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ABSTRACT Fault type diagnosis is a very important tool to maintain the continuity of power transformer
operation. Dissolved gas analysis (DGA) is one of the most effective and widely used techniques for
predicting the power transformer fault types. In this paper, a convolutional neural network (CNN) model
is proposed based on the DGA approach to accurately predict transformer fault types under different noise
levels in measurements. The proposed model is applied with three categories of input ratios: conventional
ratios (Rogers’4 ratios, IEC 60599 ratios, Duval triangle ratios), new ratios (five gas percentage ratios and
new form six ratios), and hybrid ratios (conventional and new ratios together). The proposed model is trained
and tested based on 589 dataset samples collected from electrical utilities and literature with varying noise
levels up to±20%. The results indicate that the CNN model with hybrid input ratios has superior prediction
accuracy. The high accuracy of the proposedmodel is validated in comparison with conventional and recently
published AI approaches. The proposed model is implemented based on MATLAB/toolbox 2020b.

INDEX TERMS Power transformer, fault diagnosis, convolution neural network, noises in measurements.

I. INTRODUCTION
Power transformers are considered one of the vital equipment
in the electric power system. Early detection of transformer
faults avoids the discontinuity of the power network and
reduces the loss of profits for the electric utilities. Various
faults in power transformers are generated due to the dete-
rioration of their insulation system. The insulation system
consists of an insulation oil and an impregnated paper. The
insulation deterioration results from exposure of the trans-
former to several stresses such as electrical, mechanical, and
thermal stresses. These stresses lead to the formation of
dissolved gases, some of them are combustible gases such
as hydrogen (H2), methane (CH4), ethane (C2H6), ethylene
(C2H4), acetylene (C2H2), and carbon mono-oxide (CO),
and others are incombustible gases such as carbon dioxide
(CO2) [1]–[3].
These dissolved gases help determine possible failures

inside the transformer using dissolved gas analysis (DGA).
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According to the values of the dissolved gases concentration
and their ratios, some theories and rules were established
that link the proportions of these gases and the expected
failure [4], [5]. In [4], the Key gas method, the Dornenburg
method, and Rogers’ method were presented as three DGA
techniques used to interpret the transformer fault based on the
ratio limits between the combustible gases or the percentage
to their sum. In [5], the transformer faults were divided into
five types based on a dataset for transformers in service (IEC
TC 10 database). It classified the transformer faults into five
types in a triangular form called the Duval triangle. These
faults include the following types: (i) partial discharge (PD)
represents small carbonized captures in the paper, (ii) low
energy discharge (D1) causes large captures in paper and
carbon particles in the oil, (iii) high energy discharge (D2)
characterized by extensive carbonizations and metal fusion,
(iv) low and medium thermal faults (T1/T2) with oil temper-
ature less than 300 ◦C for T1 and oil temperature greater than
300 ◦C and less than 700 ◦C for T2, and (v) high thermal
fault (T3) with oil temperature greater than 700 ◦C. These
abovementioned conventional methods failed to interpret the
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transformer faults due to some issues such as an outage of gas
ratio combinations from predefined codes or dependence on
only three combustible gases in the Duval triangle. Therefore,
the diagnostic accuracy of such conventional methods in
some cases is very poor.

New pentagon-based graphical representations [6], [7]
enhanced the diagnostic accuracy of the conventional meth-
ods considering the main five combustible gases in their diag-
nosis. These new graphical representations could increase the
diagnostic accuracy rather than the Duval trianglemethod [8].
In [9], heptagon shape was developed as another graphical
representation method that determines the transformer faults
based on the main five gases with CO and CO2.
For further enhancement of diagnostic accuracy, artifi-

cial intelligence (AI) techniques and optimization techniques
were proposed and used to overcome the poor diagnostic
accuracy of conventional and graphical methods. In this
regard, different AI classification techniques were applied,
such as artificial neural networks (ANNs) [10], [11], fuzzy
logic [12]–[14], neuro-fuzzy system [15], support vector
machine (SVM) [16]–[18]. In addition, various optimization
techniques were utilized, such as particle swarm optimiza-
tion (PSO) [2], genetic algorithm (GA) for optimizing SVM
parameters [16], hybrid grey wolf optimizer [19].

Finally, the deep learning approach was implemented
in [20]–[22] to predict the transformer fault types. In [20],
a depth learning and Softmax classifier model was pre-
sented to predict the transformer fault types. The model
presented in [21] was built based on a deep belief neural net-
work (DBNN) to diagnose the transformer fault types. In [22],
a long short-term memory (LSTM) with DBNN (LSTM-
DBNN) model was implemented to detect the transformer
fault types, whereas a deep parallel diagnostic (DPD) model
was introduced in [23].

