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ABSTRACT This paper develops a novel four-stage power flow solver for ill-conditioned systems. Although
the developed solver could be considered efficient, it is not competitive with the Newton-Raphson method in
well-conditioned cases. With the aim of being fully competitive in a wide range of cases and scenarios, the
developed algorithm is integrated within a novel efficient solution paradigm. As a result, a robust and efficient
solution framework, competitive in both well and ill-conditioned cases, is obtained. The new proposals
are tested in various well and ill-conditioned cases from 30-, to 13,659-buses. Results obtained with the

developed solvers are promising.

INDEX TERMS Power-flow analysis, ill-conditioned cases, computational efficiency.

I. INTRODUCTION
A. MOTIVATION
Power flow calculation in ill-conditioned cases has been pro-
fusely studied for decades. As a result, a plethora of robust
techniques is available in the literature. However, very few
of these methods have found widespread usage in industry,
and, currently, the conventional Newton-Raphson (NR) is still
assumed as the most standard power flow solver. This is due
to the fact that very few robust methods are available, which
cannot compete with NR, especially in large-scale networks.
Well-conditioned systems are the most common situation
in power system operation; thus, NR has offered a satisfying
performance in most cases. However, ill-conditioned cases
are nowadays more common due to the observed increasing
energy demand in modern power systems and the difficulties
in upgrading the network infrastructures. These facts cur-
rently are forcing the power components to operate close to
their functional limits [1], [2]. Consequently, robust power
flow solvers may presumably play a vital role in a future
power system paradigm.
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B. LITERATURE REVIEW

Power flow is likely the most important computational tool in
power system analysis. It finds a wide variety of applications
such as voltage stability analysis [3], optimal power flow [4]
or state estimation [5], among others. Power flow calculation
has been covered in multiple works since its first formulations
in the mid-"50s [6]. Some references classified power flow
problems into three different categories [7]:

a. Well-conditioned cases: this is still the most common
situation. In these cases, the conventional solvers, such
as NR, converge to an accurate solution from a flat start.
These cases do not entail convergence difficulties for
most solvers. For this kind of system, apart from the
conventional NR, a variety of decoupled techniques [8],
linear models [9], hybrid AC/DC solvers [10] and high
order Newton-like methods 11] have been proposed.

b. Ill-conditioned cases: despite the fact that these sys-
tems are still solvable, conventional NR fails to reach
the solution from a flat start [7]. Robust techniques
have proved to be efficacious for solving ill-conditioned
cases.

c. Bifurcation points: on these points, the power flow
solution does exist; however, the Jacobian matrix is
singular or near singular, which provokes instability of
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the Newton-based methods. Continuation techniques 3]
or Regularization schemes [12] prevent the singularity
of the Jacobian matrix at bifurcation points.

d. Unsolvable cases: in this case, the power flow solution
does not exist. This is typically due to the loading
level has surpassed the maximum loadability point of
the system. Different approaches devoted to providing
approximated solutions [13] or proposing countermea-
sures for restoring solvability [14] have been developed
for unsolvable cases.

This paper is focused on ill-conditioned cases. The power
flow solution of this kind of case came to be studied at the end
of *70s [15], [16] by the so-called optimal multiplier methods.
These first works proposed a minimization approach derived
from a second-order Taylor expansion of the power flow
equations in rectangular coordinates. As a result, a so-called
optimal multiplier is calculated, which modifies the Newton’s
increment vector to be conducted in a direction where the
residuals are reduced. The optimal multiplier solution meth-
ods are, theoretically, no divergent. However, the calculated
optimal multiplier tends to be very short or almost null when
the solution is approached [17]. This undesirable behaviour
nullifies the effect of the increment vector and provokes that
the optimal multiplier solution methods might be trapped on
a local minimum. The optimal multiplier techniques are not
suitable for the polar form of the power flow equations due to
the presence of transcendental functions [18].

The optimal multiplier techniques can be included within
the family of line search techniques or trust-region meth-
ods [19]-[21]. These methods aim to be globally convergent;
however, this important feature is typically achieved by dete-
riorating their convergence properties. Thus, these solvers
frequently present a notably linear convergence, which sup-
poses an important drawback w.r.t to NR or other conven-
tional solvers. In addition, if the starting guess used for
initializing the iterative procedure is far away from the solu-
tion, the convergence characteristics of the Newton’s descent
vector are lost, and the algorithm may be trapped on a local
minimum [22].

Another category of robust techniques is based on the Con-
tinuous Newton’s method [23]-[25]. This paradigm poses a
formal analogy between the Forward Euler method and most
of the available optimal multiplier approaches. On the basis
of this analogy, Milano deduced that any integration routine
(e.g. the family of the explicit Runge-Kutta formulas), can
be considered for developing robust solution methods [7].
A solver based on the 4™ order Runge-Kutta formula was
developed in this same reference, which was demonstrated
to be more competitive than the optimal multiplier method
in [16]. The Continuous Newton’s philosophy has been
exploited for developing a variety of robust solvers based
on different Adams-Bashforth methods [26], Bulirsch-Stoer
algorithm [27] and Runge-Kutta formulas [28]. As justified
in [7], only the explicit formulation of the Continuous New-
ton’s method is attractive for power flow analysis, due to the
implicit formulation would require the factorization of the
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Hessian matrix. However, the same author recently proposed
an implicit form in [20]. Nevertheless, in this latter reference,
it has been proved that the effect of the Hessian matrix is
immaterial and, consequently, the explicit formulation of the
Continuous Newton’s paradigm is by far more competitive
than the implicit one. Those methods based on the Continuous
Newton’s paradigm are widely rather than globally conver-
gent. In addition, they share some of the disadvantages of the
Newton’s based techniques, and for example, they fail at turn-
ing points or unsolvable cases. Also, these solvers are quite
inefficient compared to NR; one should note that a power flow
approach based on a Runge-Kutta formula would require as
matrix factorizations as the order of the integration technique
considered. Thus, the low order Runge-Kutta methods are
usually more competitive than the high order ones [28].

