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ABSTRACT Decision trees are popular as stand-alone classifiers or as base learners in ensemble classifiers.
Mostly, this is due to decision trees having the advantage of being easy to explain. To improve the
classification performance of decision trees, some authors have used Multivariate Decision Trees (MDTs),
which allow combinations of features when splitting a node. While there is growing interest in the area,
recent research in MDTs all have in common that they do not provide adequate comparison of related work:
they do not consider relevant rival techniques, or they test algorithm performance in an insufficient number of
databases. As a result, claims have no statistical sustain and, hence, there is a lack of general understanding
of the actual capabilities of existing MDT induction algorithms, crucial to improving the state-of-the-art.
In this paper, we report on an exhaustive review of MDTs. In particular, we give an overview of 37 MDT
induction algorithms, out of which we have experimentally compared 19 of them in 57 databases.We provide
a statistical comparison in all databases and subsets of databases according to the number of classes, number
of features, number of instances, and degree of class imbalance. This allows us to identify groups of top-
performing algorithms for different types of databases.

INDEX TERMS Supervised classification, decision trees, multivariate decision trees, machine learning.

I. INTRODUCTION
Decision trees (DTs) are popular classifiers, partly because
their models are easy to explain and because they show
remarkable performance. DTs’ popularity has further
increased due to the increasing need of using white-
box decision models: experts need to understand a model
because in several practical problems it is mandatory to
explain classification results [1]. Decision tree performance
is highly competitive through the use of ensembles; in
a recent survey [2], Random Forest [3] and eXtreme
Gradient Boosting (XGBoost) [4] are among the top-
ranked algorithms. Some applications of DTs or DT-based
classifiers in such context include: predicting student dropout
in subscription-based online learning environments [5],
exploring customer purchasing patterns to evaluate the
influence of product photos on sales [6], and evaluating the
suitability of behavior change techniques in the context of
mobile health applications [7].
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A decision tree is a graph with a tree structure that
has a single root node with directed links (branches) to
children nodes that may also have branches to other nodes.
The terminal nodes, which do not have any branches, are
commonly called leaves [8]. Each branch is tagged with a
test, which evaluates to true or false for each object.
For branches coming out of the same node, the tests define
a partition of the database; so, for each object, one and only
one of the tests evaluate to true. The tuple of tests tagging
branches from a node is known as a split because they are used
to split the objects in a node into disjoint subsets during tree
construction. Each subset of objects is assigned to a different
child node. We also use split as a verb; to split a node is to
select a split and generate the corresponding children nodes.

According to the number of features considered in a split,
we can categorize decision trees into Univariate Decision
Trees (UDTs) and Multivariate Decision Trees (MDTs).
UDTs use only one feature in a univariate split (e.g.,weight >
60,weight ≤ 60), while MDTs use more (e.g., 2 ∗ height +
3 ∗weight > 40, 2 ∗ height + 3 ∗weight ≤ 40). For decision
tree classification, multiple authors have shown that MDTs
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achieve better accuracy than UDTs [9], [10]. This result is
due to MDTs using multivariate splits which, often separate
the classes better than using univariate relations. As a result,
publications in MDT induction algorithms have proliferated,
with almost 30 algorithms introduced between 1977 and 2019
(See Figure 1).

Currently, there is not any comprehensive comparison
to determine the relative performance of existing MDTs,
let alone identifying the top ones. This is both because
there are no surveys about MDTs, and because recent
papers introducing MDTS suffer from one or two main
shortcomings, in terms of the comparison of previous work:
authors do not compare their algorithm with relevant rival
techniques, or they do so but not in enough databases, and
hence results are insufficient for statistically validating the
underlying hypothesis.

Our goal with this paper is to fill in this gap; that is, we aim
to evaluate the relative merit of MDT induction algorithms
to identify how they compare one another. We hope that our
findings help the community to select an MDT to use in a
particular context.

To accomplish our goal, first, we have conducted a
thorough review of MDT induction algorithms. Our review
includes 37MDT induction algorithms and is organized using
an extension of the taxonomy proposed by Yildiz et al. [11],
which groups algorithms into analytical and iterative.

Next, we conducted a thorough experimental comparison
of prominent MDT induction algorithms surveyed in this
paper. Our experimentation involved 19 MDTs, all of which
are intended for general-purpose classification. We have
tested these algorithms, using the implementations provided
by their respective author(s), against 57 databases from
the UCI repository [12]. The databases were carefully
selected to ensure diversity. The largest databases have up to
20,000 objects and 856 features. While we have conducted a
fair comparison of the studied MDT algorithms under study,
future analysis of MDTs may involve more technological
aspects, such as evaluating how well an MDT scales up in
a large database, including ultra-high dimensional data.

We evaluated the algorithms on their classification per-
formance according to the Area Under the Curve (AUC)
of a Receiver Operating Characteristics (ROC) curve since
it is robust to class imbalance [13]. We made a statistical
comparison of the algorithms using the Bayesian signed-
rank test (see Section IV-B). We apply the statistical test
in all databases and subsets of databases according to their
number of classes, number of features, number of objects,
and degree of class imbalance. This way, we were able to
identify the top-performing algorithms for each group of
databases.

Our conclusions are stronger than any other found in the
literature since we compare nearly four times the number of
algorithms as themost thoroughMDT study, which compared
5 algorithms in 20 databases [11]. We also compare the
algorithms in four more databases than the reviewed study
with the largest number of databases [14].

Our main contributions in this paper are:
• We provide a sound and extensive review of MDT
induction algorithms.

• We provide the most extensive MDT comparison, with
results that are sustained through statistical tests.

• We identify groups of top-performing MDTs for all
databases and subsets of databases with common
characteristics; these groups are so that their median
probability of winning against other algorithms is high
and their median probability of losing is low.

The rest of the document is organized as follows.
In Section II, we present the notation used through the
document and the taxonomy used to organize the MDTs.
In Section III, we review MDT induction algorithms, show
the widespread limitations of recent papers when comparing
their algorithm to previous MDTs, and motivate the need for
a thorough survey in the subject, hence motivating this paper.
Next, in Section IV, we present the methodology used in our
experimental comparison of MDTs, describe the databases,
explain how we selected the MDT induction algorithms for
our statistical comparison, and describe the measures and
statistical tests used to compare the algorithms. In Section V,
we provide a statistical comparison of the 19 selected MDT
induction algorithms in 57 databases. Finally, in Section VI,
we present our conclusions.

II. PRELIMINARIES
To organize our review, we categorize the algorithms by
extending the taxonomy of Yildiz et al. [11]. We now need
to introduce some notation and describe two distinctive
elements of MDT induction: the form of candidate splits and
the concept of feature selection. This notation will help us
understand the taxonomy presented in Section II-B.

A. NOTATION
A training database D is assumed here to be composed of n
instances with m real-valued features. An arbitrary instance
is represented by the vector x = [x1, x2, . . . , xm], with
xj ∈ <, ∀j ∈ F , where F = {1, 2, . . . ,m} is the index set
of features. Each xj represents the value that the feature with
index j ∈ F takes for an arbitrary instance x. Each instance
is tagged with a class from a predefined set of K classes
C = {C1,C2, . . . ,CK }.
A candidate split for a Univariate Decision Tree (UDT)

takes the form xj ≤ v, xj > v, where v is called a
univariate split point. So, we can vary the selected feature
(represented by the index j ∈ F) and the split point v
to generate candidate splits. In comparison, a Multivariate
Decision Tree (MDT) considers multiple features, and there
may be multiple coefficients involved in the combination of
features.

The most common multivariate splits for MDTs are linear
splits. Given a subset of features F ′ ⊆ F , for a binary MDT,
a linear split takes the form

∑
wjxj ≤ v,

∑
wjxj > v, with

wj ∈ <,∀j ∈ F ′. For each feature with index j ∈ F ′, wj is its
corresponding weight coefficient in the linear combination.
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The weight coefficients of the linear combination are w =
[w1,w2, . . . ,w|F ′|], and the scalar v is called the split point.

To find candidate splits, MDT induction algorithms need
to find values for w, v, and F ′. Searching for F ′ is an optional
step called feature selection; most algorithms lack feature
selection and use all features in a linear combination, F ′ = F .
The approaches used to search w, v, and F ′ are part of the
taxonomy we will present.

B. TAXONOMY
To organize our discussion on MDT algorithms, we follow
and extend the taxonomy proposed by Yildiz et al. [11].
The taxonomy groups the algorithms according to split type,
approach to multi-class problems, the method for finding
the weight coefficients w, method to find the split point v,
branching factor, and split evaluation function. We extend the
taxonomy by adding the feature selection strategy, if any.
• Split type. There are three possible split types:
univariate, multivariate with linear combinations, and
multivariate with non-linear combinations. Some MDT
induction algorithms use different split types in different
nodes.

