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ABSTRACT Sustainable agricultural development is a significant solution with fast population development
through the use of information and communication (ICT) in precision agriculture, which produced new
methods for making cultivation further productive, proficient, well-regulated while preserving the climate.
Big data (machine learning, deep learning, etc.) is amongst the vital technologies of ICT employed in
precision agriculture for their huge data analytical capabilities to abstract significant information and to
assist agricultural practitioners to comprehend well farming practices and take precise decisions. The main
goal of this article is to acquire an awareness of the Big Data latest applications in smart agriculture and
be acquainted with related social and financial challenges to be concentrated on. This article features data
creation methods, accessibility of technology, accessibility of devices, software tools, and data analytic
methods, and appropriate applications of big data in precision agriculture. Besides, there are still a few
challenges that come across the widespread implementation of big data technology in agriculture.

INDEX TERMS Precision agriculture, big data analytics, machine learning, sustainable agriculture, smart
farming, and digital agriculture.

I. INTRODUCTION
The total populace, as revealed in November 2020 is
7.8 billion according to United Nations estimates. It is
assessed that this number will projectile to 8.5 billion by
2030 and 9.9 billion by 2050. With the rapid growth in the
total populace, food consumption is also growing rapidly
worldwide. Agriculture is already producing about 17%more
yield than it used to produce just three decades ago. However,
about 821 million people in the world suffer from a lack
of food security. Increasing agriculture or food production
rapidly for meeting the growing food supply demands is
not an easy task. Several factors contribute to this problem,
such as decade-old agriculture practices, poor storage, mar-
ketplaces, and political upheaval. As the global population
is growing higher, the food and agriculture organizations
calculate that agriculture production will need to increase by
70% by 2050 to feed the growing population of the world.
It is not just about feeding people; we need to provide them
with highly nutritious food without harming the environ-
ment. Since the volume of arable land is not increasing,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

the groundwater levels are going down, and the soil quality is
not increasing, so we need to increase agriculture production
responsibly.

To deliver sustainable agriculture production, the agricul-
ture sector needs to employ cutting-edge technologies like
blockchain [1], [2], IoT [3], and AI [4]. Data-driven agricul-
ture with these technologies is the most promising approach
to solve existing and future problems. If we could generate a
huge quantity of data from the farm and use that data to drive
some of the agricultural decisions. It can help to solve most of
these food problems globally. For instance, if we could enable
farms to build data sets or maps for soil moisture, temperature
and humidity in the area, availability of water, and other envi-
ronmental factors around the farm, it would enable techniques
like smart farming, precision agriculture [4], vertical farming,
etc. Data-driven agriculture has been shown to improve crop
yield, reduce cost, and ensure sustainability [5]. These are not
limited to agriculture but have potential solutions for several
challenges faced by livestock farming also. Digitanimal is
a company to enhance livestock farm productivity, sustain-
ability, and animal welfare along with providing thorough
monitoring solutions based on IoT wearable’s powered by
firmware, AI, satellite images, and blockchain technology
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FIGURE 1. Illustration of smart agriculture ecosystem.

provides farmers with relevant information on health, loca-
tion, feeding, and reproduction conditions of their animals.
Thus by incorporating technological-based agriculture tech-
niques increases their yield, reduces costs, and improves
the income of farmers, thereby improves their quality of
life. Smart agriculture deems it essential to address these
problems that have attracted a lot of technological attention,
from sowing to watering of crops to health, harvesting, and
traceability in supply chain management. Figure 1 shows an
overview of these technologies concerning the smart agricul-
ture ecosystem.

Big data empowers agricultural practitioners and related
industries to gain information about different factors that
influence agricultural production and take efficient decisions

in daily farming. It keeps them up to date about the market
price, demand of a particular crop, and the new technolo-
gies in the agriculture sector. Recently, big factory farms
have embraced different technologies like IoT and blockchain
with an intent to produce greater production in the farming
practice. Blockchain technology is being implemented in the
management of the agri-food supply chain to make available
features such as transparency, security, immutability, and reli-
ability of all operations. Blockchain also assists in addressing
several IoT security and reliability challenges.

IoT assists in data collection at each stage of agriculture
production and supply chain [6]. Therefore, it would likewise
be valuable to perform big data analytics on the data col-
lected during farming, processing, logistics, and marketing.
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Information driven agrarian sector would significantly rev-
olutionize farming and customer behavior. For example,
mobile agriculture expert systems and agriculture predictive
analytics all depend on big data to provide intelligent recom-
mendations to growers towards precision agriculture. Precise
risk evaluation could assist agriculture practitioners to better
handle agriculture risks concerning production, market, insti-
tutional risk, accompanying individual and monetary risks.
Furthermore, big data can be utilized to address several chal-
lenges like food safety, supply management, food security,
along with food loss and wastage.

