcategory capsule of the first layer is connected with the primary
capsule of the second layer. (s/E means second/epoch).

be backpropagated to update the parameters in the training
process. In Table 5, the experimental results show that CSM
improves the performance of the capsule after supplement.
In addition, we test that concatenating the classified capsule
in the first layer with the primary capsules in the third layer as
a comparative experiment, the results show that the accuracy
is basically unchanged, there may be problems in parameter
updating after two repeated supplements of the third capsule
layer. We also try to change the operation mode of concate-
nating to add operation, and the experiment results show that
it weakens the performance of the network.

c: EFFECTIVENESS OF TRAINING METHODS
Through the above experiments, we select the method of
corresponding structure, and do experiments on CIFAR-10 to
compare the effect of our proposed methods in different
training methods condition. In Table 3, the data enhance-
ment method has a significant improvement for our network,
and the average accuracy improvement is 2%. The warm-up
method also increases the potential capacity of the network.
The improvement of CSM is limited, and the reason may
be that some supplementary capsules do not have enough
information compared to high-level primary capsules.

d: COMPARISON WITH DIFFERENT CAPSULE LAYERS
We apply our proposed method to a multi-layer network
structure. The precision curve of each layer is shown
in Figure 8. On the CIFAR-10, the accuracies of the L1,
L2, L3 layers are 88.69%, 93.16%, 93.88%, respectively.
The network achieves the highest accuracy in approxi-
mately 35 epochs. Compared with the previous multi-layer
CapsNet [15], the capsule performance of each layer is
improved. Specifically, the accuracy of each layer increases

FIGURE 8. Statistics of the loss for three-level classified capsule layers on
CIFAR-10.

by 0.6%, 2.3% and 1.7%, respectively. Furthermore, the train-
ing of our model is also more stable under the same CNN
structure.

e: METHODS WITH DYNAMIC ROUTING
We propose two methods in network structure, ECAM and
CSM. Under the same convolution conditions, we combine
two methods with the dynamic routing method in our net-
work. In Table 7, the experimental results show that the two
methods can not only improve the effect of classification,
but also speed up the running speed of the model. Dynamic
routing can allocate weight to the primary capsule according
to the update of the coupling coefficient in iteration. The
use of ECAM improves the effect of weight allocation and
the CSM also improves the routing performance in the next
capsule layer.

3) COMPARISON WITH STATE-OF-THE ARTS
We integrate all the proposed methods into the model for
training. To show the effectiveness of our module, the orig-
inal CapsNet, three-level CapsNet, self-routing CapsNet,
and some recent improvements of the CapsNet are shown
in Table 6. We unify the three convolutional layers of
networks, proving that our method is independent of the
improvement of the convolution effect. The reason for the dif-
ference in parameters is mainly that weights are not shared in
dynamic routing. In the table, ‘‘-’’ means data not given in the
original paper. Our CFR-CapsNet achieves 95.03%, 96.88%
and 93.88% accuracy on FMNIST, SVHN and CIFAR-10,
respectively. Obviously, our routing method is more effi-
cient than dynamic routing and self-routing. Due to the
increase of CIFAR-100 image categories, we appropriately
increase the extraction of the convolutional layer and finally
achieve 71.18% accuracy on CIFAR-100. The Group Feed-
back CapsNet has higher accuracy than our network, but it
uses more parameters.
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TABLE 6. Classification performance comparison on FMNIST, SVHN, and CIFAR-10/100. (M means millions).

TABLE 7. Accuracy comparison of two methods combined with dynamic
routing. ‘‘X’’ means that we use this method. (s/E means second/epoch).

V. CONCLUSION
In this paper, we propose an improved capsule network (Cap-
sNet) namely CFR-CapsNet, which is based on a new routing
method called Capsule Filter Routing (CFR) and two meth-
ods designed for capsules in a three-layer capsule network.
Our CFR deletes some capsules with lower activation values
and improves the efficiency of the network. The proposed
Enhanced Capsule Attention Module (ECAM) allocates the
weight of each capsule between and inside the capsule dimen-
sion, which helps to distinguish the importance of capsules;
and the Capsule Supplement Mechanism (CSM) connects
different capsule layers, which is helpful for the routing effi-
ciency of the next capsule layer. By analyzing the multi-layer
convolution structure and the capsule layer, we carry out a lot
of experiments on FMNIST, SVHN, and CIFAR-10/100. Our
methods significantly reduce the training time of the model
and improve the accuracy. The experimental results show that
our routing method is better than dynamic routing and self-
routing, and the two proposed modules can also perform well
in other network structures. In future work, we will design
own convolution structure to ensure more efficient feature
extraction with fewer parameters.
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