• Approach to multi-class problems. When making a
split, existing MDT induction algorithms have been
designed to deal either only with two-class problems or
withmulti-class problems. From those of the latter, some
deal with multi-class problems by transforming them
into two-class problems.

• Feature selection. MDT induction algorithms either use
or do not use feature selection for multivariate splits. The
algorithms that use feature selection find multivariate
splits using subsets of features. Most feature selection
algorithms rely on a greedy search. For example,
Sequential Forward Selection (SFS) begins with an
empty set of features F ′ = ∅; then, it adds a feature one
at a time, provided that a split improves the evaluation
function when using the feature in conjunction with all
features already in F ′. Brodley et al. [15] describe other
prominent feature selection algorithms used in MDTs.

• Branching factor. The branching factor is the number
of children of a node: it is either equal to 2 or the number
of classes K .

• Search for w. The search for the weight coefficients w
can be either analytical or iterative.

• Search for v. The search for the split point v can also be
analytical or iterative.

• Evaluation function. Some MDT induction algorithms
generatemore than one candidate split and need to use an
evaluation function to choose one. Hernández et al. [16]
have conducted an experimental comparison of evalu-
ation functions, where they rank evaluation functions
used with C4.5 by the classification performance
achieved in terms of accuracy and AUC.

III. RELATED WORK
Since we want to identify common strategies for building
MDTs, we have grouped split generation algorithms into two

broad categories, according to their strategy for finding w.
The first category of algorithms, which we review in
Section III-A, use analytical solutions for finding w. The sec-
ond category of algorithms, which we review in Section III-
B, use iterative approaches for finding w. In Section III-C,
we briefly discuss algorithms related toMDTs. In Section III-
D, we present the widespread limitations found in MDT
induction literature regarding the comparison of new algo-
rithms against relevant rival MDTs. Finally, in Section III-E,
we present the conclusions of our review.

A. ANALYTICAL MULTIVARIATE SPLIT GENERATION
Analytical algorithms use only analytical calculations to
find the weight coefficients w. Some of the algorithms in
this category also find the split point v through analyti-
cal calculations, while others find v through an iterative
algorithm after finding w. Most algorithms in this category
use Linear Discriminant Analysis (LDA). There are two
different approaches to LDA: Fisher’s linear discriminant
and Discriminant functions. Table 1 displays how we
categorize each of the analytical algorithms considered in
our investigation (one algorithm per row) in terms of the
taxonomy presented in Section II-B.
We notice that the evaluation measure is left blank in some

cases because some analytical algorithms only produce a
single candidate split, so there is no need to use an evaluation
measure. The reasons algorithms in this category may use a
split evaluation measure are an iterative search for the split
point v, the usage of feature selection, or deciding between a
couple of candidate splits generated only through analytical
calculations. For analytical methods, we have identified the
following common split generation strategies:
• Discriminant functions (Section III-A1). Algo-
rithms in this category use discriminant functions to
generate K-ary decision trees.

• New features through discriminant functions
(Section III-A2). Algorithms in this category use
discriminant functions to build new features as linear
combinations of the original ones. In contrast to the
previous category, these algorithms use the original and
new features to build binary trees.

• Fisher’s linear discriminant (Section III-A3). Algo-
rithms in this category use Fisher’s linear discriminant.

1) MDTs USING DISCRIMINANT FUNCTIONS. QUEST,
CRUISE, AND GUIDE
Loh et al. introduced the Quick, Unbiased, Efficient,
Statistical Tree (QUEST) [17]; the Classification Rule
with Unbiased Interaction Selection and Estimation tree
(CRUISE) [18]; and the Generalized, Unbiased, Interaction
Detection and Estimation tree (GUIDE) [24]. The three
algorithms use linear discriminant functions to make a split;
however, CRUISE builds K-ary trees, while QUEST and
GUIDE build binary trees.

QUEST andCRUISE apply Principal Component Analysis
(PCA), dropping the principal components with small
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TABLE 1. Properties of analytical MDT algorithms. The algorithms at the top are used in the experimental comparison in Section V. The column Split
refers to the type of split used in the node: Univariate splits (Uni), Linear multivariate splits (Lin), Non-linear multivariate splits (Non), or any combination
of the aforementioned split types. The column multi-class refers to the approach taken when working with multi-class databases: some algorithms can
work directly with these databases, some algorithms need to transform the problem into one of two classes, and some algorithms cannot deal with
multiple classes. The column w refers to the method for finding the weight coefficients w . The column v refers to the method for finding the split point v .
The column Br refers to the branching factor, which is either equal to 2 or the number of classes K .

eigenvalues; in this way, the algorithms avoid the problem of
near singular covariance matrices. The remaining principal
components are used to find the splits through linear
discriminant functions. A newer version of CRUISE [29] can
also fit linear discriminant models in each terminal node.

GUIDE is an improvement upon QUEST and CRUISE.
The main difference regarding multivariate splits is that
GUIDE only allows for linear multivariate splits with two
features. GUIDE can also fit models on the leaves; however,
it uses kernel and nearest-neighbor node models.

In this paper, we focus on multivariate split generation
strategies. However, a more extensive discussion on this
family of algorithms can be found in Loh’s survey [30].

2) MDTs GENERATING FEATURES THROUGH DISCRIMINANT
FUNCTIONS. LTREE, QTREE, AND LgTree
Ltree [22], Qtree, and LgTree [31], in each node, generate dis-
criminant functions for the classes with a number of objects
exceeding two times the number of features. The difference
between the algorithms is that Ltree uses linear discriminants,
Qtree uses quadratic discriminants, and LgTree uses logistic
discriminants (which results in linear splits). At each node,
the discriminant functions are used to construct new features
by projecting the data onto them. An exhaustive search is
made to find a split for each feature, including the original
features, features constructed in previous nodes, and features
constructed in the current node.

3) FISHER’s LINEAR DISCRIMINANT. FRIEDMAN, LDTS,
SURPASS, LDT, FDT, AND MHLDT
Friedman [21], Linear Discriminant and Tabu Search
(LDTS) [23], Scaling Up Recursive Partitioning with
Sufficient Statistics (SURPASS) [10], Linear Discriminant
Tree (LDT) [11], Fisher’s Decision Tree (FDT) [26], and
Multi-class Hellinger Linear Discriminant decision tree
(MHLDT), [20] use Fisher’s linear discriminant to generate
splits. However, MHLDT uses a multi-class version of
Fisher’s linear discriminant that produces K −1 eigenvectors

used as candidates for w. MHLDT thus avoids grouping
multiple classes into two groups.

LDTS and SURPASS find the split point v through
analytical methods, while the rest of the algorithms in this
section use exhaustive search to find it. The main difference
between LDTS and SURPASS is that SURPASS is designed
to work with databases large enough to exceed memory
size; to work in this context, SURPASS removed the feature
selection algorithm used by LDTS.

4) MPSVM. GEOMETRIC DECISION TREE AND ZHANG’s
MPSVM
Geometric DT [25] generates candidate splits through an
analytical algorithm, which the authors claim captures the
geometric structure of the data better than algorithms relying
on impurity measures. Given two classes, the algorithm uses
the Multisurface Proximal SVM (MPSVM) algorithm to find
a clustering hyperplane for each class, which is a hyperplane
where the average Euclidean distance of all the points in
the class to the hyperplane is minimized. If the clustering
hyperplanes of both classes are parallel, the authors use
the hyperplane between them to split the data. Otherwise,
the authors use the angle bisectors of the two hyperplanes as
candidate splits and keep the one that minimizes an impurity
measure.

Zhang’s MPSVM trees [32] borrow the main ideas from
Geometric DT; however, they apply regularization methods
to deal with singular covariance matrices. There are two
versions of Zhang’s MPSVM: using Tikhonov regularization
or using a univariate split when a singular covariance matrix
is found.

5) EFFICIENT DECISION TREE
The authors of Efficient trees [28] propose two analytical
algorithms for finding w: selecting w randomly or as the
dominant eigenvector of the covariance matrix. For both
methods of finding w, the authors project the data onto w,
then select v as the median of the projected data.
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TABLE 2. Properties of iterative MDT algorithms. The algorithms at the top are used in the experimental comparison in Section V. The column Split refers
to the type of split used in the node: Univariate splits (Uni), Linear multivariate splits (Lin), Non-linear multivariate splits (Non), or any combination of the
aforementioned split types. The column multi-class refers to the approach taken when working with multi-class databases: some algorithms can work
directly with these databases, some algorithms need to transform the problem into one of two classes, and some algorithms cannot deal with multiple
classes. The column w refers to the method for finding the weight coefficients w . The column v refers to the method for finding the split point v . The
column Br refers to the branching factor, which is either equal to 2 or the number of classes K .

