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ABSTRACT Stereo matching is an important research topic in the field of computer vision. It recovers
depth information from a pair of color images. Unfortunately, converting multi-dimensional (more than
two-dimensional) data into two-dimensional data, such formulations ignore the spatial structure of multi-
dimensional images/data. Tensors can be used to describe high-dimensional data structure, which can retain
the hidden structure of data, but cannot obtain the deep features that helps to improve the performance of the
algorithm. Therefore, it is very important to establish a deep tensor model. In this paper, we propose a two
layer tensor form convolutional sparse coding model, which can automatically learn the deep convolutional
kernel. Based on the learned two layer convolutional kernels, a two-layer dictionary learning model is
established. Then, a new weighted matching cost method is constructed, which combines shallow and deep
features. The experimental results on the Middlebury benchmark v2 and Middlebury benchmark v3 show
that the proposed two layer tensor convolutional sparse coding is effective for stereo matching.

INDEX TERMS Stereo matching, high-order tensor, convolutional sparse coding, deep learning, dictionary
learning.

I. INTRODUCTION
Stereo matching, also known as disparity mapping, is one of
the key techniques in stereo vision research area. The core
idea is to find all corresponding pixels in a stereo image pair.
Stereo matching cost plays an important role in establishing
visual matching relationship. Usually, the accuracy of the
stereomatchingmethod depends on the accuracy of the stereo
matching cost. Commonly used stereo matching costs can
be divided into two large categories, including pixel-wise
andwindow-basedmatching costs. Pixel-wisematching costs
include the absolute difference (AD) and truncated absolute
difference (TAD) [1]. Window-based matching costs include
follows: sum of squared difference (SSD) [2], [3], sum of
absolute difference (SAD) [4], normalized cross correlation
(NCC), zero mean normalized cross correlation (ZNCC) [5],
census (Cen) [6], [7], etc.

To get better matching results, combinations or variations
of the above window-based methods are proposed in the
literature, such as combination of census and gradient based
measures (Cen+G) [8], combination of sum of absolute
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difference and gradient-based measures (SAD+G) [9], and
combination of absolute differences and census measures
(AD+Cen) [10]. These stereo matching costs are used by
some state-of-the-art stereo matching methods, and have
been demonstrated to have very good performance in image
regions with smooth terrain. However, they cannot handle
regions that are lack of information, such as poorly texture
regions, exposure variations, occlusion, depth discontinuities,
etc.

Recently, stereo matching methods based on deep learn-
ing [11]–[22] had made significant progress in the disparity
estimation of stereo images, in which the most prominent
and effective deep learning method is the deep convolutional
neural network (CNN). Due to the powerful representation
capability of deep CNN in poorly texture regions and repet-
itive texture regions, it has been employed to improve the
accuracy of stereo matching. Žbontar and LeCun [21] first
introduced CNN to measure the similarity [23]–[25] between
two image patches, which used the matching probability
between two image patches as the stereo matching cost. Sub-
sequently, a large number of stereo matching methods based
on CNN [26]–[29] were proposed. These CNN methods
achieved better performance than conventional methods on
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challenging public benchmark data sets (such as KITTI [30]
and Middlebury 2014 [2]).

From the perspective of deep learning, CNN can auto-
matically extract valuable and deep features. Compared with
shallow features, high-level features have the capability to
represent more abstract and complex structure information,
thus, having a stronger robustness and invariance towards
local changes of the image. For CNN, deep structure and
convolution kernel are its two important parts. Deep struc-
ture hierarchically extracts deep features, and convolutional
architecture learns spatial structure of images [31]. Unfor-
tunately, these networks train the convolution kernels in an
end-to-endmanner, which are prone to overfitting. Therefore,
many methods [31]–[33] proposed to replace the process
of learning these convolutional kernels with the traditional
matrix or tensor decomposition method. For example, unsu-
pervised CNN model [34] learns convolutional kernels by
employing convolutional sparse coding (CSC) instead of back
propagation.

