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ABSTRACT The explosive growth of deep learning (DL)–based artificial intelligence (AI) applications
necessitates extraordinary computing capabilities that cannot be achieved using traditional CPU standalone
computing. Therefore, the heavy mission-critical DL kernel computing currently relies on a heterogeneous
computing (HGC) platform integrated with CPUs, GPUs, and accelerators, as well as substantial data storage
elements. However, the metallic electrical interconnection in the existing manycore platform would not be
sustainable for handling the massively increasing bandwidth demand of big data driven AI applications.
Incorporating an optical network-on-chip (ONoC) for providing ultrahigh bandwidth, we propose a rapid
topology generation and core mapping of ONoC (REGO) for energy-efficient HGC multicore architecture.
The genetic algorithm (GA)-based REGO utilizes the structural characteristics of the optical router to the
fitness function and thus compromises the trade-off between the required throughput, optical signal-to-noise
ratio (OSNR), and total energy consumption. Furthermore, the crossover step accelerates the convergence
speed by suppressing randomness in the GA, thus significantly reducing excessive running time owing to the
NP-hard property. The generated ONoC through REGO demonstrates, on an average, an increase of 63.29 %
and 22.80 % in throughput and a decrease of 50.24 % and 9.56 % in energy per bit, in the VGG-16 and
VGG-19 compared with the conventional mesh- and torus-topology-based ONoCs, respectively.

INDEX TERMS Deep learning kernel, genetic algorithm, heterogeneous computing platform, topology
generation, optical network-on-chip.

I. INTRODUCTION
Deep learning (DL), a class of machine learning algorithms,
trains a nonlinear function approximator represented by a
deep neural network (DNN) architecture using input-output
pairs of training data [1]. The primary goal of DL is to
improve accuracy by learning the weights through backward
propagation of errors (backpropagation). Repetitive opera-
tions that occur while learning errors in backpropagation
require extremely high parallelism and vector-matrix oper-
ations. Therefore, a heterogeneous computing (HGC) plat-
form that combines various types of processors and dedicated
accelerators is required instead of a legacy CPU-based archi-
tecture [2]. In addition, an ultra-wideband on-chip network

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

infrastructure is essential for handling excessively heavy data
traffic.

Network-on-chip (NoC) is a scalable solution for on-
chip communication infrastructure that can handle the
ever-increasing processor cores integrated on a single chip.
However, despite the continuing progress in transistor minia-
turization, the challenging problems in the backend-of-
the-line (BEOL) fabrication steps that form the interconnect
layer using metallic interconnects impede the expansion
of the on-chip communication bandwidth. An optical
NoC (ONoC) based on silicon photonics is being actively
investigated as an alternative to electrical NoCs (ENoCs).
Semiconductor industries such as IBM, Intel, and Mellanox
have developed several optical devices and interface
technologies which can be deployed in ONoCs [3]–[5].
In addition, AyarLabs has developed TeraPHY, a highly
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integrated smart photoelectric chiplet capable of operating
with a bandwidth of several tens of Tb/s in an ASIC, CPU,
and FPGA package in a recent study [6]. In [7], the authors
compared the electrical mesh (EMesh) with four different
types of ONoCs, including their own LumiNOC, under fair
simulation conditions. All NoCs under comparison were
organized in 64 tiles comprising corresponding core and
router pairs operating at 5GHz using a 22nm CMOS process
technology library. Table 1 shows a comparison of ENoC
with four different ONoC architectures in an experimental
environment established by Cheng. Corona, Flexishare, and
Clos have 26, 3, and 1.5 times higher throughput and 14, 5,
and 24 times higher power efficiency compared with EMesh,
respectively. LumiNOC, which is an application-specific
ONoC architecture, achieved 34 times higher throughput per
watt compared to EMesh. In summary, ONoC is still far
from mass production; nonetheless, it has the potential to
provide a significantly higher bandwidth and energy effi-
ciency compared to that of the ENoC. Therefore, a rapid
topology generation and core mapping of an ONoC (REGO)
is proposed to effectively assess the unique DNN traffic
patterns and HGC architecture.

TABLE 1. Comparison of ENoC and ONoCs with regard to power
consumption and throughput.

Primarily, irregular topology generation and core mapping
are NP-hard problems that require a tremendous computa-
tional load. Furthermore, to minimize the laser power con-
sumption of an ONoC, a large number of worst-case optical
signal-to-noise ratio (OSNR) calculations with dynamically
varying optical signal propagation models in various routing
candidate paths must be involved. The resonance structure
of micro-ring resonators (MRs) requires large-scale itera-
tive calculations until the optical signal is stabilized in each
optical router. The computational complexity increases expo-
nentially with system augmentations along with the memory
footprint [12]. Therefore, a high-speed algorithm that can
achieve irregular topology generation and core mapping of
ONoCs that satisfies a given design goal within a reasonable
time is essential.