The Levenberg-type methods have recently gained pop-
ularity for power flow analysis [2], [12], [29]-[31]. These
techniques are, in fact, modifications of NR, which aim
to avoid the vulnerability of the conventional technique at
bifurcation points [32], [33]. It is achieved by adding some
elements on the diagonal of the Jacobian matrix. The most
common approach is based on adding the identity operator
to the Jacobian matrix. The elements of this identity matrix
are pondered by a series of damping factors, which ideally
must approach zero as the algorithm evolves; thus, usually,
an adaptive mechanism is preferred [2], [12], [30], [31]. The
series of damping factors are the most critical aspect of the
Levenberg-type technique. As commented in [29], the damp-
ing factor’s value strongly influences the accuracy of the
results obtained by the Levenberg method. Also, the series
of the damping factors may lead to a very slow mapping if
they are not carefully selected; however, a unified criterion for
tuning it does not exist. It is worth mentioning that the Leven-
berg algorithm is more computationally expensive than NR,
as an extra matrix-matrix product and an extra matrix-vector
product have to be computed each iteration.

In some references, the power flow equations have been
raised as an artificial dynamic system [1], [34], [35]. The
equilibrium points of the proposed dynamic systems are,
in fact, the solution of the power flow equations, so that
solving the resulting set of ordinary differential equations
is equivalent to solve the set of nonlinear algebraic power
flow equations. By making use of the Lyapunov theory, it is
demonstrated that the equilibrium points of the equivalent
set of differential equations present an exponential asymp-
totic convergence. Thus, the resulting algorithm is barely
affected by the starting guess; hence the obtained mapping is
widely convergent. Nonetheless, the resulting algorithm has
to be solved using costly calculations like the ode routines in
Matlab, making this approach impractical for large realistic
systems [1].

Apart from the solvers referenced above, a series of
techniques primarily devoted to distribution systems have
been studied for decades. Some of them are based on the
Backward-Forward and ladder algorithms [36], [37], which
iteratively “sweep’’ the network until the difference between
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two consecutive solutions becomes within a specific tol-
erance. These approaches are based on linear operations;
therefore, they are barely affected by some network charac-
teristics like the R/X ratio. Nevertheless, despite that they
avoid heavy calculations like matrix factorizations, these
techniques are usually time-consuming due to their strong
linear convergence, which is especially relevant in heavy
loading systems (see [38, Sec V.D]). In addition, this kind of
method presents difficulties to manage with PV buses even
with weakly meshed networks [39]. Another family of power
flow solvers for distribution networks is, in fact, based on
the well-known Gauss method. The most famous approaches
of this family are the Z-implicit [40], [41], and the loop
algorithms [42]. These kinds of methodologies normally are
efficient than the Backward-Forward and ladder algorithms.
In addition, they can easily accommodate meshed networks.
Nonetheless, issues for incorporating PV buses are still found,
as pointed out in [43].

C. CONTRIBUTIONS AND PAPER ORGANIZATION
Motivated by a constant effort to develop efficient and robust
power flow solvers, this paper proposes a novel robust
four-stage algorithm (4SA). Although it is quite efficient
and competitive with the most available robust solvers, it is
not competitive with NR in well-conditioned systems. For
expanding the suitability of 4SA, it is also integrated within
a developed solution paradigm.

The developed techniques find some similitudes with the
optimal multiplier or line search techniques. For example, our
proposals are also based on the truncation of the Newton’s
increment vector (i.e. modifying the increment vector by
multiplying it by a step size value). However, the introduced
paradigms aim at overcoming some of the difficulties posed
by this kind of technique. Specifically, they are developed
with the aim to avoid the slow convergence and locally trap-
ping phenomena that some robust algorithms (e.g. [16], [19]
or [28]), may experience when the starting guess is not
suitable or lies far away from the solution. Unlike other
line search techniques based on finding the largest step-size
that satisfies the Armijo-Goldstein conditions, our proposals
aim to find the most suitable truncation (step-size) of the
Newton’s increment vector using a novel search strategy over
the state vector space. Thus, the a priori truncation of the
Newton’s increment vector is determined by finding the so-
called saddle point, which is defined as that point on the
Newton’s direction beyond which the residuals grow; in other
words, the Newton’s increment vector is not a descent direc-
tion beyond the saddle-point. This saddle-point is calculated
through various stages, devoted to progressively refining the
value of the calculated truncation in order to ensure a good
trade-off between robustness and fast convergence. The trun-
cation which produces the saddle-point is assumed to be the
most suitable approach for updating the vector of variables as
the quadratic convergence features of the NR technique does
not deteriorate excessively. Thus, by this approach, the global
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convergence of the iterative procedure is not ensured to pro-
mote a fast convergence.

As commented, the developed 4SA is not competitive with
NR in a well-conditioned system. Therefore, the developed
algorithm is integrated within a suitable solution framework
which, by making proper use of some results obtained at
early stages of 4SA, is able to heuristically determine if
the studied system is well or ill-conditioned; in the former
case, our method proceeds as NR, while 4SA solves ill-
conditioned cases. Thus, the proposed paradigm can effi-
ciently solve both well and ill-conditioned systems, which
is not typically encountered on the available robust solvers.
This outstanding characteristic makes the developed solution
paradigm interesting and suitable for industrial applications,
where the system’s conditioning is frequently unknown, and
a high degree of efficiency in the calculations is typically
required.

The computational burden of the developed paradigm is
comparable to NR in both well and ill-conditioned cases,
making our method scalable to large and even complex-scale
networks. This paper is limited to present a simple illustrative
version of our paradigm in polar coordinates; however, it is
sufficiently versatile to be adapted to different formulations,
functional limits and scenarios. Various numerical results are
provided in order to validate and show the performance of the
developed paradigm.

The remainder of this paper is organized as follows. Due to
our proposal is described in this paper using the power flow
formulation in polar coordinates, the power flow equations in
this form and its solution using NR are described in Section II.
The developed 4SA for ill-conditioned cases is introduced
in Section III. In Section IV, 4SA is fully integrated within
a developed paradigm for effectively solving well and ill-
conditioned cases. Various numerical results on various well
and ill-conditioned systems are presented in Section V. The
paper is concluded with Section VI.