Inspired by the above literature, this paper proposes a
two layer tensor convolution sparse coding used in stereo
matching, it can be in the form of a kind of unsupervised
feature extraction, which can automatically learn the deep
convolutional kernels. Based on the learned two layer con-
volutional kernels, a two-layer dictionary learning model is
established. Then, a new weighted matching cost method is
constructed, which combines shallow and deep features, and
higher matching accuracy can be obtained. Unfortunately,
converting multi-dimensional (more than two-dimensional)
data into two-dimensional data, such formulations ignore the
spatial structure of multi-dimensional images/data. It is still
a challenge to learn multi-dimensional dictionaries and their
sparse coding or features from multi-dimensional data (e.g.
collections of colored images, colored videos, hyperspectral
images, or in general videos represented by features of mul-
tiple sources) to reconstruct multi-dimensional data. Joint
treatment of features [35] acquired from multiple sources
(e.g. spectral images, HOG features, and colors) often leads
to better performance when compared to treating them sep-
arately due to the high order correlations between features.
Although the high-order tensor CSC has been studied in
the literature [36], it can only extract shallow features and
maintain the high order correlations between features, but
cannot extract deep features. Compared with shallow fea-
tures, deep features have the capability to represent more
abstract and complex structure information, thus, having a
stronger robustness and invariance towards local changes of
the image. To this end, this paper proposes a deep high order
tensor CSC model.

For this paper, the main contributions are as follows:
(1) A two layer tensor convolutional sparse codingmodel is

proposed, which can automatically learn the deep convolution
kernels. The deep feature is helpful to improve the perfor-
mance of the algorithm, so a deep CSC model is constructed.
In the experiment, it is found that the more network layers,
the higher the time cost, and the accuracy is not always

increasing. To trade off the accuracy and time cost, we con-
structed a two-layer CSC model.

(2) Based on the learned two layer convolution ker-
nels, a two-layer dictionary learning model is established.
Then, the sparse representation coefficients under the first-
layer dictionary and the second-layer dictionary are solved,
respectively.

(3) A new weighted matching cost method is constructed,
which combines shallow and deep features, and higher
matching accuracy can be obtained.

The rest of this paper is organized as follows. Section II
introduces the preliminary knowledge of high-order ten-
sor convolutional sparse coding. Section III presents two
layer tensor convolutional sparse coding for stereo matching.
Afterward, experimental results are shown in Section IV.
Section V concludes and discusses the whole work.

II. PRELIMINARY
A. NOTATIONS
Let us give some notations used in this paper. The Frobenius
squared norm of an N th-order tensor T ∈ RJ1×J2×···×JN

is ‖T ‖2F =
∑

i1,i2,...,iN T (i1, i2, . . . , iN )2, while its `1,...,1
norm is ‖T ‖1,...,1 =

∑
i1,i2,...,iN |T (i1, i2, . . . , iN )|. The

inner product between two tensors of the same size is
〈T1, T2〉 =

∑
i1,i2,...,iN T1(i1, i2, . . . , iN )T2(i1, i2, . . . , iN ).

The unfold operation can be done along any of its dimensions.
A k th-mode fold/unfold of a tensor is defined as unfoldk (T ) =
T(k) ∈ RJk×(J1···Jk−1Jk+1···JN ), and foldk (T(k)) = T . A tensor-
matrix product depends on the dimension along which the
product is conducted. We denote T(k)

= T (:, :, k) (using
MATLAB notation) as the k th frontal slice. circ(T ) is a block
circulant matrix of size n1n3×n2n3, which essentially gener-
ates circular shifts out of the blocks of the frontal slices of T .
According to [36], the ~HT operator is derived by deriving
the following three definitions.
Definition 1 (High Order t-Products [36]):

A~HT B1 = foldHT (circHT (A)MatVecHT (B1)). (1)

The operators circHT (·) andMatVecHT (·) apply circ(·) and
MatVec(·) recursively on all the dimensions in the order
(3, 4, . . . , d) as follows:
Definition 2 (High Order Recursive MatVec(·) [36]):

MatVecHT (·) = MatVec(d)(· · · (MatVec(3)(·))). (2)

Definition 3 (High Order Recursive circ(·) [36]):

circHT (·) = CI(d)(MatVec(d)(· · · (CI(3)(MatVec(3)(·)))). (3)

Simply, foldHT (·): R(n1n2···nd )×(Kn2···nd )−→Rn1×K×···×nd

refolds the matrix back into a tensor in the same order.