For the design space exploration of NoC, particle swarm
optimization (PSO) [13] and genetic algorithm (GA) [14],
a type of meta-heuristic, are commonly used. However,
the PSO has three drawbacks when applied to topology gen-
eration in NoCs. Because PSO finds the optimal solution

only through the direction toward the current best solution,
1) it is affected more by the initial initialization population
than GA, and 2) has the drawback of increasing the chance
of falling into the local minima problem [15]. 3) The network
constraints for topology generation result in a huge computa-
tional load on the process of changing the location of particles
in the PSO.

For these reasons, PSO is mainly used for core and appli-
cation mapping [16]–[19]. The GA is a parallel and global
optimization problem solving technique that mimics natural
selection and genetic inheritance [20]. The GA is frequently
used in environments where the best solution must be found
within an acceptable time [21]. Several studies have been con-
ducted for GA-based irregular topology generation and core
mapping to optimize power and performance under highly
variable data traffic environments [22]–[24].

The GA is a population-based optimization heuristic that
finds a solution through the iteration of selection, crossover,
and mutation steps from the initial population of a group of
chromosomes. The GA heuristic has been widely adopted for
NP-hard problems in architecture space exploration includ-
ing network topology and core mapping techniques. Three
drawbacks are usually mentioned in the discussion of GA.
First, GA is prone to a local minima problem unless it
randomly generates an initialization population for genetic
diversity. Second, an in-depth consideration of the fitness
function in the evolution phase is required for the accuracy
and convergence speed of the algorithm. Finally, it is difficult
to assign an optimization problem to genetic data, such as
chromosomes and genes. To alleviate the first and second
drawbacks, the links of routers are randomly generated to
maximize the randomness of the initial population in the
initialization phase of the REGO, and the fitness function
is defined to reflect the ONoC design characteristics. Mean-
while, because the throughput and OSNR are significantly
affected by the internal connectivity and core mapping in the
ONoCs, the objectives of the fitness function and the basic
elements of the GA can be properly adapted to the search-
ing scheme for ONoC topology solutions. The third draw-
back can thus be resolved. Therefore, the GA was selected
as a framework to determine the optimal topology and
core mapping solution for the ONoC implementation of the
HGC platform.

While an electrical router consists of symmetric cross-
bar switches, an optical router comprising waveguides and
MR switches is configured asymmetrically to minimize
insertion loss and crosstalk noise. It is widely known that
the OSNR dominates the power consumption of ONoCs
and strongly depends on insertion loss and crosstalk noise.
Furthermore, the insertion loss and crosstalk noise are sig-
nificantly affected by the number of ports of the optical
router according to the arrangement of optical elements [25].
Therefore, REGO considers OSNR variations based on the
optical element configuration in the fitness calculation to
optimize the trade-off between the data throughput and power
consumption in HGC platform.
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Furthermore, this study focuses on accelerating the con-
vergence speed by applying the crossover that reflects the
structural change of the routers depending on the OSNR and
the number of ports. In the crossover step of the REGO,
a fitness variation-based genetic data exchange scheme is
applied to avoid unnecessary searching for chromosomes
which violate ONoC constraints. Core mapping refers to the
method of allocating cores to a given NoC topology in a
specific order. The topology generation arranges the links
of the routers and allocates appropriate routers according to
the number of ports in the arranged network. In this process,
the aggregation of router connections implies the location
of cores, thus allowing topology generation to incorporate
core mapping of ONoC with a small computational burden.
In addition, considering different types of processor cores that
show different capabilities and characteristics in an irregular
topology, coremappingmust be jointly performedwith topol-
ogy generation to meet the design objectives. Consequently,
the consolidated topology generation and coremapping of the
REGO are natural and beneficial for jointly optimizing the
design objective with given constraints.

The remainder of this paper is organized as follows.
Related work and background are described in Section II.
Section III presents the main algorithm flow of GA-based
REGO and describes how the properties of the optical ele-
ments are applied to the technique. The simulation results and
analysis under various conditions are described in Section IV.
Finally, the conclusions are drawn in Section 5.

II. RELATED WORK
A. GA-BASED ENoC TOPOLOGY GENERATION
Core mapping has been studied for optimizing the power and
performance of the target application in a regular topology
where the topology is predetermined for routing efficiency
and scalability. A variety of core mapping schemes for opti-
mizing power consumption and performance in NoCs have
been conducted [26]–[28]. In [26], a core mapping technique
of NoC using reinforcement learning in an HGC platform
without a test set prepared in advance was proposed. In addi-
tion, Tahir et al. proposed a congestion-aware core map-
ping scheme using betweenness centrality that can identify
highly loaded NoC links in [27]. However, these studies were
derived from a lightweight computing algorithm that simply
swaps the location of the core, and it is difficult to apply it to
a topology generation method that requires consideration of
various network conditions.