Similar to other sectors, the agricultural industry has pur-
sued innovations by employing convergence technologies.
Big data and AI have demonstrated their potential and usage
throughout the industry. However, agricultural big data faces
various limitations as discussed in Section V of this paper.
These limitationsmust be addressed to offer the right method-
ology of agricultural solutions for the next generation. There-
fore, a strategy and a scheme for future advancement should
be recognized by reviewing the latest developments, trends,
and potential of technological innovations. In this article,
we provide a comprehensive analysis to provide intuitions
into important research works in smart agriculture employing
big data and AI with an emphasis on precision farming. The
prospective for exploiting big data andAI in processing actual
field data for soil mapping, crop monitoring and estimation,
sustainable resource utilization, disease and weed detection,
weather monitoring, etc. in agriculture is extremely promis-
ing. Further, this paper provides a discussion on various
available software tools for agriculture big data analysis and
provides a discussion and comparison of different machine
learning techniques in agriculture. Furthermore, we pro-
vide the complete discussion on data operational cycle right
from data acquisition to decision making and implementation
(actuation). We have also presented an in depth discussion on
several potential applications and limitations of big data in
precision agriculture.

The remainder of the review article is systematized as
follows. In section II, we present the overview of big data
and AI technologies in precision agriculture. In section III,
we present comparison and discussion on machine learn-
ing techniques in agriculture. In section VI, we described
the big data operating cycle in agriculture environment.
In section V, we report potential applications. Then, we delib-
erated some open issues and research areas in section VI.
Lastly, section VII presents the conclusion of the paper.

A. RESEARCH METHODOLOGY
The primary purpose of this systematic review article is to
identify pertinent research in the field of study. The research
methodology process used in this systematic literature review
consists of planning, implementing, and result investigation.
The initial stage involves formulation of the review, rec-
ognizing its requirements, and outlining its rules including
a) research questions, b) paper extraction, c) and selection of
relevant papers for review. The second stage comprises

extracting the relevant information from the selected papers.
Lastly, present discussion, conclusion, and future work.
We have identified somewell-known digital libraries andweb
sources that we used to extract the relevant works mostly
for 2000-2020. Table 1 presents the digital libraries and web
sources. Table 2 contains some keywords and some concepts
related to our field of study and used certain connectors
to build search strings. On the subject of article selection,
we start with papers that include keywords related to agri-
culture (such as agriculture, farming, smart agriculture, agri-
chain, food-chain, etc.,) and others related to big data and AI.
Thenwe rejected papers that are not relevant to the agriculture
sector directly. Finally, we filter the papers for duplicated
from different sources, other than the English language and
student thesis. Thus, we obtained a total of 77 studies that are
relevant to the research goal of this review article.

TABLE 1. Digital libraries and web sources.

TABLE 2. Keywords utilized to extract relevant papers during the review.

II. LITERATURE REVIEW
A. ARTIFICIAL INTELLIGENCE
The application of AI in the food sector is getting progres-
sively significant owing to its capability to assist in mini-
mizing foodwastage, improves production hygiene, enhances
the cleaning process of machines, disease, and pest control;
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therefore, there are numerous instances of employing AI and
ML in the agri-food industry [7]. Automated frameworks
can collect a huge amount of data in a matter of a few sec-
onds on a single food item and analyze it rapidly. Even
though agriculture practice is broad, some major areas of
the agriculture sector where AI finds its application such
as supply chain management, soil, crop, diseases, and pest
management. References [8] summary all the proposed mod-
els using AI techniques with their limitations (a) for soil
management: Fuzzy-logic based SRC-DSS (Soil Risk Char-
acterization Decision Support System) [9] for soil classi-
fication, MOM (Management-oriented modeling) [10] for
minimization of nitrate leaching, ANN (artificial neural net-
work) [11] to estimate soil enzyme activity and soil structure
classification, etc., (b) for crop management: CALEX [12]
to formulate scheduling guidelines, PROLOG [13] to remove
redundant tools from the farm, ANN [14] to detect nutrition
disorders in crops, ANN [15] to predict rice yield accurately,
etc., (c) for disease management: computer vision system
(CVS) [16] to detect multiple diseases at high speed, Fuzzy
logic based database [16] are accurate in test environments,
ANN-GIS [17] has got an accuracy of 90%, the expert
system using rule-base in disease detection [18] for faster
detection and treatment of disease, etc., (d) for weed con-
trol: invasive weed optimization (IWO) [19], big data abased
ANN-GA [20], support vector machine [21], etc. All these
methods did not consider all the parameters; they are all
application-specific towards a particular crop or environmen-
tal parameter. There is an need to design AI frameworks using
multiple parameters and that can be used for multiple crops.

B. BIG DATA ANALYTICS
Big data analysis is outlined as a system in which cutting-
edge analytic methods operate on huge data sets. Therefore,
it is a combination of two technical entities massive amount
of data sets, and a collection of analytics tool categories
including data mining, statistics, AI, predictive analytics,
natural language processing (NLP), etc. forming an important
component of business intelligence. Lately, big data turn
out to be a subject of broad and current interest equally in
academic research and industry. It characterizes enormous
and unstructured data generated by a large number of sources.
Several out of the most prevalent data processing techniques
employ big data techniques. Big data is depicted by the
subsequent attributes which are shown in figure 2. Big data is
being used in numerous fields such as big services business
industries like Amazon to learn customer behavior and needs
more precisely to tailor product prices accordingly, enhance
operational productivity, and cut down personal costs. Even
social networking sites Facebook, Twitter, and other network-
ing sites utilize big data analytics to study your social behav-
ior, interests, and social connections and then endorse the
specific products. In an intelligent transportation system, big
data techniques can handle the enormous quantity of diverse
and complex data generated over the period to provide safe
and superior facilities aimed at drivers and passengers in the

FIGURE 2. Big data characteristics (10 V’s).

transportation system. In the agriculture field, big data shows
a huge potential for solving many challenges of farming and
consequently boosting the agriculture production quality and
quantity. Big data analytics can be used to determine the soil
quality, diseases and pest interruption, water requirement, and
can predict harvesting time for crops.