B. HIGH-ORDER TENSOR CONVOLUTIONAL SPARSE
CODING
Convolutional sparse coding (CSC) has achieved great suc-
cess as a reconstruction and a classification tool in the field
of computer vision and machine learning. High-order tensor
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convolutional sparse coding was first proposed by Bibi and
Ghanem [36]. A high-order t-product operator is used to give
a tensor CSC model, which may reveal the high-dimensional
correlation between features/channels in the data. It can
learn multi-dimensional dictionaries and their sparse coding
or features from multi-dimensional data (e.g. collections of
colored images, colored videos, hyperspectral images, or in
general videos represented by features of multiple sources)
to reconstruct multi-dimensional data. The high-order tensor
convolutional sparse coding problem for arbitrary d-th order
tensors can be formulated as:

min
D,X

1
2

N∑
n=1

‖Yn − D~HT Xn‖2F + λ‖Xn‖1, . . . , 1︸ ︷︷ ︸
d+1

s.t. ‖Dm‖2F ≤ 1 ∀m = 1, . . . ,M , (4)

where ~HT represents a higher-order tensor convolution
operator, which is defined in literature [36]. The n-th mul-
tidimensional training image is Yn ∈ Rn1×1×n2×···×nd . The
filter Dm ∈ Rn1×1×n2×···×nd , and the M filters {Dm}Mm=1
are concatenated along the second dimension forming the
dictionary D ∈ Rn1×M×n2×···×nd , and the n-th sparse
code is Xn ∈ RM×1×n2×···×nd . The Frobenius squared
norm of an N -th order tensor Y ∈ RJ1×J2×···×JN is
‖Y‖2F =

∑
i1,i2,··· ,iN Y(i1, i2, · · · , iN )

2, and `1,...,1 norm of
Y is ‖Y‖1,...,1 =

∑
i1,i2,··· ,iN |Y(i1, i2, · · · , iN )|.

The traditional fixed point strategy [36] is used to solve the
high-order tensor convolutional sparse coding in (4), whereD
and X can be solved alternately. Each subproblem is convex,
so the alternating direction method of multipliers (ADMM)
can be used to solve it.

III. TWO LAYER TENSOR CONVOLUTIONAL SPARSE
CODING FOR STEREO MATCHING
In this section, we will introduce a two layer tensor convolu-
tional sparse coding (CSC) model for stereo matching.

A. DEEP LAYER TENSOR CONVOLUTIONAL SPARSE
CODING
The high-order tensor CSC can only extract shallow features,
but cannot extract deep features. Compared with shallow
features, deep features have the capability to represent more
abstract and complex structure information, thus, having a
stronger robustness and invariance towards local changes of
the image. In this section, we build a two layer tensor CSC
model, which can be used to extract deep features efficiently.

First, we build an l-layer tensor CSC model. Given a
training set includingN stereo image pairs, stereo images will
be treated as arbitrary d-dimensional tensors. For example,
a colored image Y1 can be represented by a 3rd-order tensor
Y1 ∈ R3×n2×n3 , where n2 and n3 are the spatial dimen-
sions. However, throughout the derivation of our formulation,
we always allocate the second dimension for the concate-
nation of different images and that means all d-dimensional
images are represented by a (d+1)-dimensional tensor. Thus,
our example image is now EY1 ∈ R3×1×n2×n3 , and the set

of images {EY1, EY2, . . . , EYN } can now be concatenated along
the second dimension with EY ∈ Rn1×N×n2×n3 . CSC can only
be written as a linear sum of t-products, if the images are
1D/2D signals (i.e. vectorized patches). Otherwise, we can
build a higher-order form CSC model by using high order
t-products for tensors with order higher than three.