II. PRELIMINARIES
The power flow equations in polar coordinates are defined as
a set of n nonlinear algebraic equations as follows:

gx)=0 (D
where:

gp, For all buses

g) = (2a)

go. For PQ buses
gpi = PP =) Vil |[Vi] [Yy] cos (65 — 8+ &) (2b)
g0, = QF = Y Vil [Vj||¥y| sin (65 — 8 + &) (20)
x = [8g,8,Vi]" 3)

where, P‘;p € R and Q‘;p € R are the active and reactive
power injected at i bus, respectively. V;/8; € C is the
complex voltage at i’ bus. ¥;;26; € C is the ij* element
of the admittance matrix. n; € N is the total number of PQ
buses, n, € Nis the total number of PV buses, g € R"s is the
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vector of voltage angles at PV buses, §; € R is the vector
of voltage angles at PQ buses and V; € R is the vector of
voltage angles at PQ buses.

As (1) are nonlinear equations, their solution cannot be
obtained directly. The power flow problem has been custom-
arily handled using a plethora of iterative techniques. The
most popular is NR method, which is defined by the following
map:

o = [ 0] g0 (4a)
Xk+1 = Xk — @y (4b)

where, g = V,g € R"™" is the Jacobian matrix and the
subindexes denote the iteration counter. Indeed, equation (4a)
corresponds with the Newton’s increment vector, which is
desirable to be a descent direction in order to reduce the resid-
uals as the mapping (4) evolves. Nonetheless, it is well-known
that the mapping (4) may be unstable in ill-conditioned
systems [7].

lll. THE DEVELOPED FOUR STAGE ALGORITHM

The developed 4SA aims to improve the convergence abil-
ities of NR in ill-conditioned systems. Fig. 1 shows a
schematic summary of the developed 4SA. Each stage is
further explained in the following sections.

Stage O - Initialization
This is an initialization step.
Here, the necessary data such
as a starting guess or the input
parameters has to be defined

Stage 1 - Exploration
A quick search through the
increment vector is carried out,
in order to find an
approximated saddle point

l

Stage 3 - Ponderation Stage 2 - Exploitation
The vicinity of that point Once a saddle point has been
obtained at Stage 2 is found, a comprehensive search
heuristically pondered, in order 4_‘ on its vicinity is carried out, in
to obtain a secure evolution of order to find that point with
the state vector minimum residual

|—+

Stage 4 - Updating of the state vector
Finally, the state vector is updated using the Newton’s increment vector
and the weights calculated at Stage 3

FIGURE 1. Schematic summary of the developed 4SA.

A. STAGE 1-EXPLORATION
Let us consider a variety of “intermediate” state vectors
calculated as:

Yh = xi — 2y (5)

where, 7 € R are different truncations, which are collected
in the so-called exploration vector z. The exploration vector
can be built using Algorithm 1. In this case, the infinity norm
of the residuals is assumed to be a good indicator of the
proximity of the solution [29].

As observed, the largest truncation is equal to 1, i.e. the
largest truncation in fact does not modify ¢. For those prob-
lems where NR successfully converge, the lowest residual is

112428

Algorithm 1 Construction of the Exploration Vector
1: Let & be given
2: Initialize j <— 1 and flag <— 0
3: while flag == 0 do

4: % < Jék

5: if z, > 1 then

6: z;( «~1

7 flag < 1

8: end

9: j<—j+1

10: end do

11: return exploration vector z; <— [z,i, z,%, AU I]T

typically observed for 7 =1 (e. at Xr+1), since (4a) is a
descent direction on the y-space. However, in ill-conditioned
problems, this behaviour is not generally observed and,
beyond some determined truncation, the descending trending
is lost and the residual grows (see Fig. 2), it means that the
Newton’s increment vector is not a descent direction over
the whole y-space. The furthest point (4a) is still a descent
direction for g, called the saddle point. The developed 4SA
assumes that the saddle point offers the best trade-off between
robustness and convergence rate; consequently, its corre-
sponding truncation should be considered for modifying the
Newton’s increment vector. The main objective of the Explo-
ration stage is to locate an approximation of the saddle point
and its corresponding truncation lAlZ, which can be achieved
by using Algorithm 2. The elements of the exploration vector
are calculated in increasing order using the so-called jump
parameter £, which is given by:

& = min ([, 1) ©)

llgllco

L

y oyt

yZ

1

y

FIGURE 2. Graphical interpretation of the approximated saddle point }71.

As observed, beyond this point the residual grows. In this example,

the approximated saddle point is located for z%. One should note that the
accuracy with ;71 is estimated, strongly depends on the value of the jump
parameter.

As observed in Fig. 2, the larger &, the less accurate esti-
mation of the saddle point. However, this latter aspect is not
especially relevant at this stage since only a first approxima-
tion to the saddle point aims to be calculated. The Exploration
stage usually ends when an approximation of the saddle point

VOLUME 9, 2021



M. Tostado-Véliz et al.: Novel Power Flow Solution Paradigm for Well and Ill-Conditioned Cases

IEEE Access

Algorithm 2 Exploration Stage

1: Let xi, zx and ¢ be given

2: Initialize j < 1 and saddle < 0
3: Take yg <~ Xi

4: while saddle == 0 do

5. ifz, == 1 then

6: he 1

7: break# No saddle point

8: end if . '

9:  Calculate y), = xi — 2@

to- it ()]~ e ok )]t
11: ifj ==

12: break # Exploratlon fails
13: else

14: saddle < 1

15: he 27!

16: end if

17:  endif

18: j<«j+1

19: end do

20: return approximated saddle truncation fz,f

namely 5}[ is located. One should observe in Algorithm 2 that
the Exploration stage may fail if the saddle point is located at

y0, i.e. (4a) is not a descent direction. It may also occur that

ﬁé does not exist, this is typical of well-conditioned cases.
In the former case, it is determined that the system is not
solvable for the given loading conditions and the algorithm
stops prematurely. In the latter case, the largest truncation

(.e. Wl = 1) is taken.

B. STAGE 2-EXPLOITATION

The objective of the Exploitation stage is to calculate a
more accurate approximation of the saddle point. To do that,
the vicinity of i’ is further explored. The exploitation search
space is defined by two parameters 1 < 1 and 9, > 1
as observed in Fig. 3. The parameters 11 and 7, determine
the amplitude of the search space. The search space should
not be too wide in order to facilitate its efficient exploration.
Indeed, the search space is in practice split into N intervals
(see Fig. 4). So that, the wider search space, the higher N
in order to ensure an accurate estimation of the saddle point

llglle

Exploitation search
space

FIGURE 3. Representation of the Exploitation search space in the vicinity
of the approximated saddle truncation h; .
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FIGURE 4. Schematic representation of the exploitation vector. Unlike to
the exploration vector, the exploitation vector has N elements which are
defined by the bounds U and V.