There has been a critical pattern to ruminate about the
utilization of massive data procedures and strategies to
agribusiness as a significant opportunity for utilization of the
ICT pack, for financing, and for achieving added significance
inside the agriculture sector [22] [23]–[26]. Applications of
massive data in agriculture are not sternly regarding primary
cultivation, but also assume a significant part in enhancing
the effectiveness of the whole supply chain, thus reduces
food security worries [23], [24]. Right now, discussion on the
applications of big data present in literature is occurring fun-
damentally in America [27], Canada [28], Europe [29], and
China [30], [26]. Considering the developing consideration
and interest that appeared in the different works, nonetheless,
the number of use cases is likely to grow promptly in different
nations like Australia [31], Morocco [24], etc. Massive data
is the center of in-depth, progressed, game-evolving business
intelligence, at a scale and speed that the old methodology of
duplicating and removing every last bit of it into a warehouse
is not, at this point, appropriate. Prospects for Big Data use
in agribusiness incorporate benchmarking, IoT-based sensor
network implementation and analytics, prediction models,
and utilizing enhanced models to oversee crop failure risks
and to lift feed efficacy in livestock farming. Thus, big data
technology is to offer prescient insights to upcoming farm-
ing outcomes, enables real-time effective decision making,
and modernize business measures for rapid, state-of-the-art
actions, and game-changing business models [32]. Big data
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TABLE 3. Comparison and discussion on machine learning techniques.

is predicted to modify both the degree and the organization
of agriculture [33]. While there are questions about whether
agriculture practitioners’ information is going to be sup-
planted by algorithms, applications of Big Data are probably
going to change how agriculture farms are managed and
operated [28], [34]. Key domains of progress for precision
agriculture such as real-time forecasting, tracing of agri-food
products, and remodeling of business practices [35]. More
extensive big data application is probably going to transform
both farm organizations and the more extensive supply chain
in unfamiliar ways.

III. COMPARISION AND DISCUSSION ON MACHINE
LEARNING TECHNIQUES IN AGRICULTURE
There is a broad literature on different machine learning
algorithms that have been employed in diverse application
areas in agriculture. Identifying the ideal method for guar-
anteeing accuracy and constancy for a specific application in
agriculture is significant. SVRs demonstrated robustness with
outliers and noise presence with better estimation accuracy
upon comparison with ANN [36]. ANN and SVRs when used
for mapping of soil organic stocks (SOC) produced com-
parable performance [37]. Several regression models were

evaluated to find appropriate techniques that realize great
accuracy and better generality for yield prediction abilities.
Neural networks, despite their site-dependency, ascertained
robustly, however, the SVR model employed was highly
accurate though being fast computationally [38]. ANNs, RFs,
and SVMs have mostly been testified as classifiers, yielding
great accuracies [39], [40]. Deep learning techniques are the
utmost promising models for segmentation applications of
agriculture image data sets. Finally, in Table 3 we discuss the
reliability issues, computational characteristics, and threads
of analysis of the models explained.

Graphical models are not apprehensive towards input-
output pattern modeling; however, they model autocorre-
lation between the input parameters (variables) [41], [41].
There exist several variants of GMs that model data based
on input-output interdependencies, for instance, conditional
random fields (CRFs) [43], [44]. CRFs take up probabilis-
tic systems unlike NNs and SVMs; i.e., they form input-
out variable relations by a probability distribution P(Y | X),
instead of a definite capacity of the configuration Y = f (X).
Though, having a similar fundamental principle; the models
learn the P(Y | X), upon provided with training data (Xi, Yi),
i = 1, 2,.., n by optimizing a proper loss function. Upon
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learning the best probability distribution from the training
data, inference can be performed to estimate the target output.
In agriculture, GMs show a substantial potential for modeling
big data applications such as spatial disease distribution [45],
operational decisions, modeling traits, etc.

The most specific challenges that occur with ML in preci-
sion agriculture are variable spatial-temporal resolutions and
missing due to several reasons like IoT device malfunction-
ing, communication failure, bad weather prevented remote
sensing image acquisition, etc. It is in this way important to
have AI models that can adapt to missing information. All
the recent ML and DL models designed for plant disease
and pest detection are not suitable for the early detection
of diseases and pests, thus unable to prevent the crops from
early disease and pest attacks. Thus, deep learning models
for the early classification of plant diseases and pests are
important.

DL and CNNs have been progressively more employed
in agriculture remote sensing applications [46]–[48]. CNN
needs a hefty volume of data towards generating hierarchi-
cal features to make available semantic statistics at the out-
put [49]. With the expanding access to enormous quantities
of aerial images from unmanned aerial vehicles (UAVs) [50]
and satellites, CNNs can assume a significant part in the anal-
yses of all this information to extract significant information.
Though, the UAV-based technological adaption by farmers
for specialty crops is very low [51]. There are two facades for
low adaption such as preprocessing and analysis of data, as it
is very complex and time-consuming to produce precise and
suitable information and the inability of available commercial
tools to create enough useful information from the data for
specialty crops.