The noises in gas concentration measurements are one
of the most critical issues that reduce the diagnostic accu-
racy of DGA methods. Accordingly, these noises should be
considered during the evaluation process of the diagnostic
method. Noises can originate during either oil sampling, sam-
ple storage, or gas separation and measurement. The noises
due to sampling and storage can reach about 14%, while
measurement noises lie in the range of 5% [24]. Most of the
previous DGA methods didn’t deal effectively with noises in
DGA measurements, which is the paper’s main aim.

In this paper, we develop a noise-resistant DGA method
by using a Convolutional Neural Network (CNN). Our main
contributions are
• the augmentation of CNN training dataset with noisy
points to improve the DGA diagnosis accuracy, and

• solving the DGA problem using different combinations
of gas ratios and identifying the ratios that achieve the
best diagnosis accuracy.

II. CONVOLUTIONAL NEURAL NETWORKS
In contrast to general neural networks, a convolutional neural
network (CNN) contains one or more convolution layers that

FIGURE 1. Main CNN structure in one dimension.

work as filters [25]. The filter function is applied to each
neighborhood of nodes of the previous layer, producing a
corresponding set of outputs each time. Fig. 1 illustrates
the convolution process in one dimension. The grey nodes
represent zero-valued padding at the edges of the input layer
to simplify filter processing at the boundaries. The kernel is
applied to each subset of neighboring nodes by sliding the
convolution kernel, called the input window. Two important
configuration hyperparameters define a convolution layer,
namely, the kernel size and the stride. The kernel size indi-
cates the number of inputs processed by the convolution ker-
nel in one application. On the other hand, the stride represents
the number of nodes by which the filter is displaced after
each application. Multiple convolution filters (kernels) can be
applied in a single convolution layer to increases the learning
capacity to extract more features.

Other types of layers are commonly used within a
CNN [25]. Pooling layers are special convolution layers with
the main purpose of reducing dimensionality or subsampling.
A max-pooling layer outputs the maximum input within its
input window. Similarly, an average-pooling layer outputs
the average input. Fully connected layers are important for
mapping learned features intomore comprehensive functions.
Threshold layers such as rectified linear unit (ReLU) layers
are often utilized to improve the nonlinear capacity of the
model. Batch normalization layers are often applied to the
output of convolution layers before the application of non-
linearities. Normalization improves the learning speed and
dampens the effect of the random initial network weights.

CNNs are expected to be suitable for DGA because of their
high noise resilience. Although CNNs are considered com-
plex and expensive to train, this isn’t a concern because train-
ing is performed offline, and the application of the resulting
trained model is sufficiently efficient. Therefore, we focus on
obtaining a trained model that achieves the highest possible
classification accuracy.

III. PROPOSED METHODOLOGY
A. PROPOSED CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE
The proposed CNN architecture is illustrated in Fig. 2. The
input points of the CNNs are treated as an image with
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FIGURE 2. Proposed CNN main configuration.

TABLE 1. CNN model selected parameters.

dimension 9× 1 to be suitable in predicting transformer fault
types based on DGA. Then, two convolution stages are per-
formed. Each stage starts with a convolution layer followed
by a batch normalization layer and a ReLU threshold layer.
A max-pooling layer is inserted between the two convolution
stages. A final classification stage includes a fully connected
layer followed by a Softmax layer and a classification layer.
The proposed CNNwas implemented and simulated using the
2020b MATLAB Deep Learning Toolbox [26].

The configuration parameters for each of the layers are
summarized in Table 1. These parameters were fine-tuned
through extensive trial-and-error simulations to maximize
the CNN prediction accuracy. During training, the CNN
weights are optimized using a stochastic gradient-based opti-
mization algorithm known as Adaptive Moment Estimation
(Adam) [26], [27], which builds on the idea of adding a
momentum term to the weight update formula to reduce oscil-
lation along the steepest descent. Adam also uses different
learning rates for different weight vector elements based on
a moving average of the first moment of the gradient and a
moving average of its square. Finally, gradient clipping is
employed to stabilize the training in the presence of gradi-
ent outliers. The algorithm is listed as Algorithm 1, and its
hyperparameter settings are shown in Table 1.

B. DEVELOPING CNN MODEL WITH NOISY DATA
The CNN is developed using 589 dataset samples collected
from literature [5], [16], [28]–[39], the Egypt electrical util-
ity [40], and the Indian utility in the TIFAC laboratory [41].