6) CLINE
The authors of Cline [19] propose six analytical algorithms
for building MDTs based on finding two points, one for
each class, and using the line passing through them as w.
The cut point v is selected as the midpoint between the two
selected points, projected onto w. The six variants choose the
points A and B as follows: CL2 selects the nearest two points
from different classes; CL4 uses four points instead of two;
CLM selects the mean points of the classes; CLLDA first
obtains w through Fisher’s vector discriminant, then it selects
the nearest two points from different classes after projecting
them ontow; CLLVQfinds two centroids using Linear Vector
Quantization; and CLMIX tests CLM, CLLDA, and CLLVQ
in each node and uses the best one according to the split
evaluation function.

7) HHCART
HHCART [27] calculates the eigenvectors of the covariance
matrix of each class and uses the eigenvectors to build an
m× m Householder matrix to project the data. Each column
of the matrix is a candidate for w. For each candidate w,
an exhaustive search is made to find a split point v, keeping
the split that minimizes the impurity measure. Originally,
HHCART had two variants: HHCART(A), which uses all
eigenvectors as candidates for w; and HHCART(D), which
uses only the dominant eigenvector as w.
A third version of the algorithm, HHCART(G) [33], is a

variation of HHCART(D). HHCART(G) uses the angle bisec-
tor from the Geometric DT approach from Section III-A4,
instead of the dominant eigenvector as w. For small
sample sizes, where the angle bisector cannot be found
using the original approach [25], the authors introduced a
modified angle bisector. Of the three variations of HHCART,
HHCART(G) has the highest average accuracy, and it is the
most efficient.

B. ITERATIVE APPROACHES FOR MULTIVARIATE
SPLIT GENERATION
In this section, we review iterative algorithms, which given an
initial solution for the weight coefficients w, use an iterative

procedure to modify them to improve the split evaluation
measure. Table 2 displays how each of the iterative algorithms
considered in our investigation (one algorithm per row) is cat-
egorized in terms of the taxonomy presented in Section II-B.
We have identified five general approaches used to search
candidate splits through iterative algorithms:
• Hill climbing (Section III-B1). These algorithms
use hill climbing or some variation thereof, such as
simulated annealing, to search for candidate splits.

• Linear discriminant functions (Section III-B2). These
algorithms generate K-ary trees through linear dis-
criminant functions. The linear combination for each
discriminant function is obtained through an iterative
algorithm.

• Neural networks (Section III-B3). These algorithms
use neural networks to generate candidate splits; some
of these algorithms generate non-linear splits.

• Evolutionary algorithms (Section III-B4). These algo-
rithms run an evolutionary algorithm to improve an
initial population of solutions.

• Linear programming (Section III-B5). These algo-
rithms pose the problem of finding a candidate split as a
linear programming problem.

1) HILL CLIMBING AND ANNEALING ALGORITHMS. CART-LC,
SADT, OC1, APDT, FAT/MOC1
The oldest iterative algorithm we review, Classification and
Regression Trees with Linear Combination (CART-LC), was
proposed by Breiman et al. [34] as an extension of CART to
linear combinations. CART-LC is deterministic. It starts with
the best univariate split, normalizes the weight coefficients,
and generates two candidate splits by modifying a single
weight coefficient at a time by 0.25 and −0.25.

One problem of CART-LC is that it can be easily stuck
in local optima because it is deterministic. To solve this
problem, Heath et al. [37] proposed Simulated Annealing of
Decision Trees (SADT), which uses simulated annealing to
find the weight coefficients w, so it is more difficult for it to
get stuck in local optima.
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Murthy et al. [9] noted that SADT is computationally
expensive, so they propose Oblique Classifier 1 (OC1),
an extension to CART-LC that includes two randomization
procedures. As CART-LC, OC1 starts with the best axis-
parallel split, but it modifies the weight coefficients by small
random amounts. The advantage of OC1 over SADT is that
it is more efficient.

FAT andMargin OC1 (MOC1) [41] are DTs based onOC1;
the main difference from OC1 is that they try to maximize
the margin in each node. FAT first builds an OC1 tree; then,
in each inner node, the objects are relabeled as right or left
according to the child they fall in. The relabeled objects are
linearly separable, so SVM is used to find the hyperplane
with maximal margin. MOC1 modifies the split evaluation
measure to include the size of the margin.

The Alopex Perceptron Decision Tree (APDT) [39] uses
the Alopex algorithm, a variant of simulated annealing to
find a split. One difference with the SADT algorithm that
uses simulated annealing, is that in APDT, all weights are
randomly modified at each step.

2) LINEAR DISCRIMINANT FUNCTIONS. LMDT, oRF
Brodley et al. [15] proposed to use linear discriminant
functions to generate candidate splits in Linear Machine
Decision Trees (LMDT). Usually, discriminant functions
use an analytical approach; however, Brodley et al. [15]
proposed three algorithms for finding the coefficients wi, vi
iteratively. The first algorithm (RLS) uses the recursive least-
squares procedure to find the parameters wi, vi; since this
approach only works for two classes, the trees generated
are binary. The other two algorithms generate k-ary trees,
where they consider treating each linear discriminant function
as a perceptron. Since convergence is a problem for the
perceptron if the objects are not linearly separable, the authors
use the Pocket algorithm as a possible solution for not
linearly separable problems. As a second solution, the authors
use Thermal Training, which is a variation on simulated
annealing. The authors’ experiments were restricted to two-
class databases, where the RLS algorithm outperforms the
others in accuracy.

Menze et al. [43] proposed Oblique Random Forests
(oRF), which builds MDTs using ridge regression, where the
regularization parameter λ is adjusted iteratively. The authors
note that with λ = 0 the split is similar to one obtained
through discriminant analysis approaches, while λ � 1
results in a split similar to one obtained through principal
component analysis.

Both LMDT with recursive least squares and oRF are
limited to two-class problems. The other versions of LMDT
can work directly with multi-class problems.

3) NEURAL NETWORKS. BMDT, CTNNFE, OMNIVARIATE
Liu et al. [38] proposed BMDT, which transforms the
problem of inducing binary multivariate decision trees to one
of inducing binary univariate decision trees. The algorithm
trains a 2-layer feed-forward neural network, where hidden

units are used as new features x ′i = δ(
∑m

j=1 w
i
jxj+w

i
0), where

wij are the weights from the feature with index j ∈ F to
the hidden unit i, and δ is a non-linear squashing function.
A univariate tree is built using the new features, where splits
take the form x ′i ≤ v′. A linear split is obtained by taking
the inverse of the squashing function,

∑m
j=1 w

i
jxj + wi0 ≤

δ−1(v′); by defining the split point v = δ−1(v′)− wi0, we can
rewrite this split like the linear splits presented in Section II-A
(
∑m

j=1 wjxj ≤ v).
Guo et al. [36] proposed Classification Trees with Neural

Network Feature Extraction (CTNNFE), which at each node
builds a multilayer perceptron to generate non-linear splits.
As an extension, Yildiz et al. [35] proposed Omnivariate
decision trees, which can make univariate splits, linear
multivariate splits, and non-linearmultivariate splits. Tomake
linear multivariate splits, the Omnivariate algorithm uses a
single layer perceptron.

4) EVOLUTIONARY ALGORITHMS. HBDT, OmniGA
Struharik et al. [44] proposed the HereBoy DT (HBDT)
algorithm, which runs an evolutionary algorithm to find the
optimal split point at each node. OmniGA [46] uses a genetic
algorithm to generate trees based on Omnivariate trees [35].
The genetic algorithm is used to select the type of split made
at each node, optimize the parameters of the split, and prune
nodes.

5) LINEAR PROGRAMMING. DIPOLAR, OCT,
SBT/PT, VDT/CDT
The authors of Dipolar [40] propose to use the basis
exchange algorithm, which is similar to linear programming,
tominimize the dipolar criterion function. A dipole is a pair of
objects from the database; a pure dipole is one with objects of
the same class, while a mixed dipole has objects of different
classes. The authors aim to select a hyperplane that divides
a high number of mixed dipoles and a low number of pure
dipoles, so they define the dipolar criterion function as a
weighted sum of the cost of separating pure dipoles and not
separating mixed dipoles.

The authors of Optimal Classification Trees (OCT) [14]
formulate the problem of building UDTs and MDTs as
a mixed-integer optimization problem. The objective func-
tion considers a trade-off between accuracy and model
complexity.

The authors of Vertical Decision Trees (VDT) and Cutting
Decision Trees (CDT) [42] also formulate the problem of
building MDTs as a mixed-integer optimization problem.
However, VDT is not allowed to grow in width by making
each inner node have at least one leaf child. Given that the
variables in the optimization problem grow at an exponential
rate with respect to the depth of the tree, the authors propose
the CDT, in which the number of variables grows linearly
with the depth of the tree. In the CDT, only the leaf nodes
at maximum depth may be impure.
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The authors of Supervised Budgeted Tree (SBT) and
Powerset Tree (PT) [45] analyze the error bound of an MDT
and conclude that to decrease testing error, theymust decrease
training error, put a constraint on the weight coefficients, and
enlarge the margin in each node. The authors create a Budget-
aware classifier, which has these constraints incorporated into
an optimization problem. In each node, the Budget-aware
classifier is used to generate splits. For two classes, the SBT
tree is built in a top-down manner; however, for multiple
classes, the PT bottom-up algorithm is used, which generates
only one leaf per class.