As UAVs can accumulate a large and unstructured quantity
of data, big data-based tools (analytics tools) and cloud com-
puting has the potential to enhance the data processing effi-
cacy, offer high data security, and scalability, and minimize
cost. Applications based on cloud computing act as a potential
solution having low upfront cost, proficient utilization of
computational resources, and service costs [52]. UAVs with
big data analytics methods such as CNNs can be used to
detect tree characteristics (height, tree health, species, canopy
area, etc.), leaf disease, crop estimation, etc.

Soil quality performs a significant part in influencing
how healthy plants develop. Indeed, different types of plants
grow in different soil conditions or types. Understanding
the diverse characteristics such as texture, structure, and
chemistry of soil assists agriculture practitioners to choose
the best quality crops to cultivate in their farms. To study
these characteristics of soil, IoT, and other sensor networks
along with ML-based big data techniques like clustering and
classification methods to label soil data. Spark Mlib compris-
ing of several ML algorithms and utilities including logis-
tic regression, and naive Bayes in classification, K-means,
GMMs in logistics. Likewise, distributed parallel association
rule mining techniques can be used to determine the growth
of plants.

IV. BIG DATA OPERATING CYCLE IN THE AGRICULTURE
ENVIRONMENT
The above discussion on the existing work on smart agri-
culture and the potential of integrating evolving technologies
namely AI and big data to bring revolutionary changes, bene-
fits and solvemany problems of sustainable agriculture. In the
technologically advanced big industrial farms, field manage-
ment looks different from the traditional farms following the
operating cycle represented in figure 3. In these smart farms,
the management system employing smart decision-making
by processing actual field data by deriving benefits of its inner
variability (including both time and spatial-wise). The objec-
tive field data acquisition is done by deploying IoT devices,
remote sensing, and other sensor networks. The data collected
about soil, crops, weather, or ambient from the IoT sensor
networks is stored on local or cloud storage.WhereML-based
big data algorithms are used to abstract vital information
and helping incorrect decision-making by the farmer. Finally,
the required action recommended by the decision system is
executed physically by the advanced machinery used based
on the decision received through an intelligent control system.
This cycle of processes remains repeating systematically till
the harvesting stage.

The ML-based big data analytic tools [53] such as ANN,
PROLOG, TOMRA, etc., at the processing stage, are used
to abstract the significant information about the quality of
soil like nutrient level and pH, analyze seed characteristics,
sorting of food, theweather patterns, and the existence of food
hazards by relating biotic or abiotic data with development
and probabilistic existence of pathogens, pests, and toxicants.
The different stages of this precision agriculture system are
discussed in successive paragraphs below:

There is always assumed some level of spatial variability
naturally for crop fields to existing irrespective of what way
the crops will be managed. The weather of a current pro-
duction year and the previous successive years influence the
natural spatial variability, data from the previous numerous
years can be fused to determine interested parameter trends,
and therefore data turn out to be important for farm man-
agement. Thus, the need for crop monitoring arises from the
presence of variability; however, these variabilities require
to be managed by a grower efficiently. Management zones
having homogeneous characteristics are developed in a field
to custom-made field practices for each subfield zones, ensu-
ing in a realistic and economical method to precision agri-
culture. Thus, the implementation of subfield zones would
cut the fertilizing cost, yield improvement, lessens pesticide
usage, helps in building superior farm records, and make
available vital data for decision making. The size of the
field decides the natural variability function and subsequently
determines the size of these management zones and manage-
ment factors. The selection of several specific parameters to
be pursued should be done at the early stage of the process.
However, some use cases with very low spatial variability
might be there in which a distinct mapping event can be
satisfactory.
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FIGURE 3. Big data-based precision agriculture system representation.

Different IoT sensors apart from traditional sensors are
used for crop monitoring and collecting required impor-
tant data from them. These sensor devices can be directly
deployed in the fields, agriculture robots, autonomous
platforms, machines, or weather stations. Different parame-
ters can be calculated in real-time by using IoT sensor net-
works [54] enabled with a high-speed data network. Remote
sensing from artificial satellites has performed a vital part
in the development of precision farming by making field
data remotely accessible. American Landsat satellites, the
European Sentinel 2 system, RapidEye constellation satellite
system, GeoEye-1 system, and WorldView-3 are the impor-
tant satellites supplying agriculture [55] data in the form
of multispectral data, multispectral RGB imagery, RGB and
NIR data, etc. The application of unmanned aerial vehicles
(Drones and Remotely-piloted Aircrafts) in agriculture pro-
duction is gradually increasing as a measure of an efficient
method to sustainable agricultural management allowing
growers, agri-engineers, and agronomists to assist simplify
their procedures, utilizing robust information analytics to
achieve valuable insights into their crops. Drones have made
careful crop monitoring easier over large areas of agricul-
tural lands, in identifying suitable crop recommendations,
the emergence of plant and population, as more precise data
can assist in decisions regarding replanting, pruning, and
thinning activities, and yield estimation. UAV’s) [50] are

very useful but still face certain challenges such as carry a
limited payload, limit the use of sensors onboard, challenging
data and image post-processing, vegetation shadowing during
gathering imagery data, etc.