Existing studies on GA-based ENoC topology generation
have mainly focused on minimizing power consumption or
maximizing throughput. Leary et al. proposed a GA-based
topology generation for application-specific ENoC [29].
Herein, the authors achieved 30% lower total power con-
sumption than deterministic heuristic techniques by consid-
ering the system-level floorplan with wire-length constraints
along with the power consumption due to physical links.
In [30], the power consumption and router resources were
minimized while meeting bandwidth constraints through

GA-based floorplan-aware topology synthesis. In addition,
a GA-based mapping and routing (GAMR) approach was
proposed for low energy design of ENoCs under bandwidth
constraints [22]. The GAMR automatically mapped the cores
of a given application onto the ENoC and generated deter-
ministic deadlock-free minimal routing paths.

In contrast, GA-based topology generation schemes have
been suggested for application specific ENoCs that have
been pursued to improve throughput [23], [31]. These stud-
ies considered the required throughput of the given applica-
tions in the fitness function and evolution phase of the GA.
Although the ENoC topology generation techniques men-
tioned so far can be partially adapted to ONoCs, additional
considerations are essential because of the fundamentally
different signal characteristics and interconnection medium.
Moreover, the worst-case OSNR calculation is mandatory to
determine the minimum required laser source power, which
dominates the overall power consumption and performance.

B. ONOC ARCHITECTURE FOR HGC PLATFORM
Studies on irregular-topology-based ENoCs have been
extended to accommodate optical interconnection thus
achieving ultra-high bandwidth required for handling
ever-increasing big data and/or DNN acceleration.
Ahmed et al. proposed PHENIC 3D-ONoC, a silicon pho-
tonic 3D-NoC architecture for heterogeneous many-core
system-on-chips (MCSoCs) [32]. The PHENIC 3D-ONoC is
composed of an electronic control network (ECN) for path
reservation, which can configure optical routers, and a num-
ber of photonic communication networks (PCNs), thereby
providing approximately 10 % improvement in throughput
compared to conventional 2D-mesh based ENoC. In [33],
SHARP (shared heterogeneous architecture with recon-
figurable photonic network-on-chip) showed 34 % more
throughput and 25 % less energy consumption per bit com-
pared to the mesh-based ENoC. SHARP clusters CPU and
GPU cores around the same router and dynamically allo-
cated bandwidth between CPU and GPU cores through
single-writer multiple-reader (SWMR) crossbars according
to the application requirement. Although PHENIC 3D-ONoC
and SHARP deployed full optical data paths for exploiting
the low power and broadband advantages of the optical
interconnect, the potential capabilities of irregular topologies
were not addressed.

With the explosive growth of big data-based DL applica-
tions, diverse approaches in terms of architectural aspects
to satisfy the enormous throughput and energy efficiency
are actively progressing. For optical signal detection, the
ONoC laser source sets the power margin considering
the OSNR, photodetector sensitivity, and laser wall-plug effi-
ciency (Le). MR heater for resonance wavelength tuning is
reported to account for approximately 20 % of the total
power consumption of the various ONoC topologies [34].
While the sensitivity and Le of the photodetector are hard-
ware constraints that are not controllable, the OSNR and the
number ofMR heaters that significantly affect the total power
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consumption of ONoCs have strong correlation with the
implementation style. Consequently, both OSNR and the
number of MR heaters must be assessed in the process of
GA-based topology generation and core mapping.

III. REGO
Fig. 1 depicts the overall procedure of GA-based REGO.
First, three types of inputs are defined: ONoC parameters,
GA parameters, application task graph. The ONoC param-
eters include the system-level ONoC specification such as
configurable router types and loss coefficient of optical ele-
ments. The GA parameters indicate the constants required
for initialization and evolution such as population size, selec-
tion probability, and the fractional ratio of crossover. The
REGO receives as inputs an application task graph including
the number of cores and ONoC parameters, which further
includes the available router structure and loss and noise
factors of the optical elements. Thus, the REGO can accom-
modate various router structures and optical elements because
it calculates the worst-case OSNR through loss and noise
parameters obtained in advance through the parameters of
optical routers and elements.

FIGURE 1. Overall procedure of REGO.

A gene, which is a primitive element of the GA, is mapped
with a router, including structure and link information
connected to the adjacent routers and the corresponding core.
Next, the genes are gathered to form a chromosome corre-
sponding to the entire ONoC topology. All chromosomes

go through the initialization phase, which creates a random
population. Then enter the evolution phase with genetic infor-
mation containing the fractional ratio accounting for the num-
ber of chromosomes classified into selection, crossover, and
mutation. For each iteration of the evolution phase, the fitness
of all chromosomes is calculated by the fitness function. The
objectives of the fitness function include features of an ONoC
such as OSNR and the total number of MRs. When the con-
vergence condition is satisfied, the best population is obtained
from the REGO which implies an irregular topology-based
ONoC solution.