The layer l tensor CSC model can be used to decompose
stereo image pairs to obtain the convolutional kernels. It can
easily be stacked to form a hierarchy by treating the feature
maps of layer l as input for layer l + 1. In other words,
layer l + 1 has as its input an image with Kl feature maps at
layer l. The convolutional kernels of layer l can be obtained
by minimizing the following cost function of the tensor CSC
model:

min
Dl ,Xl

C(D,X) =
1
2

N∑
n=1

Kl−1∑
c=1

‖

Kl∑
k=1

Dlk,c ~HT Xnk,l − X
n
c,l−1‖

2
F

+ λ

N∑
n=1

Kl∑
k=1

‖Xnk,l‖1,1,1,1,1

s.t. ‖Dlk,c‖
2
F ≤ 1 ∀k = 1, . . . ,Kl, c = 1, . . . ,Kl−1, (5)

where ~HT represents a 4-th order tensor convolution opera-
tor.Xnc,l−1 andX

n
k,l represent the sparse coding of the (l−1)-th

and l-th layers, respectively.Dlk,c represents the convolutional
kernel of the l-th layer. The penalty parameter λ > 0 controls
the tradeoff between good reconstruction and code sparsity.

The l layer tensor form convolutional sparse coding model
is trained in a bottom-up manner, the feature maps and con-
volutional kernels at the layer l obtained by minimizing (5).
The next section will introduce the specific solution process
of (5).

B. OPTIMIZATION ALGORITHM
For each layer, (5) is a high-order tensor convolutional sparse
coding problem in Section II, which can be divided into two
subproblems to be solved. In this way, we can solve the sparse
coding Xl and the convolutional kernel Dl of each layer,
respectively. Specifically, we use ADMM to solve the sparse
coding Xl and the gradient descent algorithm to solve the
convolutional kernel Dl , and the specific solution process is
as follows.

Sparse Coding. Fixing Dl , we solve Xl in (5). The aug-
mented lagrangian is given as follows:

L(Xl,Yl,Ul)

=
1
2

N∑
n=1

Kl−1∑
c=1

‖

Kl∑
k=1

Dlk,c ~HT Xnk,l − X
n
c,l−1‖

2
F

+
ρ

2

N∑
n=1

Kl∑
k=1

‖Xnk,l − Y
n
k,l‖

2
F + λ

N∑
n=1

Kl∑
k=1

‖Ynk,l‖1,1,1,1,1

+

N∑
n=1

Kl∑
k=1

〈Unk,l, (X
n
k,l − Y

n
k,l)〉. (6)
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Update Xl : For computational efficiency, the objective (6)
is converted into the Fourier domain by using the definition
of the operator~HT . It can be seen from Equation (6) that the
solution for each Xnk,l is independent of other variables. Here

we take derivatives of L(X̂l, Ŷl, Ûl)) (Fourier domain) with
respect to X̂

n
k,l :

∂L(X̂l, Ŷl, Ûl)
∂X̂

n
k,l

=

Kl−1∑
c=1

(D̂
l
k,c)

H (
Kl∑
k=1

D̂
l
k,cX̂

n
k,l − X̂

n
c,l−1)

+ ρ(X̂
n
k,l − Ŷ

n
k,l)+ Û

n
k,l (7)

For a fixed n, setting ∂L(X̂
l
,Ŷ
l
,Û

l
)

∂X̂
n
k,l

= 0, for any given k ,

the optimal X̂
n
k,l is the solution to the following linear system:

D̃


X̂
n
1,l
...

X̂
n
Kl ,l

 =


∑Kl−1

c=1
(D̂

l
1,c)

H X̂
n
c,l−1 + ρŶ

n
1,l − Û

n
1,l

...∑Kl−1

c=1
(D̂

l
Kl ,c)

H X̂
n
c,l−1 + ρŶ

n
Kl ,l − Û

n
Kl ,l


(8)

where

D̃ =

D11 + ρE · · · D1Kl
...

...
...