In proximal sensing, the ground platforms such as
Unmanned ground vehicles (UGV) and robots that operate
close to crops increase the accuracy of acquired data and one
or two high resolutions of samples per unit area are reason-
able [56]. With UGVs applications requesting real-time data
like weed detection and removal, selective pesticide spraying,
soil analysis, pest control, and crop scouting are possible.
Scouting robots are used for performing specific tasks such as
robot Oz (mechanical weeding), GUSS autonomous sprayer,
RowBot system (fertilizing, mapping, seeding, etc.), VineR-
obot (vineyard management), etc. Researchers and industries
are working on different projects to converge UAV and UGV
for better sustainable development.

The application of different wireless data collection tech-
nologies has created massive data in agriculture. But the huge
quantity of data poses a significant challenge to manage,
as important information may be imperceptible by noise. Pre-
senting information in a coherent shape is vital for end-users
to comprehend the different processes in the field [57].
Mapping is the most useful technique to express spatial
developments and homogeneous subfields from the agri-
culture data. Maps assist in creating management zones
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with interesting parameters for the efficient application of
custom-made field practices for each subfield zones. Kriging
is a commonly used interpolation method to get manage-
able size subfields. Considering the enormous quantity of
data generated by smart agriculture, there is several software
applications employed to handle interpolation. Local Tangent
Plane (LTP) [58] featuring Euclidean geometry enables a user
to establish origins and utilizes intuitive coordinate set up
east-north. The systematic quantization of the LTP coordi-
nates is allowed by grids in maps in the efficient management
of agriculture production data enables the data sharing among
succeeding seasons, and different field parameters of a man-
agement zone.

Software-based farm management solutions [59] for
instance Geographic Information Systems (GIS) encourage
the automation of data collection and analysis, supervis-
ing, planning, record keeping, decision making, and farm
operation management. These tools also help in basic tasks
for record-keeping such as produce harvests and yields,
scheduling farm tasks, profits-losses, tracking of soil nutri-
ents, weather prediction, and mapping of the field, and
other complicated functions for automating field manage-
ment. A specific GIS data management system [60] known
as farm management information system (FMIS) was devel-
oped for different applications of precision agriculture. FMIS
helps growers with several tasks like operational planning,
record keeping, implementation, and evaluation of executed
fieldwork. Its objective is to decrease costs of production,
comply with farming standards, great product quality, and
safety maintenance, and supervising the farmers to make
the best decisions. There are several commercial agricul-
ture information management systems for instance ADAPT,
WinGIS, SpiderWeb GIS, AGERmetrix, FieldView, SST
software, AgVerdict Inc., Trimble, etc. addressed not only
for farmers or producers, nonetheless to other participants’
in the agriculture sector i.e., in the agriculture supply chain
from farm to fork. However, the efficiency of recommenda-
tions from these software tools depends upon the parameters
encompassed in the design of algorithms of that particular
software platform. For example, DSSAT produces outputs by
taking experimental data for crop model evaluations, permit-
ting users or growers to compare the simulated results and
observed results, which is significant if real-world decisions
are established on modeled outcomes. There are other wide
varieties of big data analysis software tools available in agri-
culture [61] (see Figure 4).

It is practically difficult for people to manage complex
agriculture data to make better decisions due to several field
parameters involved in farm management. In such scenarios,
AI with DL, genetic algorithms, ML, or expert systems can
assist with its reasoning, and modeling abilities can perform
a vital role in precision farming, facilitating to understand
of all the available data. Therefore, precision agriculture
presents a huge application space for all types of core tech-
nologies in AI because agents functioning in uncontrolled
situations. A fuzzy logic-based decision support system is

designed in [62] for kiwi, potato, and corn with input variable
parameters as rain forecast and soil moisture. Likewise, [63]
developed a DSS to estimate the weekly irrigation require-
ment for citrus orchards by taking soil moisture and climate
data; it uses a real-time soil parameter measurement control
system to avoid errors. DSS is themost robust and dependable
by considering several parameters, however, some processes
stay controversial as different objectives can result in diverse
solutions at different times depending on the need set by
users or others engaged with the procedure. Numerous DSS
systems have been proposed in the literature considering
different use cases having different objectives. Thus, the use
of DSS tools is influenced by their usability, performance,
cost-viability, significance to growers, and suitability with
compliance requests. The application of software tools for
decision-making in precision agriculture is considered valu-
able as these tools enhance management efficiency than other
tools. Though, there is yet far to make innovation-based tools
adequately attractive, simple, intuitive, and nice for farmers
to adopt. On the other hand, producers need to be trained
appropriately until these technological tools can be easily
managed.

Actuation on the crop is the last step to complete the crop
management cycle as shown in figure 3. It is done by con-
sidering the recommendations of the DSS through advanced
equipment’s/machines able to receive data signals from the
control unit. Variable-rate machines are capable of executing
several agriculture errands operated by automatic systems.
The application of variable rate technology (VRT) for site-
specific crop management (SSCM) can improve profit and
diminish the environmental impact by executing tasks pre-
cisely. Delineation technique usage in management zones can
increase the efficiency of farms for instance applied delin-
eation methods for variable rate nutrient use cases, which
enhances the farm efficacy than traditional uniform-rate use
cases, and impact on the environment was minimized. Dif-
ferent machinery manufacturing companies such as CLAAS,
CEBIS MOBILE ISOBUS, etc. are developing various VRT
based commercial solutions to perform different applications
of precision agriculture. Variable-rate harvesting (VRH) or
automatic differential harvesting is the other type of variable
actuation, which tries to harvest according to initially speci-
fiedmanagement zones. Other than efficiency and usefulness,
the cost is one of the vital parameters to reflect for the accep-
tance of these technologies. Thus, the pervasive availability
of economical electronic components will favor the adoption
of these digital applications throughout the world including
small farm holders.