(71Z ). This fact is relevant since this stage has a computational
burden proportional to N. Hence, if N has to be high, the
computational cost of this stage would also be high, affecting
the performance of 4SA. Nevertheless, the parameter N might
be selected high at first iterations, when the solution is pre-
sumably still far and the algorithm may potentially fail, and
progressively decrease it as the algorithm satisfactory evolves
(see Section IV). It is found that n; ~ 0.5 and n, ~ 1.2 work
satisfactorily in most cases.

The entire process for defining the Exploitation search
space is shown in Algorithm 3 (where the operator (a : A : b)
builds a vector whose first element is a, the last element is b,
and the step is A). As a result, the exploitation vector is built
and collects N different truncations v/ (see Fig. 4).

Algorithm 3 Construction of the Exploitation Search Space

1: Let Ng, 1 and 1, be given

:Create vy < v: (v—7) /Ny : D

2: Calculate v = mh,f
3: Calculate v = nzizké
4:if v > 1 then

5: v« 1

6: end if

7

8

: return exploitation vector vy <— [vk, Vi, - viv‘]

At the Exploitation stage, different intermediate state vec-
tors are calculated using the truncations of the exploitation
vector as:

Yi =X —vidy %)

The Exploitation stage is carried out as follows. Up to N
elements as (7) are calculated using the different truncations
collected in the exploitation vector. Then, the accurate saddle
truncation /% is determined as that element of v which pro-
duces the vector (7) with the lowest residual. This process is
summarized in Algorithm 4 using pseudocode.

C. STAGE 3-PONDERATION

As aresult of the Exploitation stage, a second approximation
to the saddle truncation 7% is obtained, which is presumably
more accurate than fzé. However, we cannot assert that this
truncation exactly yields the saddle point since it is only
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Algorithm 4 Exploitation Stage
1: Let x¢, v and ¢, be given
2: Initialize j < 1 and g < 0
3:forj=1[1,2,...,Ni] do

4:  Calculate y, = x — v ¢y

5: if j == 1 then

6: qg <1

7: else '

8: if g (v4)]|_ < l20f)], then

9: q<j oo

10: end if

11: end if

12: end do

13: return accurate saddle truncation fzkl <~ ‘UZ

obtained with very accurate Exploration and Exploitation
stages (¢ |} or N 11), which is unaffordable in practice.
Therefore, the truncation obtained at Stage 2 should not be
considered for modifying the state vector (2d) and directly
updating it. This stage aims to determine which truncation is
more secure for updating the state vector. If one considers
all truncations up to the exact saddle point as safe and all
evolution beyond it as unsafe, we can divide the exploitation
vector into two zones. However, as commented, the exact
saddle point is unknown. Therefore, it is not suitable to reduce
all the deductions to only two zones; instead, consider three
ones. Thus, a caution space is added between the safe and
unsafe zones. This new zone lies around le, and it can be
defined as these points that one cannot assert if the evolution
is safe or not.

As commented, each truncation of v can be categorized
as safe, caution or unsafe. Nevertheless, one should also
put into value how each truncation affects the convergence
rate of the developed 4SA. Thus, the lower truncations are
associated with a low convergence rate, while the higher ones
normally produce a faster evolution of the state vector (close
to quadratic convergence). A priori, one shall consider the
fastest evolution of the state vector for converging employ-
ing less iterations; however, as observed in Fig. 5, those

lIglleo o

zone

Sa
Unsafe zone

, _Low convergence . High convergence rd

< > < >
>
>

4

FIGURE 5. The exploitation vector as a function of the situation of L.
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elements of the exploitation vector with higher convergence
rate usually lie on the unsafe zone. As shown in this figure,
the exploitation vector can also be divided as a function of
the speed of convergence; thus, the lower truncations are
associated with a low convergence rate while the higher
ones normally produce a faster evolution of the state vector.
To sum up, the different v/ can be categorized attending to
different criteria. The main issue is that some ponderations
offer good and bad properties at the same time. To solve this
problem, the Ponderation stage aims at assigning a weight to
each element of v following the rules collected in Table 1.
Although these rules are based on heuristic foundations and,
consequently, they are not universal, the adopted approaches
are typically well-behaved and work quite well, as demon-
strated in Section V. As observed, the assigned weights aim to
balance between a safe and fast evolution of the state vector.

TABLE 1. Weights assigned to each ¥/ as a function of the zone and
convergence speed.

Weight
Zone High Low
convergence _convergence
Safe High Medium
Caution High Medium
Unsafe Low Low

Following the guidelines of Table 1, the different weights
are assigned using the following function:

W, = o~ (h=n) f20 8)

where, # is the j’h element of the so-called ponderation
vector h, 0 € RT is the standard deviation, e is the nat-
ural exponential and © = n#ﬁl with 7, slightly lower
than 1. The function (8) is used in this work since it
naturally weights the different elements of the exploita-
tion vector according to the rules presented in Table 1.
Also, the function (8) compensates the heuristic foundations
adopted in Table 1; hence those elements of the exploita-
tion vector with presumably bad characteristics (for instance,
points within the unsafe zone), are not nullified. Instead,
the function (8) automatically assigns them a low weight
to reduce their influence on updating the state vector. This
approach also compensates for the intrinsic not-totally accu-
rate estimation of the saddle point after carrying out the
Exploration and Exploitation stages. Thus, even the impact
on the selection of some arbitrary parameters (11, 12, N and
1) is reduced in order to facilitate the implementation of the
developed 4SA.

The main steps of the Ponderation stage, along the pro-
cess for building the ponderation vector, are summarized in
Algorithm 5 using pseudocode.