While the initialization phase attempts to maximize ran-
domness, the fitness function and evolution phase con-
sider the characteristics of the optical elements to optimize
the performance and energy efficiency. The REGO finds a
fitness-based solution by incorporating the crucial informa-
tion relating to the OSNR, throughput, and MR heaters into
the fitness function thereby optimizing both throughput and
power consumption. In addition, unreliable factors caused by
improper router connections can be reduced by attempting to
crossover with regard to fitness variations of the objectives.

A. PROBLEM DEFINITION AND TERMINOLOGY
The GA-based REGO for the HGC platform satisfies the
following two constraints to ensure path validity between the
connected routers:
• Constraint 1. All routers and cores in a chromosome
must be guaranteed to be connected.

• Constraint 2. A direct network in which each core forms
a pair with only a single router is mandatory.

Table 2 describes the notations used in the REGO. The
gene, an element of the set G, represents a single router with
connectivity information. Each chromosome represents the

TABLE 2. Notations of REGO.
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entire ONoC topology as a group of genes and a routing
table. Fig. 2 depicts an example configuration of a single
chromosome that allows routers with four and five ports.
Chromosomes have connectivity and routing table informa-
tion for all routers in the network. Connectivity indicates the
router number connected to each router ri and the correspond-
ing port number. The routing table stores the input ports,
output ports, and MR control signals for the source node vi
and destination node vj.The cardinality of R is the same as
the number of cores |V|, because each core is coupled to a
single router by Constraint 2. REGO aims to find the best
population with the highest fitness in TG, the task graph of the
HGC platform, from the chromosome set Cset , whose ele-
ments are independently generated.

FIGURE 2. Example of chromosome configuration.

Because the worst-case OSNR of ONoC determines the
laser power consumption while guaranteeing the required
performance, it is necessary to set up a fitness function suit-
able for the ONoC environment. Therefore, the worst-case

OSNR is an essential objective when assessing the fitness
function [35].

As aforementioned, the MR heaters for tuning the
resonance wavelength of the MR accounts for approxi-
mately 20 % of the total power consumption of the ONoC,
and the number of MR heaters is identical to the number of
MRs [34]. If a router with a large number of ports is used
as a building block, the number of required MRs increases,
whereas the hop count in the longest path decreases. This rela-
tionship indicates that a trade-off exists between the number
of MRs and the worst-case OSNR. Therefore, we separate
the worst-case OSNR and the number of MRs into different
objectives in the fitness calculation regarding power min-
imization. We incorporate a fitness function F(X , I ) com-
prising the importance factor Ii and M objectives Oi(X ) for
multi-objective optimization proposed in [36].

F(X , I ) =
M∑
i=1

Ii[Oi(X )] (1)

Because the HGC platform for deep learning requires high
throughput with low power consumption, we focused on opti-
mizing power and throughput. Therefore, power and through-
put were considered as objectives of the fitness function
in REGO. A modified fitness function of a chromosome f (C)
based on (1) is introduced in the REGO, which utilizes
the throughput Othr , worst-case OSNR Osnr , and number
of MRs Omr as objectives:

f (C) = I1 · Othr + I2 · Osnr + I3 · Omr ,

(I1 + I2 + I3 = 1, 0 ≤ I1, I2, I3 ≤ 1) (2)

where Ii indicates the importance factor of ith elements.
Adjusting the importance factors in the fitness function

facilitates determining the optimized ONoC topology in
terms of energy efficiency and throughput. Every element
comprising the fitness function is scaled to an identical range
for the uniform application of the importance factors.

B. INITIALIZATION PHASE
Population initialization is closely related to the convergence
speed and quality of the final solution. Random initialization
is commonly used to generate an initial population when
the genetic information is not known in advance [37]. The
GA guarantees randomness in the initialization by maximiz-
ing the diversity of genes in the chromosomes.

Algorithm 1 presents the process of the initialization phase
of REGO. Each chromosome is sequentially initialized with
a constraint that establishes a connected network. Because
the number of available router ports is limited by the type of
router permitted in the ONoC design, the process of randomly
connecting routers is repeated until the number of ports of
all routers reaches pmin, the minimum number of ports. After
connecting all routers in Ci, the path validity of each signal
path sp is checked. If SPi has an invalid path, adjusting gl
to ensure network connectivity might harm the randomness
of genetic data as well as increase computational complexity.
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Therefore, in this case, the REGO abandons the entire router
connection and repeats the above process.