Algorithm 1 Adaptive Moment Estimation Optimization
Algorithm
Inputs: α F step size

β1, β2 . 1 F exponential decay rates
ω0 ∈ Rd

F initial weight vector
f (ω) : Rd

→ R F stochastic objective function
Output: ω ∈ Rd

F optimized weight vector
Procedure:
1. m0 ← 〈0〉d , v0 ← 〈0〉d , t ← 0 F Initialize 1st and 2nd

moment vectors, and time step.
2. do
3. t ← t + 1 F next step
4. gt ← ∇ωf (ωt−1) F weight gradient
5. mt ← β1 · mt−1 + (1− β1) · gt F update 1st moment
6. vt ← β2 · vt−1 + (1− β2) · g2t F update 2nd moment
7. m̂t ← mt/(1− β t1) F bias-corrected 1

st moment
8. v̂t ← vt/(1− β t2) F bias-corrected 2nd moment
9. ωt ← ωt−1 − α · m̂t/(

√
v̂t + ε) F update weights

10. while ωt not converged

The combined dataset is made available as part of DGALab’s
public code repository [42], and a summary of the dataset
sources and fault type distribution is given in Table 10 in
Appendix A. The complete dataset samples are divided into
two subsets. The first set is used for training and repre-
sents 65% (383 samples), randomly selected from the com-
plete dataset. The second set is used for the testing pro-
cess and contains the remaining samples representing 35%
(206 samples) of the complete dataset. The noise in mea-
surement is introduced to each sample, R = 〈ri〉5i=1 =
〈H2,CH4,C2H6,C2H4,C2H2〉, to generate a noisy sam-
ple, R′ =

〈
r ′i
〉5
i=1, using the equation adapted from [8].

r ′i = ri ×
{
1+

m (2ni − 1)
100

}
(1)

where, m is the maximum noise level and N = 〈ni〉5i=1 is a
5×1 random vector with component values between 0 and 1.
Themaximum noise level is varied in the set {5, 10, 15, 20} to
generate four additional sets of noisy samples corresponding
to noise levels up to ±5%, ±10%, ±15%, and ±20%. After
augmenting the original dataset with the generated noisy
samples, the total number of the training samples becomes
(383 × 5 = 1915), while the total number of the testing
samples becomes (206× 5 = 1030).

C. PROPOSED INPUT RATIOS
The CNN is trained using the training samples but with
different input ratios. The CNN inputs used are (i) the old
conventional ratios, (ii) new ratios, and (iii) hybrid ratios
(conventional and new ratios together), while the output of
the CNN is the transformer fault types. Table 2 presents
the different ratios used for training the CNN model. The
transformer fault types diagnosed by the CNN are (i) par-
tial discharge (F1), (ii) low energy discharge (F2), (iii) high
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TABLE 2. Ratios used for training the CNN.

FIGURE 3. Proposed methodology diagram.

energy discharge (F3), (iv) low thermal (F4, oil temperature
less than 300 ◦C), (v) medium thermal (F5, oil temperature
greater than 300 ◦C and less than 700 ◦C), and (vi) high
thermal (F6, oil temperature greater than 700 ◦C).
Fig. 3 presents the proposed methodology diagram. Firstly,

the five input dataset gasses (H2, CH4, C2H6, C2H4, C2H2)
in ppm are used to generate the noise data with different noise
levels up to±20%. Then, the dataset transformation process,
according to that presented in Table 2, is implemented. The
transformation ratios of {1} to {10} are selected, and then
the dataset is randomly divided into training and testing sets.
Thus, the training dataset is used for training the CNNmodel.
Finally, the training and testing datasets are applied to the
generated CNNmodel to obtain the output diagnosis for both.

IV. RESULTS AND DISCUSSION
The convolutional neural network (CNN) is implemented and
carried out using MATLAB/toolbox 2020b. The CNN model

is developed based on the training samples then its predic-
tion accuracy is evaluated. Like other optimization methods,
a CNN depends on random initialization, which means that
different results are obtained each time the CNN is trained
using the same dataset. Therefore, we train the CNN ten times
for each of the ratios introduced in Table 2. Finally, the CNN
model accuracy for each ratio is evaluated based on the mean
value of the ten training results.

The CNN prediction accuracy can be estimated as follows:

%η =
PT + NT

PT + NT + PF + NF
× 100 (2)

where, PT and NT are the positive and negative class true
rates, respectively, and PF and NF are the positive and nega-
tive class false rates, respectively.

The CNN loss can be expressed as follows:

Loss =
∑n

i=1

∑C

j=1
kijOij (3)

where, n is the number of dataset samples, C is the number of
classes, kij is the probability that the ith sample belongs to the
jth class, Oij is the output of the dataset sample i in the class
j, which is the output of the Softmax layer.