DKl1 · · · DKlKl + ρE

 , (9)

Dnm =
Kl−1∑
c=1

(D̂
l
n,c)

H D̂
l
m,c, n, m = 1, . . . ,Kl . (10)

(·)H is conjugate transpose. Equation (8) can be effectively
minimized by conjugate gradient (CG) descent. Xl can be
reconstructed back from X̂

l
by taking the inverse Fourier

transform of X̂
l
.

Update Ŷ
l
:

Ŷ
n
k,l ←− argmin

Ŷ
n
k,l

λ

Kl∑
k=1

‖Ŷ
n
k,l‖1,1,1,1,1 +

ρ

2

Kl∑
k=1

‖Ŷ
n
k,l

−

Bl
n︷ ︸︸ ︷

(X̂
n
k,l +

1
ρ
Û
n
k,l ‖

2
F , n = 1, . . . ,N . (11)

The soft thresholding operatorS λ
ξ
(α) = sign(α)max(0, |α|−

λ
ξ
) is used to solve Ynk,l(∀n = 1, . . . ,N ). It is applied in an

element-wise fashion to tensor Bln.
Update Û

l
:

Û
n
k,l ←− Û

n
k,l + ρ(X̂

n
k,l − Ŷ

n
k,l). (12)

Convolutional Kernel Learning. Fixing Xnk,l and n,
we used the gradient descent method to update Dl by using
the diagonalization property of ~HT :

∂L(Dl,Hl,V l)
∂Dlk,c

FIGURE 1. The overview of the two layer tensor CSC model.

=

N∑
n=1

Kl−1∑
c=1

(Xnk,l)
T (

Kl∑
k=1

Xnk,lD
l
k,c − X

n
c,l−1). (13)

When l=2, we can get a two-layer tensor CSC model,
as shown in Fig. 1. The learning procedure of the two-layer
tensor CSC model is summarized in Algorithm 1. In this
way, we can train a two-layer convolutional kernels. After
optimization, deep feature can be obtained, which is helpful
to improve the stereo matching accuracy. The deep features
have the capability to represent more abstract and complex
structure information, thus, having a stronger robustness and
invariance towards local changes of the image.

Algorithm 1 The Two Layer Tensor CSC Model

Input: Training set I = {ILj , I
R
j }
N
j=1, and concatenate into

a tensor.
Output: The first layer of convolutional kernel D1;

the second layer of convolutional kernel D2.
1 Initialize: D0,U0 ∼ N (0, 1), X0 = 0, Y0 = 0, t = 0,
λ = ρ = 1, threshold ε = 10−8;

2 Precompute Fourier transforms: Î = F(I),
D̂0 = F(D0), Û0 = F(U0), X̂0 = F(X0), Ŷ0 = F(Y0);

3 while rel ≥ ε do
4 for l = 1, 2 do
5 foreach n ∈ {1, 2, . . . ,N } do

6 Update Xl by (7), compute Xl=F−1(X̂l);
7 Solve Ŷ

l
by the soft thresholding operator;

8 Update Û
n
k,l ←− Û

n
k,l + ρ(X̂

n
k,l − Ŷ

n
k,l);

9 Set t = t + 1;
10 Update rel= ‖C(Dt ,Xt )−

C(D(t−1),X(t−1))‖F/‖C(D(t−1),X(t−1))‖F .
11 end
12 end
13 end

C. STEREO MATCHING
In this section, a two-layer dictionary learning model based
on the two-layer tensor CSC model is constructed. Specif-
ically, the two-layer high-order tensor CSC model is used
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to train a two-layer convolutional kernels, then dictionary
learning theory is used to learn a dictionary, and the sparse
representation coefficient under the dictionary is taken as
the matching feature. Here, we build a two-layer deep stereo
matching model, the specific process is as follows.

Firstly, multidimensional convolution operation is carried
out between the first-layer convolutional kernelD1 learned in
the previous section and the original left image I0 and right
image I1:

F0 = convn(I0,D1), F1 = convn(I1,D1), (14)

where convn(·) represents multidimensional convolution
operation.