6) DTSVM
The authors of Decision Tree SVM (DTSVM) [47] build a
tree using νSVM to generate splits. Since νSVM is designed
to deal with two classes, the authors mention they use a one-
versus-others strategy to transform multiple classes into a
binary class; however, it is not clear if this strategy is used
to generate several trees, or if this strategy is used at each
node to generate candidate splits.

After building the MDT, DTSVM encodes each object in a
v = {0, 1}m vector, where each element corresponds to an
inner node of the tree. If an object passes through node i,
then its corresponding value is vi = 1, otherwise vi = 0.
This new feature space is used to classify the objects using a
linear SVM.

7) BDTKS
Binary Decision Tree based on K-means Splitting
(BDTKS) [48] applies K-means with k = 2 at each node and
uses the centroids to calculate w, v. To calculate w, BDTKS
obtains the hyperplane passing through both centroids; then,
the centroids are projected onto w, and the midpoint is used
as v. The split evaluation function is a modified impurity
function that takes into account class imbalance.

C. OTHER DTs WITH MULTIVARIATE DECISIONS
Other types of decision trees use multivariate decisions, such
as Soft decision trees, Model trees, and Functional trees.
We will briefly describe these trees; however, in this paper,
our focus is on MDTs. Comparing these other trees deserves
future study.

Soft decision trees [49] and Fuzzy decision trees [50],
unlike the DTs we have discussed so far, do not tag
branches with binary tests which tell us which branch
to follow. Instead, each node has a gating function
that gives probabilities or membership degrees to the
children nodes. All paths from the root to the leaves
are traversed with probabilities assigned by the gating
function.

Model trees are univariate trees that make multivariate
decisions at each leaf [51], while functional trees are a
generalization of MDTs and Model trees [52]. Functional
trees allow combinations of features at inner nodes and leaf
nodes. Gama [52] compared his algorithm for Functional
Trees with one algorithm of the other groups: CRUISE [18]

for MDTs, and M5’ [53] for Model trees. The algorithms
were compared in 30 databases, and a Wilcoxon test
with Bonferroni correction showed no significant difference
between Functional Trees and the other algorithms. However,
the Functional tree was ranked first, then the MDT, and at last
the Model tree.

D. LIMITATIONS OF RELATED WORK COMPARISON
When presenting a new classification algorithm, authors
should attempt to determine how it compares, in terms of
performance, against others that are a reference to the com-
munity. Moreover, for this experimental comparison to be
statistically sound, all algorithms should be tested in enough
databases, observing the conditions of the corresponding
hypothesis test. This way, algorithms can be ranked in terms
of performance, and so any upcoming algorithm could be
compared against only a subset of top-rank algorithms. In the
literature about MDT induction, however, we have noticed
two widespread limitations on recent papers: the proposed
new MDT algorithm is not compared with relevant existing
rival MDTs, or the comparison does not involve testing
the algorithms in enough databases to support any claim
statistically.

Fig. 1 displays each algorithm, ordered in terms of year
of appearance, from 1977 to 2018. It aims to convey both
the number of times the algorithm in question has been
used as a reference to compare the behavior of others
(orange bar) and the number of algorithms it was compared
against upon introduction (blue bar). We can see that in
most papers, authors compare their algorithm against at
most a couple of other MDT induction algorithms; the most
comprehensive study compares their algorithm against five
others. Furthermore, only CART-LC, OC1, QUEST, and
LMDT are used as a reference for comparison more than
twice. Note that most algorithms have never been used in any
experimental comparison.

Fig. 2 is similar to Fig. 1, except that it displays the number
of databases used when testing the proposed algorithm.
Looking at it, we notice that only 9 algorithms use at
least 20 databases. Given that including more databases
increases the power of statistical tests [54], and there are
publicly available database repositories such as the UCI
repository [12], new publications should strive to include
more databases in their experimental comparisons.

E. MDT INDUCTION CONCLUSIONS
In this section, we presented a taxonomy that enables us
to identify common split generation strategies. We grouped
the algorithms into analytical and iterative, according to
their approach for generating the weight coefficients w for
candidate splits. In both groups, we identified subgroups of
strategies for finding w.

Although plenty of algorithms can use a mix of univariate
and linear multivariate splits when building a tree, multivari-
ate splits often involve all features because most algorithms
lack feature selection. Feature selection is important to
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FIGURE 1. MDT induction algorithms sorted by year of publication. For each algorithm, the blue bar represents the number of rival algorithms the
authors used in their comparison study. The orange bar represents the number of times the algorithm is compared in papers by other authors.

FIGURE 2. Number of databases used in the experimental evaluation of MDT induction algorithms. Only 9 algorithms use at least 20 databases.

keep the models simple and is helpful because class
separability is sometimes found on subsets of features [20].
Another problem of some algorithms is that they cannot

work with multiple classes, or they group multiple classes
into two groups, potentially losing information about class
separability found on subsets of features.
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TABLE 3. Example confusion matrix obtained by the J48 classifier [55] for
the iris database.

The widespread limitations on recent papers regarding
the comparison of their algorithm against relevant rival
MDTs prevent us from readily identifying the best strategies
for building MDTs. Therefore, to achieve our goal of
evaluating the relative merit of existing MDT induction
algorithms, we will use 20 MDT induction algorithms and
make a statistical comparison using 57 databases. In the
following section, we describe the selection process and
databases.

IV. EXPERIMENTAL SETUP
In this section, we present our proposed methodology to
accomplish our research objectives of comparing MDTs to
each other and identifying the top-performing algorithms.
In Section IV-A, we define the measures used to evaluate a
classifier. In Section IV-B, we show themethods used to com-
pare classifiers using the measures defined in Section IV-A.
In Section IV-C, we describe the databases and algorithms
used in this study. Finally, we describe the evaluation protocol
in Section IV-D.

A. EVALUATION MEASURES
The measures we use to evaluate classification performance
can be obtained from the confusion matrix, which is a result
of the classifier applied to a testing database. The confusion
matrix is a k × k matrix, where k is the number of classes.
The rows correspond to actual classes and the columns to
predicted classes. We show an example of a confusion matrix
in Table 3. From the row Iris-setosa, we can see that 49 objects
were correctly classified as Iris-setosa, and one object was
incorrectly classified as Iris-versicolor. Similar remarks hold
for the two other classes.

Let C be a confusion matrix of size k × k . Each cell cij
in C counts the number of objects of class i classified as
class j.

C =


c11 c12 . . . c1k
c21 c22 . . . c2k
...

...
. . .

...

ck1 ck2 . . . ckk


Accuracy is a popular measure to evaluate a classifier,

defined as the number of correctly classified objects divided
by the total number of objects in the testing database. It can
be obtained by adding the objects of the main diagonal of the
confusion matrix over the total number of objects, say n:

acc(C) =
∑k

i=1 cii
n

(1)

One important drawback of using accuracy is that it does
not take into account class imbalance. A database is highly
imbalanced if it has many objects of one class compared to
the rest of the classes; for such a database, always classifying
objects as the class with most objects, so-called the majority
class, will result in high accuracy.

Since many real-world databases are imbalanced, we use
the Area Under the ROC curve (AUC), which is more insen-
sitive to imbalanced databases [13]. The AUC measure for
discrete classifiers for two classes is defined using recall and
specificity [13]. Let (Ci,Cj), with i 6= j, be any pair of classes,
where Ci denotes the Positive class and Cj the Negative one.
The number of objects of the Positive class Ci correctly
classified, cii, is the number of True Positives. The number
of objects of the Positive class Ci incorrectly classified, cij,
is the number of False Negatives. The number of objects of
the Negative class Cj correctly classified, cjj, is the number
of True Negatives. The number of objects of the Negative
class Cj incorrectly classified, cji, is the number of False
Positives.

The Recall is then defined as the proportion of objects of
the positive class correctly classified:

rij(C) =
cii

cii + cij
(2)

Specificity is defined as the proportion of objects of the
negative class correctly classified:

spij(C) =
cjj

cji + cjj
(3)

Finally, the AUC for two classes i, j is defined as:

aucij(C) =
rij(C)+ spij(C)

2
(4)

To extend the definition of AUC to multi-class prob-
lems, we take the recommended one versus the others
approach [13]. This approach consists of averaging the AUC
of all possible pairs of classes as follows:

auc(C) =
1(k
2

) k−1∑
i=1

k∑
j=i+1

aucij(C) (5)

Since many of the databases tested are imbalanced, our
performance indicator in this study is AUC. Now, we will
describe how to compare algorithms using AUC as an
evaluation measure.