Table 3 presents the statistical analysis of the prediction
accuracy obtained through ten training attempts of the CNN
model when its inputs are the new form ratios {5}. After each
attempt, we observed the prediction accuracy for three cases:
(i) using the training samples with all noise levels, (ii) using
the testing samples with all noise levels, and (iii) using the
complete dataset (both training and testing samples) for each
maximum noise level, 0%, ±5%, ±10%, ±15%, and ±20%,
separately. The training accuracy varies from 96.8% to 98.1%
with mean and STD values of 97.7% and 0.37%, respectively,
while the testing accuracy varies from 92.8% to 94.6% with
mean and STD values of 93.7% and 0.54%, respectively. The
CNN model exhibits good accuracy for detecting the fault
types from noisy samples with maximum noise levels up to
±20%. The mean values of the prediction accuracy over the
10 training attempts are 97.4%, 97.2%, 96.5%, 96.1% and
94.3% for 0%, ±5%, ±10%, ±15% and ±20% maximum
noise levels, respectively.

Fig. 4 illustrates the prediction accuracy and the loss
against the iteration number during the second training
attempt in Table 3. The results indicate that the training
accuracy is near one hundred percent, while the loss is low

TABLE 3. The statistical analysis of the prediction accuracy of ten training
attempts of the proposed CNN model, indicating the training accuracy,
the testing accuracy, and the overall accuracy for each noise level.
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FIGURE 4. Prediction accuracy during training process with new ratio
form input to the CNN model for training No. 2.

FIGURE 5. Comparison between the actual and predict samples with
input {5} to the CNN model for training No. 2.

near zero, which means a good training accuracy of the CNN
model.

Fig. 5 compares the actual fault types (F1 to F6) against
the predicted fault type to illustrate the prediction accuracy
of the CNN model at 0%, 5%, 10%, and 20% noise levels.
The results show that the CNN model has a good detecting
accuracy at 0%, 5%, 10%, and 20% noise levels with high
prediction accuracy of 96.9%, 96.6%, 96.3%, and 94.7%.

The CNN model was trained with different input ratios.
The mean prediction accuracy for ten attempts of training
and testing episodes at each noise level was calculated and
presented in Table 4 to increase confidence in results. The
results illustrate that the prediction accuracy with the new
ratios is better than that with the conventional ratios as an
input of the CNN model. Furthermore, the results illustrate
that the accuracy with the hybrid ratios {7} (Percentage ratios
+ ln{Percentage ratios}) has the highest accuracy of 95% for

FIGURE 6. Prediction accuracy during training process with input {7} to
the CNN model for training No. 10.

FIGURE 7. Comparison between the actual and predict samples with
input {7} to the CNN model for training No.10 (highest training accuracy).

overall testing samples and the highest prediction accuracy
of 95.8% with up to ±20% noise level.
Fig. 6 presents the prediction accuracy and loss against

the iteration number during one of the training attempts with
input ratio {7} to the CNN model. The results illustrate that
the training accuracy is the nearest to one hundred percent,
while the loss is low near zero, indicating a good training
accuracy of the CNN model.

Fig. 7 illustrates a comparison between the fault types
(F1 to F6) predicted by the CNN model against the actual
fault types. The results show that the CNN model has a good
performance at 0%, 5%, 10%, and 20% noise levels with
high prediction accuracy of 98.5%, 98.3%, 98%, and 96.6%,
respectively.

Fig. 8 presents a boxplot comparison of the CNN pre-
diction accuracy with inputs {1}, {4} and {7} at noise lev-
els of 0%, ±5%, ±10%, ±15% and ±20%, respectively.
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TABLE 4. The CNN prediction accuracy with different input ratios.

FIGURE 8. Boxplot prediction accuracy of the CNN model with different
input {1}, {4} and {7} at different noise levels.

It illustrates that the prediction accuracy of the CNN with
input {7} (hybrid input ratios, five percentage ratios +
ln [Rogers’ 4 ratios]) is a superior one compared to that
of inputs {1} (conventional input ratios, Rogers’ 4 ratios)
and {4} (new input ratios, five gas percentage ratios)
respectively.

V. MODEL VALIDATION
A. CNN MODEL AGAINST ANN WITH NOISY DATA
The performance of the proposed CNN model is com-
pared with the artificial neural network method (ANN). The
ANN method is built using MATLAB ANN toolbox version
2020b. The trained dataset (1915 samples was applied to the
9-variable input ratio {7}) is divided into three sets (70%
for training, 15% for validations, and 15% for testing). The
ANN model is trained under different hidden layer numbers.
One hundred twenty-five neurons are used for hidden layers
that give the best training predicting accuracy. The training
performance for both training, testing and validation datasets
is introduced in Fig. 9. The training and testing results of the

TABLE 5. CNN and ANN comparisons for both training and testing stages.