Fig. 6 plots the weights assigned by (8) as a function of

h  for different values of the parameter o. As observed,
the different weights are assigned according to the criteria
collected in Table 1. It is worth noting that the highest weight

=/
is assigned to u, which is a few lower than A . Thus, the
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Algorithm 5 Ponderation Stage

1: Let Ng, hkZ nu and o be given
. _ 41 42 N il il
2: Create hy = |hy, hi, ..., hy <~ R /Ni @ b [Ny -

ISR

: Calculate u = nuizké
: Initialize j < 1
:forj= [1,2,..., N¢]do

Calculate wﬁc =e (hif*ﬂ )/ 20

end do
: Calculate w; < sum (wk)’1 Wy

T
. N
: return Welghts vector wy <— [w}(, w%, Cey wk"]

0=0.1
——-0=02
........ o=0.3

Safe zone
Caution zone
Unsafe zone

Low convergence
High convergence

w/

ou oh4

hJ

FIGURE 6. Weights assigned by function (8) for different o.

highest weight is always assigned to w. As commented, 7,,
should be slightly lower than 1. Indeed, since the saddle
point is never exactly determined, it is preferable to assign

the highest weights to those points lower than h", since
these values are presumably close to the safe zone and, con-
sequently, algorithm’s robustness is more guaranteed. The
different zones are determined based on heuristic criteria;
thus, the lower truncations lie in the safe, low convergence
zone, while most of the higher truncations are in the unsafe
high convergence area. It is worth noting that it is unsuitable

to assign high weights to h" since, as commented, one cannot
know if this truncation has lied in the safe or unsafe zone.

It is also remarkable how the parameter o affects to (8).
Low values of  provoke that (8) gives a very high weight
to u, while the other truncations of the exploitation vector are
nullify. In other words, if o is fixed very low, it is assumed that
M is the most suitable truncation for the Newton’s increment
vector, so this approach is not generally recommended since,
as commented, the saddle point is never determined with
total accuracy. Instead, it is preferable to assign a high value
of o. This approach assumes that the exploitation search
space is not too wide, allowing a correct exploration of the
Exploitation vector. In practice, it is observed that 6 ~0.5 — 1
works satisfactorily in most cases.
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D. STAGE 4-UPDATING

Finally, the state vector (2d) is updated, taking into account
the weights calculated at the previous stage. Thus, the con-
sidered most suitable truncation is given by:

p— ©)
And the state vector is updated as:
Xkl =Xk — 0y (10)

The main steps of Stage 4 are summarized in
Algorithm 6 using pseudocode.

Algorithm 6 Updating Stage

1: Let x, ¢, wi and hy be given
2: Calculate wy = wkThk

3: Calculate xx4+1 = xx — wr Py
4: return solution xy 4|

E. COMPUTATIONAL BURDEN

The main calculations of the developed 4SA are summa-
rized in Table 2. The new proposal only requires a Jaco-
bian evaluation and a LU factorization. In that sense, its
computational burden is similar to NR. However, 4SA needs
multiple function evaluations in the stages 1 and 2. Although
this computation is generally cheap, it undoubtedly supposes
an extra computational burden with respect to NR. In the
following section, we propose a paradigm for avoiding these
calculations.

IV. IMPLEMENTATION OF THE DEVELOPED ALGORITHM
As commented in the previous section, the developed 4SA is
inevitably less efficient than NR. This disadvantage makes
our proposal less attractive for solving well-conditioned
systems, where NR undoubtedly offers better performance.
To tackle this issue, the developed 4SA is integrated within
a novel solution paradigm. This novel solution framework
avoids the usage of 4SA in those cases easily solvable with
NR. Thus, the developed 4SA is only used in ill-conditioned
systems or when the convergence does not seem ensured.
Now, the main question arises: how is it determined if 4SA
is suitable or not? To answer this question, one can take
advantage of the information brought by 4SA for employing
the following rules:
o The developed 4SA can heuristically determine if the
case is well or ill-conditioned using the jump parameter.
It is worth noting that this parameter is, in fact, inversely
proportional to the infinity norm of the Newton’s incre-
ment vector (see eq. (6)). When a nonlinear system is
ill-conditioned, some elements of the Newton’s vector
tend to be abnormally large due to the ill-conditioning
of the Jacobian matrix. Therefore, it may be reason-
able to assume that the degree of ill-conditioning of
a system 1is inversely proportional to the value of &.
Of course, the well-known condition number of the
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TABLE 2. Main calculations of 4SA and their computational costs.

Case NR BT HLM RBS BE 4SA Disvetaieel
Paradigm
case_ieee30 (default) 2.66 (2) 871 (6) 4.86 (3) 26.60 (10) 12.42 (9) 836 (4) 2.66 (2)
casel 18 (default) 492 (3) 13.89 (9) 8.48 (4) 41.47 (11) 19.36 (11) 13.40 (5) 492 (3)
casel354pegase (default) 34.36 (4) 128.14 (13) 79.75 (5) 306.60 (12) 131.28 (12) 64.70 (5) 34.36 (4)
case3012wp (default) 4422 (2) 131.20 (6) 178.65 () 586.40 (10) 247.20 (10) 139.45 (5) 4422 (2)
case3375wp (default) 7422 (3) 308.02 (13) 243.18 (6) 789.36 (12) 327.48 (12) 154.50 (5) 7422 (3)
case13659pegase (default)  497.25 (5) 1701.30 (15) 2654.08 (13)  3590.47 (13) 1281.84 (12) 688.80 (6) 49725 (5)
case_ieee30 (flat) 398 (3) 9.60 (9) 8.10 (5) 2927 (11) 1523 (11) 10.47 (5) 398 (3)
casel 18 (flat) 5.36 (4) 19.12 (13) 9.60 (5) 35.68 (12) 15.74 (11) 11.53 (5) 6.56 (4)
casel354pegase (flat) 42.94 (5) 175.23 (18) 159.51 (10)  357.71 (14) 142.17 (13) 77.63 (6) 42.94 (5)
case3012wp (flat) Diverge 398.26 (19) 500.17 (14)  820.90 (14) 321.41 (13) 195.24 (7) 132.64 (6)
case3375wp (flat) Diverge 469.01 (20) 526.87(13)  920.88 (14) 35477 (13) 21633 (7) 148.43 (6)
case13659pegase (flat) Diverge 1913.54 (17) 6941.45 (34) 414283 (15) 160234 (15)* 803.60 (7) 696.13 (7)

* Low Voltage solution

Jacobian matrix may also be used for this purpose [28];
however, the threshold considered for determining if a
nonlinear system is ill-conditioned based on the con-
dition number is strongly case-dependent. Indeed, it is
observed that the condition number not only depends
on the conditioning of the Jacobian matrix, and it is
also affected by other characteristics; for instance, large-
scale cases frequently present large condition numbers
even if they are not ill-conditioned [28]. In addition,
calculating the condition number may be computation-
ally expensive. For these reasons, the jump parameter is
preferred to estimate the degree of ill-conditioning of the
problem and act accordingly. Thus, at the beginning of
the algorithm, it can be determined if NR is suitable for
solving the studied case or not. Based on our experience,
most well-conditioned systems yield §y > 0.5; hence
this threshold can be considered for determining the
usage of NR or 4SA.