B. STATISTICAL COMPARISON
For comparing algorithms in multiple databases, we used
the Bayesian signed-rank test as described in the tutorial by
Benavoli et al. [56]. This test is the Bayesian counterpart
to Wilcoxon’s test. To understand this test, we briefly
describe how two classifiers are compared in a single
database.

The Bayesian tests described by Benavoli et al. [56] are
based on three hypotheses: that classifier A is practically
better than B, that the classifiers are practically equivalent,
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FIGURE 3. Example of Bayesian signed-rank test. Comparison between
CRUISE and CL2 in a subset of the 57 databases with a high number of
features.

and that classifier B is practically better than A. To calculate
the probabilities of the hypotheses for a specific database,
the Bayesian correlated t-test is used to obtain a distribution
of mean differences of AUC.

The probabilities θl, θe, θr correspond to the integral of
the distribution on different intervals: the region (−∞,−r),
where classifier A is practically better than B; the region
(r,∞), where classifier B is practically better than A; and
the region [−r, r], where the classifiers are practically
equivalent. The interval [−r, r] is known as the region
of practical equivalence (rope). Benavoli et al. [56] use
r = 0.01 for accuracy; we will use the same value
for AUC given the similarity of the measure for balanced
databases.

To compare the classifiers on multiple databases,
the Bayesian signed-rank test is used. For this test,
a distribution on the probabilities θl, θe, θr is computed by
Monte Carlo sampling. For a given sample, there is a bias
towards θi if θi > max(θj, θk ). So, if for all our samples
we have θi > max(θj, θk ), we conclude with a probability
equal to 1 that hypothesis i is true. Let us say we conclude
that classifier B is practically better than classifier A with a
probability equal to 1. This does not necessarily mean that
the difference of AUC between classifier B and A is always
greater than 0.01. This means that the probability θr is always
greater than both θl and θe; in other words, there is always a
bias towards classifier B winning.
Benavoli et al. [56] visualize θl, θe, θr for each sample

using a simplex with vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
In Figure 3, we show one for a comparison between the
classifiers CRUISE and CL2 on a subset of databases with
a high number of features. If a point falls in a vertex, then it
has θi = 1 for the corresponding hypothesis i; in the figure,
a point in the left corner is a sample where the difference in
AUC between CRUISE and CL2 is greater than 0.01 with
a probability equal to 1. There are three regions limited by
θi > max(θj, θk ); so the left region corresponds to the
case where there is a bias towards CRUISE. In each corner,
the proportion of samples falling in the corresponding region
is shown; since almost all samples fall in the region where
CRUISE is better, we have p(CRUISE) ≈ 1. Some samples
fall in the region where CL2 is better; however, the proportion
of those samples is smaller than 1× 10−3.

TABLE 4. Distribution of the databases under consideration according to
their number of features. The second column shows the distribution for
57 databases, and the third column the distribution for 40 databases.
We can test all the 19 MDT induction algorithms only on 40 databases
and a reduced set of 15 MDT induction algorithms in 57 databases.

TABLE 5. Distribution of the databases under consideration according to
their number of objects. The second column shows the distribution for
57 databases, and the third column the distribution for 40 databases.
We can test all the 19 MDT induction algorithms only on 40 databases
and a reduced set of 15 MDT induction algorithms in 57 databases.

TABLE 6. Distribution of the databases under consideration according to
their number of classes. The second column shows the distribution for
57 databases, and the third column the distribution for 40 databases.
We can test all the 19 MDT induction algorithms only on 40 databases
and a reduced set of 15 MDT induction algorithms in 57 databases.

C. DATABASES AND EVALUATED ALGORITHMS
We have found 57 numerical databases without missing val-
ues from the UCI repository [12]. The databases are diverse,
with varying numbers of objects, number of features, number
of classes, and degree of imbalance. The full description of
the databases can be found in Appendix A, where we can
verify the diversity of the databases. However, we summarize
key characteristics of the databases in Tables 4, 5, and 6.

In the following section, we compare 19 implementations
of MDT induction algorithms using the databases and
algorithm comparison methods described in this section.
The classifiers compared include seminal MDTs that were
designed for general-purpose classification: CART-LC and
OC1. The rest of the classifiers are also for general-purpose
classification, and the original authors tested them in diverse
databases, such as the ones of the UCI repository.

We used the original author’s implementation for each
classifier included. The implementations were publicly
available online, or the authors were kind enough to share
with us an implementation for academic purposes. The
authors of SBT/PT [45] shared with us the implementation
for their classifier; however, the implementation works
only for two-class databases and the published results are also
only for two-class databases.

We compare the following analytical algorithms, which are
at the top of Table 1: QUEST [17], CRUISE [18], LDT [11],
six variants of CLINE [19], five variants of MPSVM [2],
and MHLDT [20]. We also compare the following iterative
algorithms, which are at the top of Table 2: CART-LC [34],
OC1 [9], Omnivariate [35], and Optimal [14].
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D. EVALUATION PROTOCOL
For each algorithm a ∈ A listed in Section IV-C, we executed
a in each dataset d ∈ D using 5-fold Distribution Optimally
Balanced-SCV (DOB-SCV). The k-fold DOB-SCV [57] is an
alternative to k-fold cross-validation that tries to keep the data
distribution as similar as possible. Lopez et al. [58] suggest
using k-fold DOB-SCV instead of k-fold cross-validation
to avoid having different distributions between testing and
training databases. For each execution of algorithm a ∈ A
in database d ∈ D, we obtain the AUC (see Section IV-A) for
each fold and calculate the mean AUC over the 5 folds.

When executing the algorithms (listed in Section IV-C),
some implementations crashed for some databases. We have
found it difficult to assess why a specific implementation
failed in one database, because some of the algorithms
do not have publicly available source code, and the errors
were not ones handled by the developers that could provide
some useful message. To deal with this issue, we ran two
experiments: the full algorithms experiment and the full
classifiers experiment.

The full algorithms experiment aims to compare all algo-
rithms, and so we removed from analysis those databases for
which at least one algorithm failed. In this case, we ended up
with 40 databases. By contrast, the full databases experiment
aims to preserve all databases, and so we removed from
analysis those algorithms that fail at least with one database.
Then, we were left with 15 algorithms. This way our analysis
is more robust, for as shall be seen in Section V, we can
understand the effect of adding or removing algorithms or
databases from our experiments.

For each experiment, we make a first comparison of the
algorithms through key statistics of the AUC obtained for
each database. We show these statistics with boxplots and
rank the classifiers by their median AUC.

Next, for each experiment, we take each pair of algorithms
(ai, aj), i 6= j considered in the experiment and apply the
Bayesian signed-rank test (see Section IV-B) for the subset of
databases considered in the experiment. The test gives three
probabilities as a result: the probability that ai is practically
better than aj, in other words, the probability of ai winning;
the probability that aj is practically better than ai, in other
words, the probability of aj winning or ai losing; and the
probability that ai and aj are practically equivalent, in other
words, the probability of a tie.

To identify in which databases the algorithms perform
better, we also apply the Bayesian signed-rank test to
subsets of the databases for each experiment. First, for
each experiment, we compare the results in databases with
two classes against databases with more than two classes.
Therefore, we will have four subsets of databases, shown
in Table 6, where we apply the test. The other comparisons
are in databases with up to 20 features, against databases with
more than 20 features; databases with up to 1,000 objects,
against databases withmore than 1,000 objects; and databases
with up to two objects of the majority class for each object
in the minority class, against databases with more than two

FIGURE 4. Boxplot showing the distribution of AUC of the 19 algorithms
described in Section IV in 40 databases for the full algorithms
experiment. The algorithms are sorted by their median AUC, with the
algorithms with highest median AUC at the bottom.

objects of the majority class for each object in the minority
class.

V. RESULTS AND DISCUSSION
In this section, we show the results of our comparison
of the 19 MDT induction algorithms. As discussed in
Section IV-D, we have conducted two experiments, which
we call the full algorithms experiment and the full databases
experiment.

In Figure 4, we show a boxplot of the distribution of
AUC for the full algorithms experiment. The algorithms are
ordered according to their median AUC, with algorithms with
the highest values at the bottom. The boxplot helps us to
visualize the distribution of AUC for each algorithm, showing
the minimum and maximum values with the whiskers (left
and right small vertical lines at the edge of each dashed line),
the median (bold line inside the box), and the first and third
quartiles (left and right edges of the box).

Since we want to maximize AUC, we aim to build
algorithms with high median AUC and low variability.
Visually, small boxes and whiskers closer to the median
indicate low variability. MHLDT has the highest median
AUC, which may indicate good performance. From Figure 4,
we notice that the median AUC of most algorithms is in
the range (0.8, 0.9), and there is great overlap between
the boxes. Even so, a consistent difference in performance
statistics of AUC (median, first quartile, third quartile, and
minimum) indicates that one algorithm is performing better
than the other. However, a consistent improvement of AUC
of 0.01 might not be easy to notice visually; however,
we will detect this consistent difference with the statistical
tests. Other differences are more noticeable; for example,
we know for sure that Omni obtains worse results compared
to MHLDT in at least 25% of the databases because the
first quartile of Omni is lower than the minimum AUC
of MHLDT.