Algorithm 1 Initialization Phase
In/Output Chromosome set Cset
1: for i = 1 to |Cset | do
2: while !(Ci constitutes connected network) do
3: remove all connectivity of Gi in Ci
4: for j = 1 to |R| do
5: randomly select rk of R in Ci, k 6= j

where nrpk < pmax until nrpj < pmin
6: update glj and glk
7: if (pmin ≤ nrpk && nrpk ≤ pmax ) then
8: update gt j and gtk
9: end if
10: end for
11: check path validity of spjk in Ci

where 1 ≤ j, k ≤ |V|
12: end while
13: generate routing table RT i of Ci
14: sortCi(∈ Cset ) in descending order of fitness value f (Ci)
15: end for

C. EVOLUTION PHASE
The procedure of the evolution phase in REGO is depicted
in Fig. 3. The selection, crossover, and mutation steps of
the evolution phase are performed according to λ, ξ , and µ,
respectively. In the selection step, chromosomes with high
fitness are propagated to the next generation with selection
probability p. In the crossover step, chromosomes with higher
fitness than the previous generation are generated through
the exchange of genetic data between chromosomes. In the
mutation step, randomness is assigned to the chromosome
set by transforming the genetic data in random range of the
chromosomes.

1) SELECTION
The selection step in the REGO propagates chromosomes
with high fitness values to the next generation. Although the
fitness value of the chromosome is low, the dominant gene
to elevate fitness value might be contained in the correspond-
ing chromosome; thus, all chromosomes should be given an
opportunity to be preserved for the next generation. In REGO,
the chromosomes are initialized in a serial manner, and then
sorted according to fitness values. Herein, the pre-sorted
chromosomes in the initialization phase dramatically relieve
the computational complexity of tournament selection.

Thus, the REGO uses tournament selection, which assigns
ranks based on the fitness value and selects with a selection
probability ps. In the crossover and mutation of REGO, only
the chromosome with modified fitness value needs to be
sorted and thus the computational complexity is decreased
compared to the initial sorting. Furthermore, tournament
selection offers the benefit of reducing the enormous calcu-
lation time required to find the worst-case OSNR.

2) CROSSOVER
After completing the selection step, the chromosomes of
the remaining Cset are selected for crossover according to

FIGURE 3. Evolution phase of REGO.

the crossover rate ξ . In the crossover step of the REGO,
the genetic data gt and gl representing the type and connec-
tivity of the optical router are exchanged between selected
chromosomes. To comply with the basic constraints of REGO
in Section 3.A, all chromosomes must satisfy the following
three crossover conditions (COCs):
• COC 1. ∀rtij : rtij 6= ø, i, j ∈ {1, · · · , |V |} , i 6= j
• COC 2. ∀nrpi : nrpi ≤ pmax , i ∈ {1, · · · , |R|}
• COC 3. ∀nrpi : nrpi ≥ pmin, i ∈ {1, · · · , |R|}
The REGO introduced a two-point crossover method for

exchanging single router to avoid overlapping cases that
violated the above COCs. If COC 1 is not satisfied after
the crossover step, the exchanged router can be regarded as
the dominant gene that determines the connectivity of the
entire network. Forcing the crossover by connecting remain-
ing isolated routers for COC 1 invalidates the effect of the
crossover because most of the connectivity must be migrated
from the previous generation. Therefore, when a case that
violates COC 1 occurs, different gene or chromosome is
newly selected for crossover in the REGO.

Chromosomes that violate COCs 2 or 3 frequently appear
during the evolution phase iterations. Selecting only genes
and chromosomes that fulfill all three COCs for crossover
severely reduces the diversity of the chromosome set. There-
fore, REGO should search for alternative routers that satisfy
only COCs 2 and 3. The alternative routers must maintain
the connection properties affecting on the fitness of the router
originally intended to be connected.
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Fig. 4 illustrates the architecture of a Cygnus router, which
is a 5 × 5 optical non-blocking router, where the MR state is
ms and the input-to-output ratio in the lookup table (LUT) of
the signal power is LUT [i][ms][s][j]. The output signal power
of the jth port of the Cygnus router Pouts,j can be calculated
using (3) according to Pins,i, the input signal power of the
ith port [ [35]].

Pouts,j = Pins,i · LUT [i][ms][s][j], i, j ∈ {0, 1, · · · , 4} (3)

FIGURE 4. Organization of Cygnus router.

Similarly, when the MR state is ms and the noise power
LUT is LUT [i][ms][n][j], the output noise power of the
jth port of the Cygnus router is Poutn,j can be calculated using
(4) according to Pinn,i, which is the input noise power of the i

th

port.