FIGURE 9. Mean squared error against number of epochs during training
process of ANN.

CNN model vs. the ANN model with 9-ratio input {7} are
introduced in Table 5.

Six dataset samples with different noise levels (0%, ±5%,
±10%, ±15% and ±20%) are used in Table 6 as case stud-
ies for comparing the CNN and ANN models. The original
samples are shaded in grey, followed by the noisy samples
derived from the original sample using (1). The ACT column
indicates the actual fault type. The CNN and ANN columns
indicate the corresponding diagnosis generated by each of
the two methods. The results illustrate the effectiveness of
the CNN model with different transformer fault types and all
different noise levels up to±20%, while the ANNmodel fails
to diagnose the transformer fault types with high noise levels
(Highlighted as bold).

B. CNN MODEL AGAINST MACHINE LEARNING MODELS
WITH NOISY DATA
Three machine learning approaches are used decision tree
method (DT), support vector machine method (SVM),
and ensemble method (EN) are built based on the MAT-
LAB/classification learner toolbox (2020b). The CNN, DT,
SVM, and EN methods were applied to the 9-variable input
ratio {7}. Then, the generated models were compared using
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TABLE 6. CNN and ANN comparisons for several case studies with
various noise levels.

FIGURE 10. Minimum error against iteration number during training
process of DT, SVM and EN methods.

the testing samples. Fig. 10 presents the minimum error
against iteration number during the training stage of the three
machine learning methods (DT, SVM, and EN methods).

TABLE 7. Optimal parameters and optimizer options of DT, SVM and EN
methods.

TABLE 8. Comparisons of the proposed CNN {7} prediction accuracy with
DT, SVM and EN with training and testing datasets.

The cross-fold validation with ten folds is used during %
training of the threemachine learningmethods. The optimiza-
tion technique used to determine the optimal parameters of
each method are the Bayesian optimization method, while
the acquisition function used is expected improvement per
second plus. The optimal parameters of the DT, SVM and
EN methods are introduced in Table 7.

Table 8 illustrates the results of the proposed CNN model
and the results of DT, SVM, and EN methods during training
and testing stages. The results illustrate the superiority of
the proposed CNN model compared to other methods. The
results of the proposed CNN model are compared with the
conventional and recently published AI methods at different
noise levels.

C. CNN MODEL AGAINST RECENTLY PUBLISHED
RESEARCH
Table 9 presents the results of the best training attempt of the
proposed CNN model with input ratio {7} side by side with
the results of Rogers’4 ratios, IEC 60599, Duval triangle, con-
ditional probability [8], modified-Rogers’4, modified-IEC
60599 [2] and code-tree [19] methods. The results indicate
the superiority of the proposed CNN model compared to the
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TABLE 9. Comparisons between the proposed CNN prediction accuracy
with other methods with different noise levels.

other methods. To facilitate the application of the proposed
method by electrical engineers and experts in the field, it was
implemented in the DGALab framework [42].

VI. CONCLUSION
This research proposed the CNN model to detect the trans-
former fault types under different uncertain noise levels in
measurements. The DGA data were collected from vari-
ous resources, including literature and electrical utilities.
The noise in DGA data was introduced to all samples with
various levels ranging up to ±20%. The dataset samples
were randomly divided into two subsets, a training set with
65% of data samples and a testing set with the remain-
ing data samples. Moreover, the data samples were pre-
sented with different input ratios to the CNN. The superiority
of CNN in detecting various fault types with different
noise levels was evaluated through several indicators as
follows:

1– It was found that the predicting accuracy of the CNN
with the input of five percentage ratios plus ln [Rogers’
4 ratios] is a superior one compared to other inputs.

2– The CNN model had high predicting accuracy
of 98.5%, 98.3%, 98%, 97.3% and 96.6% for noise
levels of 0%, ±5%, ±10%, ±15% and ±20%, respec-
tively. This predicting accuracy validates the strong
immunity of the proposed CNN against noises in mea-
surements.

3– The comparisons between the proposed CNN model’s
predicting accuracy and other methods indicated
significantly superior performance for the CNN
model.

4– Electrical engineers and experts can easily apply the
proposed CNN methods in the field by implementing
it in the DGALab framework.

APPENDIX A
The 589-sample dataset used for the development of the CNN
is collected from various sources indicated in Table 10. The
table presents fault type statistics for each source and the
overall statistics of the composite dataset.

TABLE 10. Datasets source references and fault distribution of the
589 dataset samples.

ACKNOWLEDGMENT
The author would like to acknowledge the financial sup-
port received from Taif University Researchers Supporting
Project Number (TURSP-2020/61), Taif University, Taif,
Saudi Arabia.