In Figure 5, we show a boxplot with the distribution
of AUC for the full databases experiment. We notice that
when adding 17 databases, the minimum, median, and first
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TABLE 7. Bayesian signed-rank test results for the full algorithms experiment. Each cell shows the probability that the algorithm in the row is practically
better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of
times their probability of winning against another algorithm is higher than their probability of losing.

FIGURE 5. Boxplot showing the distribution of AUC of 15 of the
algorithms described in Section IV in 57 databases for the full databases
experiment. The algorithms are sorted by their median AUC, with the
algorithms with highest median AUC at the bottom.

and third quartiles for AUC are generally lower. We also
notice that the relative ranking according to the median
AUC of some algorithms changes. The lowered performance
of 15 classifiers might be because the 17 databases are harder
to classify and furthers our motivation of giving results for all
databases for the algorithms for a subset of algorithms. The
full results with the AUC of each algorithm for each database
are shown in Appendix B.

In the boxplots, we used the median AUC to rank the algo-
rithms; however, the median AUC alone does not guarantee
good performance, we need to consider the whole distribution
of AUC. For example, by ranking the algorithms by median
AUC, CRUISE is at sixth place and QUEST is at third place;
however, the AUC of the first quartile is noticeably higher
for CRUISE. Pairwise comparison of CRUISE and QUEST
would confirm that CRUISE achieves higher AUC values
most often than QUEST, which seems natural since CRUISE
was published years later than QUEST by the same authors,
with CRUISE preserving some successful characteristics
from QUEST. Since it is difficult to assess which algorithm
is better by only looking at AUC statistics, to make a fair
comparison of the algorithms, we need to apply statistical
tests.

A. STATISTICAL COMPARISON
In Section IV-B, we described the Bayesian signed-rank test
to compare a pair of algorithms. In Table 7, we show the
results of the statistical test for the full algorithms experiment.
The same results for the full databases experiment are shown
in Table 8. The number of each cell is the probability that the
algorithm in the row is practically better than the one in the
column. The algorithms are ranked by the number of times
their probability of winning against another algorithm is
higher than their probability of losing. From the probabilities
of a pair of algorithms i, j winning against each other, we can
obtain the probability of the algorithms being practically
equivalent as 1− pij − pji.
For example, we see that the probability that CRUISE is

practically better than QUEST is 0.43 from cell (2, 9) of
Table 7. From cell (9, 2) of Table 7, we see that there is
a probability that QUEST wins against CRUISE of 0.02.
From the previous probabilities, we can obtain the probability
that QUEST and CRUISE are practically equivalent as
1 − 0.43 − 0.02 = 0.55. In 55% of cases, there is a
bias towards the algorithms being practically equivalent.
However, with no additional information, we can conclude
that CRUISE outperforms QUEST because CRUISE still
wins in 43% of cases, and QUEST only wins in 2% of the
cases.

In Figure 6, we show the median probability of winning or
losing of each algorithm, as well as the median AUC (color
and size of points). Although we are only showing the median
values, we can now visually compare multiple algorithms
simultaneously, which is challenging to do from the tables.
Furthermore, we will see that we can visually identify groups
of top-performing algorithms that match the ranking used
in Tables 7 and 8.
For the full algorithms experiment, in the top plot of

Figure 6, we notice a group of top-performing algorithms
with a median probability of winning higher than 0.7 and
a median probability of losing smaller than 0.3, namely,
MHLDT, CRUISE, MPSVMpca, MPSVMparallel, CART-
LC, MPSVMlda, and OC1. The algorithms in this group are
also at the top of the ranking in Table 7.
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TABLE 8. Bayesian signed-rank test results for the full databases experiment. Each cell shows the probability that the algorithm in the row is practically
better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of
times their probability of winning against another algorithm is higher than their probability of losing.

We notice that CART-LC and OC1 are at positions 5 and
6 in the ranking of Table 7, which seems high. These
algorithms are two of the most popular algorithms used
in experimental comparisons, so we would expect most
algorithms to outperform them. We even notice that, with
a median probability greater than 0.6, CART-LC wins over
11 algorithms (labeled 9 to 19 in Table 7), and OC1 wins over
10 algorithms (labeled 10 - 19 in Table 7).

For the full algorithms experiment, in the bottom plot
of Figure 6, we can identify a smaller group of five top-
performing algorithms with a median probability of winning
higher than 0.9 and a median probability of losing smaller
than 0.1, namely, MHLDT, CRUISE, MPSVMparallel,
MPSVMlda, and MPSVPpca. The algorithms in the group
are also at the top of the ranking in Table 8. With this group
of five algorithms in mind, we notice that the only difference
in the ranking when considering all classifiers, for the full
algorithms experiment, is that MPSVMparallel goes from
rank 4 to 7.

We now want to identify common characteristics of
MHLDT, CRUISE, MPSVMlda, and MPSVPpca, which are
among the top-five ranked algorithms for the full algorithms
experiment and the full databases experiment. The first
common characteristic is that all algorithms use an analytical
method to find the coefficients of the linear combination w.
However, the specific procedure for finding w is different
for each algorithm; MHLDT uses a multi-class version of
Fisher’s linear discriminant, CRUISE uses linear discriminant
functions, producing K-ary splits, and all versions of Zhang’s
MPSVM use MPSVM to find clustering hyperplanes used to
obtain w.
A second common characteristic is that the classifiers may

use univariate splits in some cases. However, only MHLDT
uses a feature selection method to obtain multivariate splits
with few features, which may be an advantage. A third
common characteristic between MHLDT and CRUISE,
which are better ranked than MPSVM, is that they can work
directly with multi-class problems.

The results shown have taken into account databases with
a diverse number of features, objects, classes, and degrees of
imbalance. However, an algorithm with low performance in

a group of databases, such as high-imbalance databases, may
have competitive performance in another group, such as low-
imbalance databases. We now make statistical comparisons
by type of database to identify top-performing algorithms in
groups of databases.

B. ANALYSIS BY TYPE OF DATABASE
In this section, we will show the results of the statistical
test for subsets of our databases according to the number
of features, objects, classes, and degree of imbalance. Since
we will have 16 comparisons, we only show the results with
figures similar to 6. The results in table form can be consulted
in Appendix B.

1) NUMBER OF CLASSES
First, let us compare the performance of the classifiers in
a subset of databases with two classes against a subset
of databases with more than two classes. In Figure 7,
the upper subplots correspond to database subsets for the full
algorithms experiment, while the lower subplots correspond
to database subsets for the full databases experiment. The left
subplots have database subsets containing only two classes,
while the right subplots have database subsets containing
more than two classes. We notice that the median AUC for
all classifiers is lower for databases with two classes than for
databases with more than two classes; this suggests that the
selected two-class databases may be more difficult to classify
correctly.

For both experiments, when considering a subset of
databases with more than two classes, we notice that the five
algorithms with the higher median probability of winning and
lower median probability of losing are MHLDT, CRUISE,
MPSVMlda, MPSVMparallel, and MPSVMpca. This group
of algorithmsmatches the one obtained in the test considering
all 57 databases for the full databases experiment, we can
verify this in Figure 6.
For the case with only two classes, for the full databases

experiment, we add QUEST to the group of five top-
performing algorithms identified in Figure 6. OCT may also
be considered because it has a median probability of winning
slightly higher than CRUISE, but also a higher median
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FIGURE 6. Statistical comparison of classification performance, using the Bayesian signed-rank test. The upper subplot shows the results of the full
algorithms experiment, and the lower subplot shows the results of the full databases experiment. Each subplot shows the median probability of each
algorithm winning and the median probability of each algorithm losing; the best performing algorithms are at the bottom right corner, while the worst
performing algorithms are at the upper left corner. We also show the median AUC through the size and color of the points.

probability of losing. For the full algorithms experiment,
the different versions of MPSVM have reduced performance.
Now we can identify a different group of six top-performing
classifiers, including MHLDT, CART-LC, OC1, QUEST,
CRUISE, and OCT.

Identifying groups of algorithms that perform well in
database subsets with common characteristics can help us
select which algorithms to test given a specific database.

For example, we would test QUEST before CRUISE for two-
class databases since it has a slightly higher median proba-
bility of winning and a slightly lower median probability of
losing. However, if the objective is to design a new algorithm
that works well in databases with more than two classes,
we would like to know what CRUISE is doing different
from QUEST to achieve an improvement in classification
performance.
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FIGURE 7. Statistical comparison of classification performance by the number of classes, using the Bayesian signed-rank test. The upper subplots show
the results for the full algorithms experiment, and the lower subplots show the results for the full databases experiment. The left subplots show the
results for database subsets with two classes, and the right subplots show the results for database subsets with more than two classes. Each subplot
shows the median probability of each algorithm winning and the probability of each algorithm losing; the best performing algorithms are at the bottom
right corner, while the worst performing algorithms are at the upper left corner. We also show the median AUC through the size and color of the points.