V. PROSPECTUS OF BIG DATA AND AI IN PRECISION
AGRICULTURE
A. BIG DATA-BASED DECISION SUPPORT SYSTEM FOR
CROP SELECTION
The proposed system architecture maintains the data col-
lected at every stage of agriculture production and supply
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FIGURE 4. Software tools employed in agriculture big data analysis.

chains such as soil moisture, weather, and environment data,
crop yield and harvest, demand and supply data from the
supply chain, food processing data from food processing
industries, and pesticides used by the farmer. Figure 4 rep-
resents the overview of the decision support system for crop
selection in the proposed system. This data is at cloud storage
and other local databases, are used to abstract the relevant
information about the quality of soil like nutrient level and
pH, analyze seed characteristics, sorting of food, the weather
patterns, marketing and trade management, and the existence
of food hazards by relating biotic or abiotic data with devel-
opment and probabilistic existence of pathogens, pests, and
toxicants. Big data analytics recommend the best appropriate
crop for agriculture practitioners to select for which there
will be demand. The system keeps track and maps the crops
with the corresponding demand and prevents farmers from
overabundance harvesting of the crops with the predicted
demand.

B. CROP MANAGEMENT, GROWTH MONITORING, AND
PRODUCE QUALITY
The raw estimation of vital parameters from the farm data
necessities to be processed efficiently to convert numbers
and pictures into beneficial info. The growth and quality of
the crops can be monitored from the image data collected
from the farm and then applying different image processing
techniques such as OpenCV, Matplotlib, Sciki-image, etc.,
in Python. We can measure the height and width of plants
along with the quality of the crops by extracting the different
features of crops based on the color of the leaves and crops
from the images. In the meantime, other IoT devices are used

FIGURE 5. Big data-based decision support system.

to collect all other environmental parameters and are stored
in the cloud. IoT networks deployed in the food processing
industries collect information about each step in food produc-
tion from the quality of rawmaterial used to other ingredients
used to produce the final food product. All these values can
be stored in the network in any file format such as CSV
file format, etc. After initial analysis and determination of
how indispensable the extracted features are. We can employ
some of the abstracted data to train our machine learning
or deep learning models. Then these trained deep learning
algorithms/models are used to extract the required features
from large data sets collected from the field.

The crop yield estimation targets to analyze factors that
affect and influence the production, like irrigation, natural
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soil composition, and its physical structure and topography,
climate and weather, crop stress, crop diseases, and pests,
etc. It facilitates efficient management of resources; a timely
and precise estimation of products can offer a reliable base
to decision-makers to ascertain if there will be a scarcity or
excess, therefore, to respond appropriately according to the
conditions.

C. SUSTAINABLE USE OF RESOURCES
Driving advancements in the technologies, such as AI, IoT,
and drones using big data in its processes to increasingly
enhance sustainability in agriculture. Since the volume of
arable land is not increasing, the groundwater levels are going
down, and the soil quality is not increasing these technologies
could make sure optimal utilization of arable land, water,
and other resources to meet global requirements at the same
time conserving resources for the future generations. Thus,
big data have the potential to provide solutions (practical and
scalable) that can assist in natural resource conservation, thus
could sustain agriculture.

D. REDUCE PESTICIDE USAGE
With the implementation application of computer vision,
machine learning, and robotics, agriculture practitioners can
employ AI to manage weeds. From the data collected from
the farms with the help of IoT devices, AI can assist in data
abstraction to locate the weeds in fields and spray only to the
specified locations where the weeds are. Thus, reduces the
consumption of pesticide spraying an entire field and leaves
less chemical on the agriculture produce relatively the amount
of chemicals typically sprayed.

E. PLANT DISEASE DETECTION
Agriculture production and quality face a major threat from
plant diseases. Recently, several deep learning-based neural
networks have been developed to identify plant diseases but
all the models work when the diseases are fully developed
in the crop and thus have minimum effect on increasing the
quality of the produce. In the fields, plant disease detection
and monitoring at early stages are difficult, time extensive,
and costly. But to increase the crop quality and yield, deep
learning algorithms for timely classification and recognition
of disease are required. This can be achieved by preparing
plant pathology datasets with diseases in the early stages.

F. SYSTEM FOR RISK MANAGEMENT
Managing risks because of the farm location, type of soil,
and mostly to heat stress or freeze involves essential sig-
nificance in precision agriculture. A particular condition for
cultivation is the impact of the climate and particularly its
volatility. The amalgamation of different datasets is a critical
process for data interpretation for this use case. Provincial
climate patterns are utilized to join data from global patterns
with local and provincial meteorological histories to give
climate information to more modest spatial units and support
real-time adoption of the environment and climate changes.