Poutn,j =

n∑
k=0

((Pins,k + P
in
n,k ) · LUT [k][ms][n][j]),

i, j ∈ {0, 1, · · · , n} (4)

Assuming that the signal and noise power of every input
port are commonly Pins and Pinn , respectively, the OSNR of
the jth output port OSNRj is calculated using (5)

OSNRj =
LUT [i][ms][s][j]∑n

k=0(R[k][ms][n][j])(1+ Pinn /Pins )
(5)

It should be noted that the term Pinn ?P
in
s of the denominator

in (5) is much less than 1 for guaranteeing signal reliabil-
ity. Thus, the minimum OSNR, insertion loss, and crosstalk
coefficient in the Cygnus router calculated using (5) are
13.44, −0.69 and −14.13 dB, respectively, which increased
in proportion to the number of Cygnus routers on the routing
path.

The packet delay Pdelay ignoring data collision is expressed
as (6), where ORbw, ORh, ERclk , and ERpipe indicate the
link bandwidth, the number of hops of the routing path,
the operating clock frequency, and the number of pipelines
of the electrical router, respectively.

Pdelay =
1

ORbw
+
ORh · ERpipe

ERclk
(6)

Because the packet delay increases as ORh increases,
the effect on the fitness function throughput perspective
decreases. Consequently, the replaced router to avoid the
COC violations must be placed adjacent to the router orig-
inally intended to be connected considering both the OSNR
and throughput.

Algorithm 2 Crossover Step
In/Output Chromosome set Cset
1: select chromosomes for crossover in Cset based on ξ
2: select a random pair (Ci,Cj) of the selected chromosomes

(i, j ∈ |Cset |)
3: randomly select rk of R
4: Ctmp_i = Ci, Ctmp_j = Cj
5: while !(COC 1) do
6: randomly select rk of R
7: replace glk and gtk in Ci to glk and gtk in Ctmp_j
8: replace glk and gtk in Cj to glk and gtk in Ctmp_i
9: if glk violates the COCs 2 and 3 then
10: replace glk to the closest router from glk causing

minimum fitness variation in RT
11: end if
12: check path validity of spjk in Ci and Cj where 1≤ j, k≤|V|
13: end while
14: if both Ci and Cj satisfy network connectivity then
15: update gtk according to nrpk
16: mark Ci and Cj to avoid redundant crossover
17: else
18: recover Ci and Cj based on Ctmp_i and Ctmp_j
19: end if

Algorithm 2 describes the behavior of the crossover step
in the REGO. The REGO based on two-point crossover ran-
domly selects a single router that contains genetic informa-
tion to be exchanged. Chromosomes Ci and Cj selected for
crossover are stored as temporary variables for exchange and
recovery. The router link glk violating the COC is replaced
by a valid router link with regard to the fitness variation.

Fig. 5 shows an example of the crossover step in the REGO,
where r5 is selected as the target router to be exchanged
between C1 and C2 when pmin is four and pmax is five in a
16-core ONoC. C2 can accept the genetic data of C1 without
violating the COCs, whereas three violations of COCs 1 and 2

FIGURE 5. Example of crossover step.
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occur in C1 in the crossover step. As gl5 of C1 is replaced
with gl5 of C2, the number of ports of r4 in C1, nrp4,
becomes three including the link with the core, which is less
than pmin. In addition, nrp2 and nrp12 become larger than pmax
as they were equal to pmax before the crossover. Accordingly,
r4 with insufficient number of ports, is connected to the target
router r5 to satisfy the port constraint. The available port in r5
intended to be assigned for connecting to r12 is reallocated to
link r4. Thus, COC 2 and COC 3 violations caused by r4 and
r12, respectively, are simultaneously resolved. Finally, r2 is
replaced by r6, which is adjacent to r2, as revealed by the rout-
ing table RT . In this way, the crossover step of REGO reduces
fitness variation by minimizing inevitable gene modification
when recovering COC violations. Consequently, the conver-
gence speed in evolution phase is accelerated by the crossover
along with the tournament selection in REGO.

3) MUTATION
Mutation is a unique way of assigning additional randomness
to the chromosome set, unlike selection and crossover, which
depend on the diversity of the initial population [38]. In each
chromosome of remaining Cset with regard to the mutation
rate µ after the selection and crossover steps, an indepen-
dent random range of genes in G is selected to be mutated.
The REGO maximizes the randomness of chromosome set
by randomly modifying the selected genes that include the
type and connectivity of the optical router. Fig. 6 shows an
example of a mutation in Cx . Mutation starts by searching
for link candidates to be added or deleted. REGO generates
a mutated chromosome by randomly selecting some candi-
dates. When the mutated Cx satisfies Constraint 2, Cx is
replaced with a mutated chromosome. To comply the Con-
straint 2 of Section III.A, each mutation confirms the path
validity of the chromosome containing the modified genes.

FIGURE 6. Example of mutation step.