REFERENCES
[1] J. Faiz and M. Soleimani, ‘‘Dissolved gas analysis evaluation in electric

power transformers using conventional methods a review,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 24, no. 2, pp. 1239–1248, Apr. 2017.

[2] I. B. M. Taha, A. Hoballah, and S. S. M. Ghoneim, ‘‘Optimal ratio limits
of Rogers’ four-ratios and IEC 60599 code methods using particle swarm
optimization fuzzy-logic approach,’’ IEEE Trans. Dielectr. Electr. Insul.,
vol. 27, no. 1, pp. 222–230, Feb. 2020.

[3] S. A. Ward, A. El-Faraskoury, M. Badawi, S. A. Ibrahim, K. Mahmoud,
M. Lehtonen, and M. M. F. Darwish, ‘‘Towards precise interpretation of
oil transformers via novel combined techniques based on DGA and partial
discharge sensors,’’ Sensors, vol. 21, no. 6, p. 2223, Mar. 2021.

[4] IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-
Immersed Transformers, Standard C57.104-2019, Nov. 2019.

[5] M. Duval and A. de Pabla, ‘‘Interpretation of gas-in-oil analysis using new
IEC publication 60599 and IECTC 10 databases,’’ IEEEElect. Insul. Mag.,
vol. 17, no. 2, pp. 31–41, Mar. 2001.

[6] D.-E. A. Mansour, ‘‘A new graphical technique for the interpretation of
dissolved gas analysis in power transformers,’’ in Proc. Annu. Rep. Conf.
Electr. Insul. Dielectr. Phenomena, Oct. 2012, pp. 195–198.

[7] M. Duval and L. Lamarre, ‘‘The Duval pentagon—A new complementary
tool for the interpretation of dissolved gas analysis in transformers,’’ IEEE
Elect. Insul. Mag., vol. 30, no. 6, pp. 9–12, Nov. 2014.

[8] I. B. M. Taha, D.-E. A. Mansour, S. S. M. Ghoneim, and N. I. Elkalashy,
‘‘Conditional probability-based interpretation of dissolved gas analysis for
transformer incipient faults,’’ IET Gener. Transmiss. Distrib., vol. 11, no. 4,
pp. 943–951, Mar. 2017.

[9] O. E. Gouda, S. H. El-Hoshy, and H. H. El-Tamaly, ‘‘Proposed heptagon
graph for DGA interpretation of oil transformers,’’ IET Gener., Transmiss.
Distrib., vol. 12, no. 2, pp. 490–498, Jan. 2018.

[10] J. L. Guardado, J. L. Naredo, P. Moreno, and C. R. Fuerte, ‘‘A compara-
tive study of neural network efficiency in power transformers diagnosis
using dissolved gas analysis,’’ IEEE Trans. Power Del., vol. 16, no. 4,
pp. 643–647, Oct. 2001.

[11] S. M. S. Ghoneim, B. M. T. Ibrahim, and I. E. Nagy, ‘‘Integrated ANN-
based proactive fault diagnostic scheme for power transformers using
dissolved gas analysis,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3,
pp. 1838–1845, Jun. 2016.

[12] A. Abu-Siada and S. Hmood, ‘‘A new fuzzy logic approach to identify
power transformer criticality using dissolved ?gas-in-oil analysis,’’ Int. J.
Electr. Power Energy Syst., vol. 67, pp. 401–408, May 2015.

VOLUME 9, 2021 111169



I. B. M. Taha et al.: Power Transformer Fault Diagnosis Based on DGA Using CNN

[13] I. B. M. Taha, S. S. M. Ghoneim, and H. G. Zaini, ‘‘A fuzzy diagnostic
system for incipient transformer faults based on DGA of the insulating
transformer oils,’’ Int. Rev. Electr. Eng., vol. 11, no. 3, pp. 305–313,
Jul. 2016.

[14] M. Noori, R. Effatnejad, and P. Hajihosseini, ‘‘Using dissolved gas analysis
results to detect and isolate the internal faults of power transformers by
applying a fuzzy logic method,’’ IET Gener. Transm. Distrib., vol. 2017,
vol. 11, no. 10, pp. 2721–2729, Jul. 2017.

[15] S. A. Khan, M. D. Equbal, and T. Islam, ‘‘A comprehensive compara-
tive study of DGA based transformer fault diagnosis using fuzzy logic
and ANFIS models,’’ IEEE Trans. Dielectr. Elect. Insul., vol. 22, no. 1,
pp. 590–596, Feb. 2015.