For example, [64] discussed a situation of big data employed
in the forecasting of rainfall by taking benefits of meteo-
rological big datasets. The outcomes show a considerable
prospective of data fusion in precision agriculture.

G. AGRICULTURE MANAGEMENT SYSTEM
ICT empowers farmers to share data, set up collabora-
tion, and work together. As agriculture practitioners become
connected, software-defined management frameworks arise.
Rural administration frameworks emerge to give account-
ing administrations, linking growers with farm owners and
administrators, and offer benchmarking capacities to agri-
culturalists by associating them. Their point is to support
farm administrators and agribusinesses throughout the world,
incorporate, and examine a tremendous quantity of infor-
mation from real-time sources to help their decisions in
business. Such frameworks give smart cultivating solutions.
Smart cultivating is a term that broadens precision agricul-
ture by putting together administration errands concerning
handle explicit information as well as information upgraded
by setting and circumstance awareness, set off by real-time
events [61]. Taking examples of studies conducted on small
farms in the developing world specify that farmers are unable
to trade their produce because of oversupply or inadequate
information. Tools for higher productivity and require esti-
mations can facilitate crops to be incorporated into the global
supply chain [62].

VI. BIG DATA CHALLENGES IN PRECISION AGRICULTURE
Gathering and examining huge data produced via IoT net-
works and wireless sensor networks, comprising digital
images and more data from UAVs, satellites, and data fusion
with existing data present difficulties to the effective execu-
tion of smart farming. Arising technologies about datamining
techniques and artificial intelligence techniques are potential
methods to achieve intuitions from said information [61],
[63]–[67]. These techniques can assist with dissecting greater
and more unpredictable information, uncover covered-up
models, and uncover trends quickly and precisely. The capa-
bility of these strategies in massive data investigation has
not been sufficiently valued in farming for various reasons
inspected underneath.

The greater part of the accessible open frameworks refer-
enced already result from the latest projects, their issue is still
extensively wide embraced, to conclude the final accomplish-
ment. Large numbers of themmay in any case be underdevel-
oped and have not attained their maximum capacity yet. Most
of these applications of big data are suited for large industrial
farms (such asMonsanto) that now employ big data in process
of decision making and have the infrastructure to access
data, resources, and most importantly access to finance [68].
There is very little work done on small farms around the
developing world. Big data has the potential to support non-
industrial farms, however moral and ethical queries regarding
availability, cost, and funding need to be addressed to attain
these advantages. If this trend continues, the benefits from
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data-driven precision agriculture will remain available to only
big industrial farms.

A. DATA COLLECTION CHALLENGES
In precision agriculture use cases, enormous data is generated
from different sources. Merging data from an assortment of
sources raises worries about the issue of information quality
and information merging, and the access to gathered huge
information raises apprehensions about safety and protection.

Data-driven techniques request uncontaminated and appli-
cable information be used. Incomplete datasets obliterated
information, and the presence of exceptions or inclinations
in the training set influences model precisions. The analysis
of information quality requests critical human contribution
and expert knowledge. However, even semi-computerized
approaches are not useful concerning huge volumes of infor-
mation. The act of large information assortment likewise
increases apprehensions over availability and security. The
capability of academicians and researchers to perform big-
data-oriented examinations firmly relies upon the accessi-
bility of farm data. Suggestions for administering security,
ownership of data, protection of data, and information use
ought to be set by farmers’ coalitions and farming technology
suppliers.

B. CHALLENGES IN BIG DATA ANALYSIS TECHNIQUES
Big data requires extraordinary methods to proficiently pro-
cess a huge quantity of data with infinite running time.
Hypothesis analysis and ML are the largely employed meth-
ods for data exploration [69]. Agricultural data analysis
is mostly statistical. AI techniques do not consider any
pre-established relations among variables from the hypoth-
esis however start from the data to look for potential connec-
tions between variables [70], [71].

The gathered datasets are huge and complex making it
hard to manage normal AI procedures. Such methods reg-
ularly perform inadequately when applied to agricultural
data. Scalable and versatile methods are expected to adapt
to voluminous information. Besides, enormous information
gathered in agriculture disrupt normal suppositions basic a
few AI and analytic techniques, for example, the indepen-
dence and identical distribution of data. Big data generated
from farms shows spatial-temporal autocorrelation, has het-
erogeneity and high dimensionality, is nonstationary, and as
a rule, must be handled in a constant manner [61], [72].

To control the datasets that go alongwith precision or smart
farming, analytics techniques need to an extent in aligned and
distributedmeans, high computational complication. Techno-
logical developments in cloud computing capabilities and dis-
tributed storage models can assist in this course. Distributed
computing may be employed to incorporate data sources in
various areas, and afterward, the data can be apportioned into
an appropriated and parallel model. The integration of AI
and distributed computing execution procedures gives poten-
tial approaches to deal with huge data. Established models,
ought to remain compatible with distributed computing, but

not all AI models are suitable for execution in distributed
form. As an effective model, parallel SVM (PSVM) [73]
decreases memory and time utilization and in [74] a versatile
AI administration is presented for stream handling and real-
time processing.