Secondly, multidimensional convolution operation is car-
ried out between the second-layer convolution kernel D2

learned in the previous section and the original left I0 and
right image I1:

DF0 = convn(I0,D2), DF1 = convn(I1,D2), (15)

Then, the first-layer dictionary D1 is learned on the first-
layer stereo image pairs F0 and F1, which can be obtained
according to the discriminant dictionary learning method in
literature [37]:

min
D,W,α,ν

1
2
‖Ptr − Dα‖2F + η‖Wα‖−

‖νT (αl−α
ng
r )‖2F

‖νT (αl−α
ps
r )‖2F

, (16)

where W ∈ RK×1 is the weighting vector of the sparse
representation α, Ptr represents input data (training data), and
ν ∈ RK×1 is a projection vector which maximizes the ratio
of the distance between the unmatched pairs to the distance
between matched pairs.

Similarly, the second-layer dictionary D2 is learned on the
second-layer image features DF0 and DF1.

In this way, we can calculate the sparse representation
coefficient β1 under D1, namely,

min
β1

1
2
‖H− D1β1‖

2
F + τ‖β1‖1. (17)

Therefore, the pixel matching cost of the first layer at the
position p = (x, y) can be calculated by measuring the `1
norm between the sparse representation coefficients βL1 ∈
RK×1 and βR1 ∈ RK×1:

C1(p, d̂) = ‖βL1 − β
R
1 ‖1, (18)

where d̂ is disparity, and the stereo pair is partitioned into
patches HL and HR via an d × d sliding window.

Similarly, according to the above equations (17) and (18),
the second layer matching cost can be calculated:

min
β2

1
2
‖H− D2β2‖

2
F + τ‖β2‖1,

C2(p, d̂) = ‖βL2 − β
R
2 ‖1. (19)

Finally, the pixel matching cost at position (x, y) can be
obtained by the weighted summation of the matching cost of
the first layer C1(p, d̂) and the second layer C2(p, d̂):

C(p, d̂) = C1(p, d̂)+ ωC2(p, d̂), (20)

where ω is a preset weight value, which measures the effects
of the first-layermatching cost and the second-layermatching
cost.

D. COMPLEXITY ANALYSIS
1) COMPLEXITY OF TWO-LAYER TENSOR CSC MODEL
The two-layer tensor CSC model needs to train the con-
volutional kernel Dl ∈ Rn1×K×n2×n3 and sparse coding
of each layer. For the sparse coding step, the most expen-
sive part is solving for Xl , which involves taking n1 2D
Fourier transforms of size n2 × n3 and solving n2n3 linear
systems each of size K × K . Therefore, the total cost of
updating the sparse codes can be estimated to be Os =

O(n2n3K 3)+O(n1n2n3log(n2n3)). Updating convolution ker-
nel Dl , the main computational cost comes from calculating
the gradient ∂L(Dl ,Hl ,V l )

∂Dlk,c
in (13), its computational complex-

ity is Oc = O(N (K2W1H1Kn1n2n3 + K1W2H2Kn1n2n3)),
in which W2 and H2 represent the width and height of the
2-th layer sparse coding, respectively. Therefore, we obtain
the total computational complexity of the 2-th layer:Os+Oc.

2) COMPLEXITY OF STEREO MATCHING COST
Suppose the size of test image isW ×H . The computational
complexity of the stereo matching cost includes the calcula-
tion of the sparse representation coefficient and the matching
cost. The computational complexity of the sparse representa-
tion coefficient isO(2WHK ). The computational complexity
of the matching cost isO(2WHd2). As a result, the complex-
ity of stereo matching cost is O(2WHK )+O(2WHn2).
In fact, once the training phase of the convolutional ker-

nels is completed, the complexity of stereo matching cost
is O(2WHK ) + O(2WHd2). This can greatly reduce the
computational cost.

IV. EXPERIMENTS
A. DATASETS DESCRIPTION
The Middlebury 2014 data set [2], [38] from Middlebury
benchmark v3 consists of 15 training images and 15 test
images without ground truth disparity maps. These images
are acquired by different stereo systems and contain different
artificial indoor scenes. In addition, The proposed method
is experimented on the classic datasets [37] from Middlbury
benchmark v2, which contains more various scenes.