« As4SA evolves, the size of the exploitation and ponder-
ation vectors can be reduced using the following rule:

if lg (@t Dlloo < 18 (1)l then
Ni+1 = min (round (N¢ /3), 1) endif (11)

where, round (-) rounds to the nearest integer. As observed,
the rule (11) is only activated if the residual is reduced at
k + 1, so that the computational burden is reduced as less
function evaluations are required during the process. When
N = 1, the Exploration and Ponderation stages are immate-
rial and, consequently, NR can be used instead.

« If the result of both the Exploration and the Exploitation
stages is equal to 1, one can guess that the Newton’s
evolution vector is safe and, consequently, NR can be
reliably employed.

In conclusion, the developed paradigm consists of carry-
ing out 4SA and switching to NR when some of the above
conditions are matched. Furthermore, the flowchart of the
developed power flow solution paradigm is shown in Fig. 7.

It is worth mentioning that a more straightforward
approach may consist of simply running NR and 4SA simul-
taneously and, after convergence, take the more reliable solu-
tion. However, this procedure is not functional at all and
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Four stage Algorithm (4SA)

Stage O-Initialization
k=0

Calculate ¢ and &, using
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as NR
k=k+1 Stage 3-Ponderation

Algorithm 5

No Calculate N, h,w,

Proceeds
as NR

Stage 1-Exploration using(11) Stage 4-Updating
Algorithm 2 Algorithm 6
/;f X1
Yes . No
Exploration Converge
fails
No

FIGURE 7. Flowchart of the developed power flow solution paradigm.

the developed algorithm would outperform this procedure.
For example, in the case of ill-conditioned systems, NR just
diverges so it is unnecessary to run this algorithm. In addition,
simultaneously running both methods suppose an important
computational burden that can be avoided by implementing
the developed solution framework. On the other hand, it is dif-
ficult to know a priori if a power system is naturally ill or well-
conditioned. In this sense, it is necessary an indicator that
determines the degree of ill-conditioning of a system without
needing human assistance. Thus, the algorithm automatically
determines which method is more suitable for solving the
network. In the developed framework, this issue is addressed
by the parameter &.

V. NUMERICAL EXPERIMENTS

The developed 4SA and the solution paradigm, described
in Section IV and summarized in the flowchart in Fig. 7,
have been tested along NR, the conventional Backtracking
line search technique (BT) (e.g. see [44]), the High order
Levenberg-Marquardt method (HLM) [30], the Backward-
Euler technique (BE) [22], and the Reverse Bulirsch-Stoer
power flow solution method (RBS) [27]. For HLM, the so-
called damping factor is updated each iteration by | g|| (1)53.
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TABLE 3. Solution times [ms] and (total iterations) for the studied systems with base case conditions.

Case NR BT HLM RBS BE 4SA Disvetaieel
Paradigm
case_ieee30 (default) 2.66 (2) 871 (6) 4.86 (3) 26.60 (10) 12.42 (9) 836 (4) 2.66 (2)
casel 18 (default) 492 (3) 13.89 (9) 8.48 (4) 41.47 (11) 19.36 (11) 13.40 (5) 492 (3)
casel354pegase (default) 34.36 (4) 128.14 (13) 79.75 (5) 306.60 (12) 131.28 (12) 64.70 (5) 34.36 (4)
case3012wp (default) 4422 (2) 131.20 (6) 178.65 () 586.40 (10) 247.20 (10) 139.45 (5) 4422 (2)
case3375wp (default) 7422 (3) 308.02 (13) 243.18 (6) 789.36 (12) 327.48 (12) 154.50 (5) 7422 (3)
case13659pegase (default)  497.25 (5) 1701.30 (15) 2654.08 (13)  3590.47 (13) 1281.84 (12) 688.80 (6) 49725 (5)
case_ieee30 (flat) 398 (3) 9.60 (9) 8.10 (5) 2927 (11) 1523 (11) 10.47 (5) 398 (3)
casel 18 (flat) 5.36 (4) 19.12 (13) 9.60 (5) 35.68 (12) 15.74 (11) 11.53 (5) 6.56 (4)
casel354pegase (flat) 42.94 (5) 175.23 (18) 159.51 (10)  357.71 (14) 142.17 (13) 77.63 (6) 42.94 (5)
case3012wp (flat) Diverge 398.26 (19) 500.17 (14)  820.90 (14) 321.41 (13) 195.24 (7) 132.64 (6)
case3375wp (flat) Diverge 469.01 (20) 526.87(13)  920.88 (14) 35477 (13) 21633 (7) 148.43 (6)
case13659pegase (flat) Diverge 1913.54 (17) 6941.45 (34) 414283 (15) 160234 (15)* 803.60 (7) 696.13 (7)

* Low Voltage solution

Regarding BE, the implementation denoted by ICNM-J1 [22]
has been tested. In the case of RBS, the guidelines provided
in [27] have been followed. For our methods, Ny = 20,
n = 0.50, n = 1.20, 5, = 0.75 and 0 = 1 have been
taken.

All tested techniques have been implemented within the
Matpower environment [45]. Matpower provides an extensive
Matlab-based library for power system analysis. This library
fully exploits the Matlab capabilities for handling large sparse
systems as those typically encountered in power system anal-
ysis. Hence, factorizations and linear systems solutions are
carried out using sparse facilities such as the minimum degree
ordering algorithm or partial pivoting. In addition, all the
tested cases are available in Matpower database [46]-[48].
They have been denoted as they are labelled in this software.
Two cases are contemplated; thus, the studied cases are solved
from a flat start or the default starting point provided in
Matpower.

All reported times have been obtained on a 64-bit i5-9400F
Intel Core personal computer (2.90 GHz, 8 GB of RAM),
as the average value of 100 simulations; on the other hand,
glleo < 107 has been taken as a convergence criterion.