IV. EVALUATION
A SystemC-based cycle-accurate simulator was built with
ONoC parameters extracted through the linear optical device
model (LODM) proposed in [12]. The visual geometry

group (VGG), an academic group focused on computer vision
at Oxford University, was dedicated to developing VGG-16
and VGG-19 16-layer and 19-layer deep convolutional net-
works, respectively [39]. We adopted the target applica-
tion model of HGC as VGG-16 and VGG-19 [39], which
are widely applied DNN models. Through the simulation,
the throughput, latency, and energy efficiency of the derived
ONoC topology and the convergence speed of the REGO
were measured. To demonstrate the algorithmic complex-
ity of the REGO, we compare the convergence speed of
the REGO against the discrete binary PSO (BPSO)-based
topology generation method and GA-based random map-
ping method that attempts to connect to the router ran-
domly in the case of COC violation. We constructed the
discrete BPSO-based topology generation method by extend-
ing the discrete BPSO-based core mapping method with the
chaotic disturbance proposed in [16]. The extended discrete
BPSO-based topology generation method uses the same fit-
ness function, population size, and initial population as the
REGO for a fair comparison. The velocity vector of the
extended BPSO-based topology generation method includes
the addition and deletion of connections between the routers,
instead of swapping the position of the core. We assumed the
maximum velocity of the extended discrete BPSO as three
links, and applied chaotic disturbance when the movement
of the location vector was inevitable owing to the network
constraints of Section III.A. The random mapping method
consists of the same GA parameters and processes as those
of REGO, except for the responses of COC violation cases.
We prepared 20 different initial populations to prevent inac-
curate convergence speed derivation due to coincidence.

The throughput, latency, and energy consumption for irreg-
ular topology, regular topology mesh, and torus generated
through REGO are compared to analyze the contribution of
the REGO. Typically, the throughput in an NoC is defined as
the amount of data transmitted per unit time. In this aspect,
we assessed the throughput as the total data movement per
unit time after all data transmission was completed in ONoC
with the traffic of the target application. Latency per bit,
considering data collision cases in real traffic, can be obtained
as the reciprocal of throughput. Energy per bit is calculated
by multiplying the power consumption according to the con-
figuration of the ONoC and the latency per bit.

The specifications of the ONoC optical devices are
listed in Table 3. In the mesh and torus, a Cygnus-based
non-blocking optical router with four and five I/O ports was
deployed [43]. A three-stage pipelined electrical router with
an operating clock frequency of 1 GHz was assumed to
control the optical layer.

According to [34], the MR heating power is a quarter
of the laser power. Taking this relationship into account,
we determine the importance factors I1, I2, and I3 of (2) in
Section III.A for 0.5, 0.4, and 0.1, respectively. In GA, ξ in
the range of 60 %–90 % and µ in the range of 1 %—5 % can
rapidly obtain the feasible solution [44]. To comply with this
range, λ, ξ , andµwere set to 0.35, 0.6, and 0.05, respectively.
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TABLE 3. Specifications of optical devices.

The OSNR is analyzed using optical elements with the
parameters listed in Table 4 [45]–[49]. First, the router-level
OSNRwas calculated using the optical crossbar implemented
by Verilog-AMS. Next, transport-level OSNR was analyzed
through EWOSA [35], a high-speed OSNR analysis method.

TABLE 4. Loss and noise coefficients of optical elements.

The system configuration of the HGC system consisting
of multicore CPUs, GPUs, and memory controllers (MCs) is
presented in Table 5. Each GPU core consists of four unified
shaders, and the last-level cache (LLC) is assumed to be an
L2 cache shared between all CPUs and GPU cores.

A. CONVERGENCE SPEED ANALYSIS
Fig. 7 shows degree of the convergence speed of the REGO,
GA-based random mapping method, and the discrete BPSO
according to the iteration number of the evolution phase.
In VGG-16, the fitness value of the REGO, GA-based ran-
dom mapping method, and the discrete BPSO converged at
average 3635th, 5672nd , and 1180th iteration, respectively.
In VGG-19, the fitness value of the REGO, GA-based ran-
dom mapping method, and the discrete BPSO converged
at average 4065th, 4580th, and 989th iteration, respectively.
The average convergence speed of the REGO was 1.56 and
1.13 times faster than GA-based random mapping method in
the VGG-16 and the VGG-19, respectively. The convergence

TABLE 5. HGC platform architecture configurations.

FIGURE 7. Fitness value comparison in terms of the number of iterations
in evolution phase for (a) VGG-16, (b) VGG-19.

speed of discrete BPSO was faster than that of REGO in
most cases. However, since discrete BPSO attempts to search
only in the direction of the past and current best particles,
a local best solution was defined along with a narrow search
range. As a result, the average converged fitness of REGO
was 0.003 and 0.011 higher than that of the random mapping
method and discrete BPSO, respectively.

The average CPU runtime per iteration of REGO,
GA-based random mapping method, and discrete BPSO was

VOLUME 9, 2021 110367



Y. W. Kim et al.: REGO for HGC Platform

TABLE 6. Comparison result of the irregular topology generated through
REGO with regular topologies mesh and torus.