C. AVAILABILITY OF COMPUTING INFRASTRUCTURE
Apart from novel analytical standards for information
abstraction from big data-compatible distributed frameworks
and advanced wireless communication solutions are also
required to implement big data in precision agriculture.
Management of farms faces several challenges in executing
real-time analysis and delivery of heterogeneous and multi-
dimensional data channels from various sensor networks [75]
Platforms for real-time data analysis are required to manage
data collected from remote sensing online and fuse offline
data with it from other distributed data sources. Since preci-
sion farming greatly depends on event monitoring this neces-
sitates data analysis and therefore needs lesser latency and
greater bandwidth. Hadoop (open source) is right for parallel
processing and applications for execution of cutting-edge
analytics on enormous data stored have mostly developed
on Hadoop (Apache Software Foundation, 2019b). How-
ever, Hadoop is inappropriate for real-time data processing
applications. Apache Storm, Spark, and Flink are appropriate
for real-time data stream processing. Several modules such
as Mlib and GraphLab for providing ML operations, while
Tensorflow like tools are intended to develop sophisticated
ML models such as CNNs, and DNNs.

D. MANAGING GROWING DATA AND REAL-TIME
SCALABILITY
An immense quantity of images and video is produced pro-
gressively through several devices during plant growth mon-
itoring, which prompts several challenges in storing and
processing all that data. Moreover, most of the data gen-
erated in agriculture are amorphous or semi-structured, not
stable for storing in customary databases like MySQL, SQL
Server. Management of such enormous unstructured data is
considered a big challenge.

It is imperative to give consumers visual data in a real-time
mode to empower them with efficient fast decision-making
capabilities. This demands advanced big data platforms with
real-time data handling capabilities across the network stages
such as collecting, processing or analyzing, and visualizing.
But real-time analyzing such an enormous amount of data
is challenging near the source due to inefficient computing
infrastructure.

E. DATA MANAGEMENT LANDSCAPE UNCERTAINTY
One disruptive aspect of massive data is the utilization of
variability of advanced data management techniques whose
intentions are to strengthen operational and analytical pro-
cessing significantly. These methodologies are generally
grouped into the NoSQL framework category that is dis-
tinguished from a traditional relational storage management
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system. There are various NoSQL methods. Some sup-
port a hierarchical object interpretation employing standing
encoding techniques like XML, BSON, or JSON related to
respectively managed data entities while others are using the
key-value concept of data storage, fundamentally supporting
a schema-less model. Databases based on graphs maintain
the interrelated relationships between various objects. And
several other standards are evolving continuously.

In fact, inside every one of these NoSQL classifications,
many models are being created by several organizations both
for-profit and nonprofit. Each approach is fit diversely to
key performance measurements—a few models give extraor-
dinary adaptability; others are excellently scalable as far as
execution while others support a more extensive scope of
functionality.

To be specific, the wide assortment of NoSQL tools and
designers, and the market status impart a prominent level of
uncertainty to the data management landscape. Selecting a
NoSQL technique is difficult, but choosing the wrong data
management framework can result in enormous errors and
loss if the selected NoSQL tool from a particular organization
doesn’t satisfy the expectations or if a different data man-
agement system is adopted by a third party for application
development. Therefore, to select big data management tech-
niques users need to consider their respective applications and
performance requirements along with the mitigation of risks
of the underlining technology.

VII. CONCLUSION AND RECOMMENDATIONS
The ever-growing accessibility of information through devel-
opments in ICT appears promising for improving innova-
tions on indispensable decision-making through enhancing
precision and generalization capability of models. Besides,
learning from the enormous quantity of data generated from
precision agriculture practices is anticipated to create sub-
stantial opportunities and transformational perspectives for
precision farming. With the advancement in big data, tradi-
tional learning methods are not naturally proficient or scal-
able adequately to process huge quantities of heterogeneous,
multi-dimensional, and spatiotemporal data. Innovative ML
techniques such as CNN, big data analysis methods present
higher precision, flexibility, vigor, and performance. We have
provided a comparison and discussion on the different ML
techniques in precision agriculture.

Agriculture production challenges are growing, creating
the necessity to comprehend the complicated agriculture
environments more crucial than ever before. Several ML
techniques due to their data mining capabilities from agricul-
ture data are extensively being employed in smart farming.
Several challenges facing by big data and AI in precision
agriculture are classified appropriately.

Automation and application of AI, drones, IoT, robots,
and big data are anticipated to perform a significant function
in various agriculture areas in addition to precision farm-
ing. Employment of high-performance data-driven scalable
learning methods provides better real-time decision-making

capabilities and automates various agriculture processes, and
thus can transform conventional farm management into arti-
ficial intelligence systems. Emerging domains of cutting-
edge ML and data mining converged with accessible datasets
and strategy structures are required to act instrumental in
addressing the challenges of agrarian production regarding
sustainability, efficiency, climate change, and food security.

A data-driven system benefits every single stakeholder
engaged with the agriculture business right from agriculture
practitioners (farmers) to consumers, financial institutions,
food processing industries, and several others. Even though
the best of its capabilities are still unexplored that it has
to offer for value generation, it has already begun to get
enormous revolutions in the agriculture industry. Some of
the various benefits AI and big data offers include the devel-
opment of healthier and superior products because of the
availability of the new plant genome sequencing techniques,
precision agriculture methods help in inferring conversant
decisionmaking, and the utilization of IoT sensor devices and
analytics techniques help in thwarting the food wastage and
food-borne diseases.
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