[16] J. Z. Li, Q. G. Zhang, K. Wang, and J. Y. Wang, ‘‘Optimal dissolved gas
ratios selected by genetic algorithm for power transformer fault diagnosis
based on support vector machine,’’ IEEE Trans. Dielectr. Electr. Insul.,
vol. 23, no. 2, pp. 1198–1206, Apr. 2016.

[17] Y. Benmahamed, M. Teguar, and A. Boubakeur, ‘‘Application of SVM and
KNN to Duval pentagon 1 for transformer oil diagnosis,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 24, no. 6, pp. 3443–3451, Dec. 2017.

[18] Y. Zhang, X. Li, H. Zheng, H. Yao, J. Liu, C. Zhang, H. Peng, and J. Jiao,
‘‘A fault diagnosis model of power transformers based on dissolved gas
analysis features selection and improved krill herd algorithm optimized
support vector machine,’’ IEEE Access, vol. 7, pp. 102803–102811, 2019.

[19] A. Hoballah, D.-E.-A. Mansour, and I. B. M. Taha, ‘‘Hybrid grey wolf
optimizer for transformer fault diagnosis using dissolved gases considering
uncertainty in measurements,’’ IEEE Access, vol. 8, pp. 139176–139187,
2020.

[20] X. Ji, Y. Zhang, H. Sun, J. Liu, Y. Zhuang, and Q. Lei, ‘‘Fault diagnosis for
power transformer using deep learning and softmax regression,’’ in Proc.
Chin. Autom. Congr. (CAC), Oct. 2017, pp. 2662–2667.

[21] D. Jiejie, S. Hui, and S. Gehao, ‘‘Dissolved gas analysis of insulating oil for
power transformer fault diagnosis with deep belief network,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 24, no. 5, pp. 2828–2835, Oct. 2017.

[22] J. Lin, L. Su, Y. Yan, G. Sheng, D. Xie, and X. Jiang, ‘‘Prediction method
for power transformer running state based on LSTM_DBN network,’’
Energies, vol. 11, no. 7, p. 1880, Jul. 2018.

[23] X. Wu, Y. He, and J. Duan, ‘‘A deep parallel diagnostic method for
transformer dissolved gas analysis,’’ Appl. Sci., vol. 10, no. 4, p. 1329,
Feb. 2020.

[24] S. Tenbohlen, J. Aragon-Patil, M. Fischer, M. Schäfer, Z. D. Wang, and
I. H. Atanasova, ‘‘Investigation on sampling, measurement and interpreta-
tion of gas-in-oil analysis for power transformers,’’ in Proc. CIGRE, 2008,
p. D1-204.

[25] T. Singh, Deep Learning With Applications Using Python. Karnataka,
India: Navin Kumar Manaswi, 2018.

[26] Convolutional Neural Network. Accessed: Aug. 1, 2021. [Online]. Avail-
able: https://ch.mathworks.com/discovery/convolutional-neural-network-
matlab.html

[27] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[28] K. Bacha, S. Souahlia, and M. Gossa, ‘‘Power transformer fault diagnosis
based on dissolved gas analysis by support vector machine,’’ Electr. Power
Syst. Res., vol. 83, no. 1, pp. 73–79, Feb. 2012.

[29] M. Duval, ‘‘A review of faults detectable by gas-in-oil analysis in trans-
formers,’’ IEEE Elect. Insul. Mag., vol. 18, no. 3, pp. 8–17, May 2002.

[30] S. Agrawal and A. K. Chandel, ‘‘Transformer incipient fault diagnosis
based on probabilistic neural network,’’ in Proc. Students Conf. Eng. Syst.,
Mar. 2012, pp. 1–5.

[31] M.-H. Wang, ‘‘A novel extension method for transformer fault diagnosis,’’
IEEE Trans. Power Del., vol. 18, no. 1, pp. 164–169, Jan. 2003.

[32] Z. Yong-Li and G. Lan-Qin, ‘‘Transformer fault diagnosis based on naive
Bayesian classifier and SVR,’’ in Proc. IEEE Region 10 Conf., Nov. 2006,
pp. 1–4.

[33] D. V. S. S. S. Sarma and G. N. S. Kalyani, ‘‘Ann approach for condition
monitoring of power transformers using DGA,’’ in Proc. IEEE Region
Conf. TENCON, Nov. 2004, pp. 444–447.

[34] G. Zhang, K. Yasuoka, S. Ishii, L. Yang, and Z. Yan, ‘‘Application of fuzzy
equivalent matrix for fault diagnosis of oil-immersed insulation,’’ in Proc.
IEEE 13th Int. Conf. Dielectr. Liquids (ICDL), Jul. 1999, pp. 400–403.