5.12, 5.23, and 10.25 secs, respectively. Discrete BPSO
required approximately twice the CPU runtime compared to
other GA-based two topology generationmethods. Regarding
the time complexity of the EWOSA TCEWOSA and population
size Npopulation, the time complexities of the REGO and dis-
crete BPSO are expressed asO(Npopulation ·(ξ+µ)·TCEWOSA)
and O(Npopulation · TCEWOSA), respectively. Therefore, these
results were caused by significant computational complexity
of the discrete BPSO, which calculates the fitness for all
particles. Moreover, the discrete BPSO was slowed down by
additional searches for the router links that could be added or
removed in all particles.

These results show that when deriving the best population,
as shown in Fig. 7, crossing the dominant gene of the existing
chromosome is more likely to generate a population with high
fitness than a randomly generated gene, such as a mutation.
These results reflect the fitness value variation of genetic data
not covered by the random mapping method in the crossover
step of REGO.

B. THROUGHPUT AND ENERGY EFFICIENCY ANALYSIS
Table 6 shows the results of comparing the irregular topology
generated through REGO with regular topology mesh and
torus topologies in terms of throughput, worst-case OSNR,
number of MRs, and fitness. Increasing the number of links
in the ONoC can improve the path diversity of the packet
transmission. High path-diversity is beneficial to through-
put, however, might involve the adversarial effect on OSNR
caused by additional noise. For this reason, torus-based
ONoC exhibited higher throughput and lower worst-case
OSNR than mesh-based ONoC as shown in Table 6.

The irregular topology produced by the REGO showed a
maximum throughput improvement of 117.30% and 78.09%
in HGC-1 and HGC-2, respectively, compared to the con-
ventional mesh topology (68.29 % and 51.76 % on average).
In addition, compared to the torus topology, the throughput
improvement of REGO of HGC-1 and HGC-2 was up to
23.80 % and 17.80 %, respectively, (12.53 % and 10.46 % on
average). In the REGO, the dominant genes are exchanged
while maintaining the existing properties considering the
OSNR and throughput at the crossover step of the GA, there-
fore the throughput of ONoC is significantly increased.

The average fitness value of topology obtained by the
REGO achieved 4.72 % and 22.77 % higher than that of
mesh and torus, respectively. These results indicate that the
irregular topology-based solution is required to optimize the
multi-objectives desired in ONoC for the HGC platform.

Figs. 8 (a) and (b) show the normalized latencies of HGC-1
and HGC-2, respectively. The irregular topology obtained
from the REGO had 60.03 % and 11.49 % lower average
latencies comparing to the mesh and torus topologies, respec-
tively. The irregular topology optimized for the application
has a structural advantage over the existing regular topology
in terms of latency.

FIGURE 8. Normalized latency comparison results for VGG-16 and
VGG-19 according to HGC platform architecture configurations in
(a) HGC-1, (b) HGC-2.

Moreover, the lower latency of the irregular topology-based
ONoC contributed to an increase in the energy efficiency.
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Figs. 9 (a) and (b) show the average energy per bit for
HGC-1 and HGC-2, respectively. In Table 6, in the 16-core
network using the VGG-16 application, the mesh topology
has approximately 2.14 dB higher worst-case OSNR than the
topology obtained from the REGO.However, Fig. 9 presented
that the energy per bit of the network generated from the
REGO is 58.10 % lower than that of the mesh-based network
because of the high latency with fixed number of MRs of the
mesh-based ONoC.

FIGURE 9. Energy per bit comparison results for VGG-16 and
VGG-19 according to HGC platform architecture configurations in
(a) HGC-1, (b) HGC-2.

Themesh topology has a relatively largeMRheating power
owing to the adaption of a fixed-structured router, and a
31.16 % bit latency difference significantly affects the energy
per bit. Because this difference is noticeable in the 32-core
network where the number of MRs increases, the solution
obtained from REGO of 32 cores in HGC-1 has an average
of 50.25 and 9.91% lower energy per bit compared to the
mesh-based and torus-based networks, respectively. In con-
clusion, the ONoC implemented by the REGO can explore
beyond the regular topology-based networks for DNN in
terms of both energy efficiency and throughput.

V. CONCLUSION
In this paper, a GA-based REGO that enables the optimiza-
tion of throughput and energy efficiency of ONoC required
by the HGC was proposed. The ONoCs produced by the
REGO achieved 63.29% and 22.80% higher throughput than

mesh- and torus-basedONoCs, respectively, with high energy
efficiency. Moreover, the crossover in REGO accelerated the
convergence speed of fitness value by quick recovery of
the design constraint violations. The REGO optimized the
trade-off between the throughput and power consumption,
considering OSNR variations based on the parameters of
optical elements.
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