Although CART-LC and OC1 are the oldest MDTs we
compare, they manage to outperform most of the algorithms
for two-class databases. However, CART-LC and OC1 have
reduced performance for databases with more than two
classes. Considering that the top-performing algorithms are
analytical algorithms, this result may suggest that iterative
algorithms may have difficulties finding good splits for
databases with more than two classes.

2) NUMBER OF FEATURES
In Figure 8, the upper subplots correspond to database
subsets for the full algorithms experiment, while the lower
subplots correspond to database subsets for the full databases
experiment. The left subplots have database subsets with up
to 20 features, while the right subplots have database subsets
containing more than 20 features. We notice that the median
AUC for all classifiers is lower for databases with up to
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FIGURE 8. Statistical comparison of classification performance by the number of features, using the Bayesian signed-rank test. The upper subplots show
the results for the full algorithms experiment, and the lower subplots show the results for the full databases experiment. The left subplots show the
results for database subsets with up to 20 features, and the right subplots show the results for database subsets with more than 20 features. Each subplot
shows the median probability of each algorithm winning and the probability of each algorithm losing; the best performing algorithms are at the bottom
right corner, while the worst performing algorithms are at the upper left corner. We also show the median AUC through the size and color of the points.

20 features than for databases with more than 20 features;
this suggests that the problems with more features are more
difficult to classify correctly.

For the case with up to 20 features, for both experiments,
we identify a small group of three top-performing algorithms:
MHLDT, MPSVMlda, and CRUISE.

For the case with more than 20 features, the group
of three best performing classifiers changes. We can

still identify CRUISE and MHLDT in a group of five
top-performing algorithms for the full databases exper-
iment, but we only identify MHLDT in the group of
five top-performing algorithms for the full algorithms
experiment.

The top-performing algorithms for databases with few
features are all analytical algorithms. However, we do not
notice a clear pattern for the top-performing algorithms

110466 VOLUME 9, 2021



L. Cañete-Sifuentes et al.: Review and Experimental Comparison of MDTs

FIGURE 9. Statistical comparison of classification performance by the number of objects, using the Bayesian signed-rank test. The upper subplots show
the results for the full algorithms experiment, and the lower subplots show the results for the full databases experiment. The left subplots show the
results for database subsets with up to 1,000 objects, and the right subplots show the results for database subsets with more than 1,000 features. Each
subplot shows the median probability of each algorithm winning and the probability of each algorithm losing; the best performing algorithms are at the
bottom right corner, while the worst performing algorithms are at the upper left corner. We also show the median AUC through the size and color of the
points

in databases with many features. For the full algorithms
experiment, the top-performing algorithms include an analyt-
ical algorithm with feature selection (MHLDT), an iterative
algorithm with feature selection (CART-LC), an iterative
algorithm without feature selection (OC1), and a tree
optimization algorithm (OCT).

3) NUMBER OF OBJECTS
In Figure 9, the upper subplots correspond to database
subsets for the full algorithms experiment, while the lower
subplots correspond to database subsets for the full databases
experiment. The left subplots have database subsets with
up to 1,000 objects, while the right subplots have database
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FIGURE 10. Statistical comparison of classification performance by the degree of imbalance, using the Bayesian signed-rank test. The upper subplots
show the results for the full algorithms experiment, and the lower subplots show the results for the full databases experiment. The left subplots show
the results for database subsets with up to 2 objects of the majority class for each object of the minority class, and the right subplots show the results for
database subsets with more than 2 objects of the majority class for each object of the minority class. Each subplot shows the median probability of each
algorithm winning and the probability of each algorithm losing; the best performing algorithms are at the bottom right corner, while the worst
performing algorithms are at the upper left corner. We also show the median AUC through the size and color of the points

subsets containing more than 1,000 objects. We notice
that the median AUC for all classifiers is lower for
databases with up to 1,000 objects than for databases
with more than 1,000 objects; this suggests that the
problems with fewer objects are more difficult to classify
correctly.

For the case with up to 1,000 objects, we notice that
the five top-performing algorithms for the full databases
experiment are again MHLDT, CRUISE, MPSVMPparallel,
MPSVMPlda, and MPSVPpca. This group of algorithms can
also be identified for the full algorithms experiment, which
considers all algorithms.
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For the case with more than 1,000 objects, for the full
databases experiment, the group of five top-performing
algorithms includes QUEST instead of MPSVMpca. For
the full algorithms experiment, the group of top-performing
algorithms changes, now including MHLDT, CART-LC,
OCT, OC1, and CRUISE.

The top-performing algorithms for databases with few
objects are again analytical algorithms. For the databases
with many objects, we have similar results to the databases
with many features; the top-performing algorithms MHLDT,
CART-LC, OCT, and OC1, follow different approaches to
generate splits.

4) IMBALANCE
In Figure 10, the upper subplots correspond to database
subsets for the full algorithms experiment, while the lower
subplots correspond to database subsets for the full databases
experiment. The left subplots have database subsets with
low imbalance, which we consider as databases with up to
2 objects of the majority class for each object of the minority
class. The right subplots have database subsets with high
imbalance, which we consider as databases with more than
2 objects of the majority class for each object of the minority
class. We notice that the median AUC for all classifiers is
lower for imbalanced databases than for balanced databases;
this suggests that problems with high imbalance are more
difficult to classify correctly.

For the case of balanced databases, for the full databases
experiment, the five top-performing algorithms are CRUISE,
MHLDT, CLDA, QUEST, and CLMIX. For the full
algorithms experiment, the group changes, now including
MHLDT, CRUISE, OCT, CLMIX, and OC1.

For the case of imbalanced databases, for both experi-
ments, the five top-performing algorithms are againMHLDT,
CRUISE, MPSVMPparallel, MPSVMPlda, and MPSVPpca.

The top-performing algorithms for imbalanced databases
are analytical algorithms. However, the top-performing
algorithms for balanced databases, including MHLDT,
CRUISE, OCT, and OC1, follow different approaches for
split generation.

VI. CONCLUSION
In this paper, we identified a gap in Multivariate Decision
Tree (MDT) literature. There are no surveys about MDTs,
and recent papers introducing MDTS suffer from one or two
main shortcomings in their comparison of previous work:
authors do not compare their algorithm with relevant rival
techniques, or they do so but not in enough databases, and
hence results are insufficient for statistically validating the
underlying hypothesis.

Our goal is to evaluate the relative merit of publishedMDT
induction algorithms to identify how they compare to one
another. By doing so, we aim to fill a gap in MDT literature,
and we hope that our findings help the community to select
an MDT to use in a particular context.

To accomplish our goal, first, we conducted a survey
of 37 relevant MDT induction algorithms. Then, we evaluate
the classification performance of 19 general-purpose MDT
induction algorithms in 57 databases and make a statistical
comparison.

Our conclusions are stronger than any other found in the
literature since we compare almost four times the number of
algorithms as themost thoroughMDT study, which compared
5 algorithms in 20 databases [11]. We also compare the
algorithms in 4 more databases than the reviewed study with
the largest number of databases [14].

Our main contributions in this paper are: (1) we provide
a sound and extensive review of MDT induction algorithms;
(2) we provide the most extensive MDT comparison to date,
supporting our results through statistical tests; (3) we identify
groups of top-performing algorithms for all databases and
subsets of databases with common characteristics.

We provide the full results of the Bayesian signed-rank
tests for each pair of algorithms, which can be used to find
if there is a bias towards either algorithm winning or towards
a tie. To summarize the results of the Bayesian signed-rank
tests and compare the overall performance of the algorithms,
we made plots with the median probability of an algorithm
winning or losing against other algorithms. With these plots,
we were able to identify groups of top-performing algorithms
in all databases and in subsets of databases according to the
number of classes, number of features, number of objects, and
degree of class imbalance.

The two top-performing algorithms, when considering all
databases, are CRUISE [18] and MHLDT [20]. Both algo-
rithms are analytical algorithms that can work directly with
multi-class problems. However, we notice that MHLDT often
outperforms CRUISE and one differentiating characteristic
is that MHLDT uses feature selection. Next in the ranking
are some versions of Zhang’s MPSVM [2], which is also an
analytical algorithm, but lacks feature selection and cannot
work directly with multi-class problems. Given these results,
we would encourage exploring improvements in analytical
MDTs, taking into account feature selection, and taking care
of how to work with multi-class databases.

For specific types of databases, we found that MHLDT
and CRUISE are often among the top-performing algorithms.
We also found that CART [34] and OC1 [9] outperform
many algorithms in some subsets of databases, even though
they are the oldest algorithms in the comparison and new
algorithms are often compared against them. Specifically,
CART and OC1 are among the top-performing algorithms in
two-class databases, in databases with more than 20 features,
and in databases with more than 1,000 objects. This result
highlights the importance of comparing newMDT algorithms
against previous algorithms in a sufficient number of diverse
databases to allow making a statistical comparison.