A. GENERAL COMPARISON FOR BASE CASES

Table 3 provides the results obtained for base cases. As seen,
both 4SA and the developed paradigm successfully solved
all studied systems. Both techniques were well-behaved gen-
erally for different cases. However, some methods outper-
formed 4SA in a few cases. This issue is solved by the
developed solution paradigm, which offered the best trade-off
between robustness and efficiency. The good convergence
properties observed when using the developed techniques,
are undoubtedly due to the accurate estimation of the most
suitable truncation of the Newton’s increment vector after
carrying out the Exploration, Exploitation and Ponderation
stages. Thus, the developed algorithms do not excessively
deteriorate the quadratic convergence features of NR, as other
algorithms do. For instance, RBS and BE truncate the New-
ton’s increment vector using a so-called step size, which
follows an algorithm-based update rule rather than observing
the residuals’ behaviour as 4SA and the developed solution
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paradigm do. Therefore, the quadratic convergence behaviour
of NR is usually preserved and the solution is typically
reached in a reasonable number of iterations.

It is worth observing that the developed paradigm offered
the same results compared with NR in well-conditioned
cases. This result is logic since as commented in Section IV
and described in Fig. 7, the developed solution algorithm
proceeds as NR in well-conditioned systems. On the other
hand, the developed solution framework is able to detect
ill-conditioned systems and perform as 4SA in such cases
until the convergence is ensured, then, the algorithm switches
to NR to speed up the convergence.

The conventional NR showed good performance with the
default initialization; however, it failed in some cases when
a flat start was used. When converged, NR was along the
developed solution paradigm, the most competitive tech-
nique. This is due to the proposed solution framework was
able to identify ill-conditioned cases accurately. According
to the definition given in the Introduction and [7], those
systems where NR failed from a flat start can be catego-
rized as ill-conditioned. Such is the case of ‘case3012wp’,
‘case3375wp’ and ‘casel3659pegase’, as seem in Table 3.
As shown in Table 4, the value of &y allows to discriminate
between well and ill-conditioned cases; thereby, the value
of this variable is quite short in these three cases. Thus, the
developed solution paradigm performed as NR in those well-
conditioned cases, saving iterations and solution time. It is
also worth noting that the value of &y abruptly varies from
well to ill-conditioned cases; hence, the threshold adopted in
this paper (§9 > 0.5), which was taken based on personal
experience, has not to be defined finely (note that one could

TABLE 4. The classification of each case as a function of the Jump
parameter at the first iteration.

Case Default Flat
case_ieee30 & =1 Well =1 Well
casel 18 & =1 Well =1 Well
casel354pegase & = Well & = Well
case3012wp & = Well & =0.16 111
case3375wp & = Well ¢ =0.16 111
casel3659pegase &, = 0.97  Well ¢, =0.06 111
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take &y > 0.8 instead and the result would be the same).
In other words, this threshold has not to be selected carefully;
actually, it could take different values, and the degree of ill-
conditioning would still be correctly estimated. In the light of
these results, it is demonstrated that the value of & supposes a
good indicator to determine the degree of ill-conditioning of
a system; in addition, unlike the condition number, the jump
parameter seems case-independent, which enables its broad
utilization.

The considered line search method (BT), successfully
solved all the studied cases. However, one can see a clear
deterioration of the convergence properties in some cases
with respect to NR. Typically, this technique required a large
number of iterations to find the solution; this is especially
remarkable when a flat start is used, which makes this tech-
nique few practical in ill-conditioned cases.

HLM was quite robust. However, its efficiency was deterio-
rated as the size of the system grows. This is due to it requires
a matrix-matrix product for each iteration. This operation is
much costly in large-scale systems. In addition, it shows a low
convergence rate when the starting point lies far away from
the actual solution. Thus, it generally required many iterations
for converging from a flat start.

RBS is a reliable method but inefficient due to the enor-
mous amounts of LU factorizations required. Following the
guidelines presented in [27], this technique requires six fac-
torizations at the first iteration, four at the second iteration and
2 for the remaining iterations. In addition, linear convergence
is observed during the whole iterative procedure due to the
influence of the step, which barely reaches its optimal value
for the last iterations.

BE under its implementation, namely ICNM-J1 in [22],
is quite efficient as only a LU factorization is required, and
the calculation of the Hessian matrix is avoided. As RBS, this
technique frequently shows a very linear convergence pattern.
In addition, it occasionally converged to the low voltage
solution while the developed techniques always converged to
the stable operating point.

Figure 8 provides a better overview of the convergence
properties of the different studied solvers. More precisely, this
figure plots the convergence profiles for the ‘case3012wp’
with flat initialization. As seen in this figure, while NR shows
an oscillatory pattern which indicates divergence, remain-
der solvers successfully converged. The developed solution
paradigm and 4SA performs similarly during the first iter-
ations. This is due to the developed paradigm is able to
identify this case as ill-conditioned and, consequently, 4SA
is run at the beginning of the iterative procedure. After a few
iterations, the developed solution framework determined that
the convergence is ensured and switched to the conventional
NR, thus speeding up the convergence.

B. INFLUENCE OF THE LOADING LEVEL

Fig. 9 plots the total iterations for different loading levels
for the ‘case3012wp’ from a flat start (since 4SA and the
developed paradigm showed the same number of iterations
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FIGURE 8. Convergence profiles for the ‘case3012wp’ from a flat start.
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FIGURE 9. Total iterations for different loading levels for the
‘case3012wp’ from a flat start.

in all cases, only the latter has been reported in this figure).
Here, the loading level has been modified according to:

PP = \P?,

0" =10/
where . € RT is the loading level. As seen from Fig. 8,
the performance of HLM gets worse as the loading level
grows, employing too many iterations close to the maximum
loadability point. BT, RBS and BE are barely affected by
the loading level and their convergence rates stay almost
constant. However, the developed methods were the most

competitive, employing fewer iterations than the remainder
techniques.

for all buses
for PQ buses

(12a)
(12b)

C. VALIDATION WITH REACTIVE LIMITS

ENABLED AT PV BUSES

Although the developed formulation of 4SA does not take
into account the equipment limits, they can be easily incor-
porated using any mechanism available for NR. Let us here
consider that switch logic strategy described in [49], for
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TABLE 5. Solution times [ms] and (total iterations) for the studied systems with reactive limits.