[35] E. Li, L. Wang, and B. Song, ‘‘Fault diagnosis of power transformers with
membership degree,’’ IEEE Access, vol. 7, pp. 28791–28798, 2019.

[36] J.-T. Hu, L.-X. Zhou, and M.-L. Song, ‘‘Transformer fault diagnosis
method of gas hromatographic analysis using computer image analy-
sis,’’ in Proc. 2nd Int. Conf. Intell. Syst. Design Eng. Appl., Jan. 2012,
pp. 1169–1172.

[37] O. E. Gouda, S. H. El-Hoshy, and H. H. E. L. Tamaly, ‘‘Proposed three
ratios technique for the interpretation of mineral oil transformers based
dissolved gas analysis,’’ IET Gener., Transmiss. Distrib., vol. 12, no. 11,
pp. 2650–2661, Jun. 2018.

[38] S. Seifeddine, B. Khmais, and C. Abdelkader, ‘‘Power transformer fault
diagnosis based on dissolved gas analysis by artificial neural network,’’
in Proc. 1st Int. Conf. Renew. Energies Veh. Technol., Mar. 2012,
pp. 230–236.

[39] M. Rajabimendi and E. P. Dadios, ‘‘A hybrid algorithm based on neural-
fuzzy system for interpretation of dissolved gas analysis in power trans-
formers,’’ in Proc. IEEE Region Conf. (TENCON), Nov. 2012, pp. 1–6.

[40] Dissolved Gas Analysis Reports, Egyptian Electr. Holding Company,
Cairo, Egypt, 2016.

[41] Technology Information Forecasting and Assessment Council (TIFAC)
Laboratory, Dept. Sci. Technol., Govt of India, New Delhi, India, 2020.

[42] S. I. Ibrahim, S. S. M. Ghoneim, and I. B. M. Taha, ‘‘DGALab: An
extensible software implementation for DGA,’’ IET Gener., Transmiss.
Distrib., vol. 12, no. 18, pp. 4117–4124, Oct. 2018.

IBRAHIM B. M. TAHA received the B.Sc. degree
from the Faculty of Engineering, Tanta Univer-
sity, Tanta, Egypt, in 1995, the M.Sc. degree from
the Faculty of Engineering, Mansoura University,
Mansoura, Egypt, in 1999, and the Ph.D. degree
in electrical power and machines with the Faculty
of Engineering, Tanta University, in 2007. Since
1996, he has been a Teaching Staff with the Faculty
of Engineering, Tanta University. He is currently
an Assistant Professor with the Department of

Electrical Engineering, Taif University, Saudi Arabia. His research interests
include steady state and transient stability of HVDC systems, FACTS, load
forecasting, multi-level inverters, dissolved gas analysis, artificial intelligent
technique applications, PV system fault detection, and distance adaptive
protective relays.

SALEH IBRAHIM received the B.Sc. and M.Sc.
degrees in computer engineering from Cairo Uni-
versity, Egypt, in 2000 and 2004, respectively,
and the Ph.D. degree in computer science and
engineering from the University of Connecticut,
USA, in 2010. He is currently an Assistant Pro-
fessor with the Department of Electrical Engi-
neering, Taif University, Saudi Arabia. He has
been an Assistant Professor with the Computer
Engineering Department, Cairo University, since

2011. He has published several research articles in high-impact journals and
international conferences. His current research interests include information
security and computer networks.

DIAA-ELDIN A. MANSOUR (Senior Member,
IEEE) was born in Tanta, Egypt, in Decem-
ber 1978. He received the B.Sc. and M.Sc. degrees
in electrical engineering from Tanta University,
Tanta, Egypt, in 2000 and 2004, respectively, and
the Ph.D. degree in electrical engineering from
Nagoya University, Nagoya, Japan, in 2010. Since
2000, he has been with the Department of Elec-
trical Power and Machines Engineering, Faculty
of Engineering, Tanta University, where he is cur-

rently working as a Full Professor and the Director of the High Voltage and
Superconductivity Laboratory. Since 2010, he has been a Foreign Researcher
of three months with the Ecotopia Science Institute, Nagoya University.
His research interests include high voltage engineering, nanodielectrics,
applied superconductivity, renewable energy, and smart grids. He received
the best presentation award two times from IEE of Japan, in 2008 and 2009,
Prof. Khalifa’s Prize from the Egyptian Academy of Scientific Research
and Technology, in 2013, Tanta University Encouragement Award, in 2016,
Egypt-State Encouragement Award in the field of Engineering Sciences,
in 2018, and Tanta University Citations Award, in 2021. Also, he has been
listed among the world’s top 2% scientists by Stanford University, USA,
in 2020.

111170 VOLUME 9, 2021