A. CHALLENGES FOR MDTs AND FUTURE WORK
We have identified the following challenges for MDTs that
can motivate future work:
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TABLE 9. Details about the 57 databases used in the experimental comparison. The top 40 databases work with all algorithms and are used for the full
algorithms experiment. For each dataset, we show the number of objects, number of features (without the class), number of classes. The column
Imbalance shows the number of objects of the majority class for each object of the minority class. References for the databases with a citation request
are included.
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TABLE 10. AUC of the 19 algorithms in the 57 databases. The first 40 databases correspond to the subset of databases used in the full algorithms
experiment. The full databases experiment does not include the last four algorithms, since we do not have their AUC on 17 databases. The names are
abbreviated, but the databases are in the same order of Table 9.

TABLE 11. Bayesian signed-rank test results for databases with two classes from the full algorithms experiment. Each cell shows the probability that the
algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

1) We have noticed that most MDT induction algo-
rithms, including recent ones, focus on linear
multivariate splits. Using non-linear multivariate
splits, in addition to univariate and linear multi-
variate splits, may result in improved classification
performance.

2) UDTs have been successfully applied to unsupervised
classification (clustering) with the UD3 [59] and
eUD3.5 [60] algorithms with the advantages of fast
training times, and that clusters can be explained.
When clusters cannot be easily divided by univariate

splits, we expect thatMDTs provide better performance
than UDTs.

3) UDTs have also been successfully applied to semi-
supervised learning. Tanha et al. [61], show how a
UDT can be effectively used for self-training. Adapting
an MDT for the self-training problem may increase
classification performance.

4) The problem of identifying tree similarities has been
studied for UDTs. For example, DTreeSim [62]
extracts sequences by traversing trees from the root to
each leaf. Frequent subsequences are identified with
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TABLE 12. Bayesian signed-rank test results for databases with more than two classes from the full algorithms experiment. Each cell shows the
probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is
1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of
losing.

TABLE 13. Bayesian signed-rank test results for databases with two classes from the full databases experiment. Each cell shows the probability that the
algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

TABLE 14. Bayesian signed-rank test results for databases with more than two classes from the full databases experiment. Each cell shows the probability
that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

the PrefixSpan algorithm and are used to measure
similarities between trees. This approach may be
extended to MDTs; however, the challenge of compar-
ing multivariate items efficiently must be handled first.
When dealing with MDTs with linear combinations,
the hyperplane generated in a split might be changed
by adding small noise so that the original and new
hyperplanes are almost parallel and divide the data
in the same way. Hence, we should evaluate when to
consider pairs of multivariate items as equivalent even
if the weights and splitting points do not match exactly.

5) Training time is a measure of interest not included
in this work. We believe that we cannot make a
fair comparison of runtime at the moment, given
the great diversity of platforms and programming
languages used for implementing the algorithms such
as Matlab, Weka (Java), C, and Julia. Furthermore,
the algorithms implemented in C had to be evaluated
in a Linux system; however, due to the volume of
the experiments, the rest of the algorithms had to be
evaluated in Windows servers of the GIEE-ML group
at Tecnologico de Monterrey.
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TABLE 15. Bayesian signed-rank test results for databases with up to 20 features from the full algorithms experiment. Each cell shows the probability
that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

TABLE 16. Bayesian signed-rank test results for databases with more than 20 features from the full algorithms experiment. Each cell shows the
probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is
1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of
losing.

TABLE 17. Bayesian signed-rank test results for databases with up to 20 features from the full databases experiment. Each cell shows the probability that
the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

To make a fair comparison of the runtime of MDTs,
we propose to implement the MDTs using the same platform
and programming language. A statistical comparison should
be performed comparing the original implementation with
the new implementation of each algorithm to ensure there
are no statistically significant differences. Then, it is possible
to make a fair comparison of runtime by executing the
algorithms on servers with the same characteristics and
operating systems.

In Section III-C, we briefly described Model trees, which
makemultivariate decisions only at the leaves, and Functional

trees, which make multivariate decisions at inner nodes
and the leaves. It is important to compare the top-ranked
algorithms of each group of algorithms, given that they all
make multivariate decisions in some of the tree nodes, and
can be interchangeably used in some contexts; for example,
in contrast pattern-based classification, we could extract
multivariate contrast patterns [20] from any of the three
types of tree. Gama [52] compared one algorithm of each
group without finding statistically significant differences
between Functional trees and the other algorithms. However,
the algorithms compared by Gama [52] are not shown to be
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TABLE 18. Bayesian signed-rank test results for databases with more than 20 features from the full databases experiment. Each cell shows the probability
that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

TABLE 19. Bayesian signed-rank test results for databases with up to 1,000 objects from the full algorithms experiment. Each cell shows the probability
that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

TABLE 20. Bayesian signed-rank test results for databases with more than 1,000 objects from the full algorithms experiment. Each cell shows the
probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is
1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of
losing.

among the top-ranked in their respective groups, and more
MDT and Model tree algorithms have been published since
Gama’s comparison. Therefore, Gama’s comparison should
be updated to include the top-ranked algorithms of each
group.

In this work, we only compared single MDTs. However,
authors have built ensembles using MDTs, such as random
forests (Oblique Random Forest [43]), multivariate alternat-
ing decision trees [63], and pattern-based classifiers (Pattern-
based classifier for class imbalance problems PBC4cip
with MHLDT [20]). Further work is thus concerned with

comparing different MDT-based ensembles to identify which
strategies lead to better classification performance.

APPENDIX A
DATABASES
Here we list each database used in the experimental
comparison of algorithms in Table 9. All databases, except
dataset3d, come from the UCI repository [12]. References
for the databases with a citation request are included in
the table. For each database, we show the number of
classes, number of features, number of objects, and degree of
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TABLE 21. Bayesian signed-rank test results for databases with up to 1,000 objects from the full databases experiment. Each cell shows the probability
that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The
algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of losing.

TABLE 22. Bayesian signed-rank test results for databases with more than 1,000 objects from the full databases experiment. Each cell shows the
probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of algorithms i, j , the probability of a tie is
1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another algorithm is higher than their probability of
losing.

TABLE 23. Bayesian signed-rank test results for databases with up to two objects of the majority class for each object from the minority class, for the full
algorithms experiment. Each cell shows the probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of
algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another
algorithm is higher than their probability of losing.

class imbalance. The subset of databases used in the full algo-
rithms experiment (see Section IV-D) can be distinguished in
the table.

The names of the databases match exactly the names in the
UCI repository; however, the number of objects and features
may be different. The number of objects may differ because
some databases have separate training and testing sets and
only the number of objects of one set is reported, or because
of inconsistencies between the reported number of objects
and the actual number of objects in the files. The number of
features may differ because some authors count the class as

an additional feature (we do not), or some features, such as
IDs, must be removed.

APPENDIX B
CLASSIFIER PERFORMANCE AND FULL BAYESIAN
SIGNED-RANK TEST RESULTS
In Section V, we showed the distribution of AUC for
each classifier. In Table 10, we show the AUC of each
classifier in the 57 databases. The subset of databases used
in the full algorithms experiment (see Section IV-D) can be
distinguished in the table.
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TABLE 24. Bayesian signed-rank test results for databases with more than two objects of the majority class for each object from the minority class, for
the full algorithms experiment. Each cell shows the probability that the algorithm in the row is practically better than the algorithm in the column. For a
pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against
another algorithm is higher than their probability of losing.

TABLE 25. Bayesian signed-rank test results for databases with up to two objects of the majority class for each object from the minority class, for the full
databases experiment. Each cell shows the probability that the algorithm in the row is practically better than the algorithm in the column. For a pair of
algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against another
algorithm is higher than their probability of losing.

TABLE 26. Bayesian signed-rank test results for databases with more than two objects of the majority class for each object from the minority class, for
the full databases experiment. Each cell shows the probability that the algorithm in the row is practically better than the algorithm in the column. For a
pair of algorithms i, j , the probability of a tie is 1 − pij − pji . The algorithms are ranked by the number of times their probability of winning against
another algorithm is higher than their probability of losing.

In Section V-A, we presented the full results of
the Bayesian signed-rank test for all databases with
Tables 7 and 8. The tables show the probability that each
algorithm wins and loses against the rest. In Section V-B,
we showed plots summarizing the Bayesian signed-rank test
in subsets of databases according to the number of classes,
number of features, number of objects, and degree of class
imbalance. Here, we show the full results of the Bayesian
signed-rank test in table format. The results according

to the number of classes are shown in Tables 11 - 14.
The results according to the number of features are shown
in Tables 15 - 18. The results according to the number of
objects are shown in Tables 19 - 22. The results according to
the degree of imbalance are shown in Tables 23 - 26.
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