Case NR BT HLM RBS BE 4SA Disvetaieel
Paradigm
case_ieee30 (default) 583 (5) 15.95 (13) 11.82 (6) 47.58 (20) 18.62 (19) 15.23 (9) 5.83 (5)
casel 18 (default) 7.66 (5) 25.98 (17) 17.22 (7) 75.63 (21) 28.61 (21) 24.38 (10) 7.66 (5)
casel354pegase (default) 75.73 (9) 298.10 (30) 21125(13)  880.78 (34) 266.65 (33) 154.30 (15) 75.73 (9)
case3012wp (default) 117.43 (6) 351.81 (16) 399.18 (11)  1807.52 (29) 526.70 (29) 296.72 (13) 117.43 (6)
case3375wp (default) 172.30 (8) 535.95 (22) 590.56 (14)  2522.60 (36) 728.70 (36) 42930 (17) 172.30 (8)
case13659pegase (default)  590.84 (7) 2715.20 (24) 354451 (17)  6777.86 (24) 1885.11 (23) 103122 (11)  590.84 (7)
case_ieee30 (flat) 6.24 (6) 18.33 (16) 13.65 (8) 50.42 (21) 20.16 (21) 16.24 (10) 6.24 (6)
casel 18 (flat) 8.59 (6) 31.30 21) 21.75 (10) 80.28 (22) 30.23 (22) 24.38 (10) 8.59 (6)
casel354pegase (flat) 83.22 (10) 311.44 (35) 28572 (18)  923.47 (36) 272.64 (34) 162.40 (16) 83.22 (10)
case3012wp (flat) Diverge 619.28 (29) 740.80 (20)  2001.50 (33) 624.36 (32) 349.11(15)  224.00 (10)
case3375wp (flat) Diverge 702.27 (29) 878.60 (21)  2633.15 (38) 766.44 (37) 484.61(19)  272.49 (11)
case13659pegase (flat) Diverge 2941.20 (26) 7817.85 (38)  7250.63 (26) 221824 27)*  1145.13(12) 87750 (9)

* Low Voltage solution

incorporating the generators’ reactive power limits within
the power flow calculation using NR. This strategy basically
consists of converting those PV buses with any limit violation
to PQ buses, taking the hit limit as injected reactive power.
In these converted buses, the injected reactive power is now
taken as an independent variable. The nodal voltage freely
varies; then, starting from the calculated solution without
reactive violations, the process is repeatedly carried out until
a feasible solution is reached. Otherwise, the case is declared
unfeasible if a feasible solution has not been found with all
the PV buses converted to PQ. It is worth noting that this
strategy is quite universal, and other references and software
have adopted similar approaches (e.g. see [7], [45] or [50]).
Nevertheless, the developed solution algorithms are versatile
enough to incorporate other more sophisticated approaches
such as those described in [1] and [51].

The aim of this section is to simply validate the developed
power flow solution techniques when some functional limits
are taken into account; hence the strategy described in [49]
and above described has been implemented within 4SA and
the developed paradigm. Fig. 10 shows the nodal voltage
angles and magnitudes for the ‘case30’ with reactive limits
obtained by 4SA and NR from a flat start (since the developed
paradigm performs in this case as NR, their results are not
shown). As observed, 4SA obtained very accurate results.
Fig. 11 illustrates the implemented bus switching mechanism.
As shown, the injected reactive power and voltage magnitude
at bus #2 during execution of 4SA. As observed, the reactive
power grows to keep the nodal voltage magnitude constant
until its limit is reached. After that, this bus is converted to PQ
type. Then, the reactive power is kept constant, and the nodal
voltage magnitude varies until a feasible solution is reached.
It is worth noting that this same strategy can be considered
for taking into account other controls or functional limits like
transformers tap changers.

It is well known that incorporating an outer switching
mechanism to consider the equipment limits may deteri-
orate the convergence properties of a PF solver; this is
because more PQ buses and, consequently, variables and
equations are incorporated into the system each iteration
of the outer loop. This is illustrated in Fig. 12, where
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FIGURE 10. Comparison of the nodal voltage magnitudes and angles
obtained by 4SA and NR for the ‘case30’ from a flat start with reactive
limits enabled.
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FIGURE 11. Evolution of the reactive power injected at bus #2 for the
‘case30’ and its nodal voltage magnitude with reactive limits enabled
using 4SA and the developed solution paradigm from a flat start.

the convergence profiles of NR, 4SA and the developed
paradigm for the ‘case3012wp’ from a flat start are plotted.
As observed, NR failed to solve the base case because it
oscillates during a large number of iterations. In this case,
the developed paradigm and 4SA performed well in case of
considering the generators reactive limits. As seen, the pro-
posed methods successfully follow the switching mechanism
to a feasible solution after the solution of 3 power flow
problems.
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FIGURE 12. Convergence profiles for the ‘case3012wp’ with reactive
limits from a flat start.

In order to fully show how the developed techniques
perform in the presence of reactive limits, we have com-
pared them with the other considered solvers. In all cases,
the switching strategy previously described has been incor-
porated within the different studied PF techniques. Table 5
compares the different studied solvers to consider the genera-
tors’ reactive limits. As seen for the base cases, the developed
techniques were well-behaved and showed very competitive
results.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a novel power solution method has been pro-
posed to solve well and ill-conditioned cases. It is carried
out through four stages, devoted to determining the opti-
mal evolution of the Newton’s increment vector. Although
the developed method is more efficient than most available
robust solvers, the developed 4SA is still not competitive
with NR in well-conditioned cases. This disadvantage would
limit the potential application of the developed technique in
commercial packages. To overcome this drawback, 4SA has
been integrated within an efficient paradigm, which can guess
if the studied case is well or ill-conditioned. In the former
case, NR is used while 4SA is employed for solving the ill-
conditioned cases. The developed paradigm also switches to
NR when the convergence seems ensured.

Various numerical results have been provided in a variety
of cases and scenarios. The results showed that 4SA is more
competitive than most robust, tested techniques; however, it is
still less efficient than NR in most cases. The integration
of 4SA within the developed framework brought superior
characteristics. Thus, the developed solution paradigm was
generally the most competitive method, offering the best
trade-off between robustness and efficiency.

Despite the promising results obtained, the developed solu-
tion framework still has some limitations as it fails at turning
points and unsolvable cases. Future works should be devoted
to expanding the applicability of our proposal to these cases.
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