KITTI data set [30], [39] contains two sub-datasets (i.e.
KITTI 2012 and KITTI 2015), where KITTI 2012 data set
contains 194 training images and 195 test images without
ground truth disparity maps; KITTI 2015 data set contains
200 training images and 200 test images without ground truth
disparity maps. These images are captured from real world
dataset with street views.

B. PARAMETER ANALYSIS
In order to compare the performance of different methods,
we select percentage of bad matching pixels, which is defined
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FIGURE 2. Parameter analysis. (a) the patch size d ; (b) the number of atoms in the dictionary K ; (c) the weight ω.

as follows:

1
N

∑
(x,y)

(|dC (x, y)− dT (x, y)| > δd ), (21)

where δd is a disparity error tolerance. In our current set of
experiments, we use δd = 1. N is the total number of pixels.
dC (x, y) is the computed disparity map and dT (x, y) is the
ground truth map.

Before doing the experiment, we need to initialize the
model parameters. The parameters involved in this paper
mainly include: the patch size d , the number of atoms in the
dictionary K , and the weight ω.

For the patch size d , we set d to 3, 5, 7, 9, 11, 13, 15, 17,
19 and 21 to analyze its influence on the performance of the
proposed method, as shown on the left of Fig. 2. It can be
seen that there is a sharp increase in error rates when d ranges
from 9 to 17 on Middlebury benchmark v3. The error rates
decrease gradually when d ranges from 3 to 9 on Middlebury
benchmark v3. While there is a sharp increase in error rates
when d ranges from 9 to 17 on Middlebury benchmark v2,
and the error rates decrease gradually when d ranges from
3 to 9 on Middlebury benchmark v2. As a trade-off between
the error rates and computational cost, we set d as 9 for the
all Middlebury dataset.

For the number of atoms in the dictionary K , we set K to
10, 50, 90, 110, 150, 170, 200, 220, 240, and 260 to analyze
its influence on the performance of the proposed method,
as shown in the middle of Fig. 2. It can be seen that the error
rates increase when K ranges from 200 to 260 onMiddlebury
benchmark v3. The error rates decrease gradually after K
ranges from 10 to 200 on Middlebury benchmark v3. While
the error rates increase when K ranges from 200 to 260 on
Middlebury benchmark v2, and the error rates decrease grad-
ually after K ranges from 10 to 220 on Middlebury bench-
mark v2. For Middlebury benchmark v3 and Middlebury
benchmark v2, K = 200 is not the best choice (K = 220 is
the best choice for the benchmark v2). But a bigger K means

more computation, therefore, choose the smallerK = 200 for
all Middlebury dataset.

As for the weight ω, we set ω to 0.0001, 0.0005, 0.0007,
0.001, 0.003, 0.005, 0.01, 0.05, 0.1, and 0.5 to analyze
its influence on the performance of the proposed method,
as shown on the right of Fig. 2. It can be seen that the error
rates increase when ω ranges from 0.01 to 0.5 on Middlebury
benchmark v3 andMiddlebury benchmark v2. The error rates
decrease gradually after ω ranges from 0.0001 to 0.01 on
Middlebury benchmark v3 and Middlebury benchmark v2.
Therefore, we set ω as 0.01 for all Middlebury dataset.

C. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS
In this section, the proposed method is compared with
some closely related stereo matching methods onMiddlebury
benchmark v3 and Middlebury benchmark v2. At the same
time, we also compared the state-of-the-art deep learning
methods. The results are shown in Table 1 and Table 2,
respectively. In addition, we also show disparity maps of
different methods, as shown in Fig. 3 and Fig. 4.

1) RESULTS ON MIDDLEBURY BENCHMARK v3
It can be seen from Table 1 that that the proposed method
obtains the best results in terms of Avgerr-All and Rms-All
on the Middlebury benchmark v3. The proposed method on
training set is 10.8% lower than SM-AWP and DSGCA in
Avgerr-All and Rms-All, and the proposed method on test
set is 29% lower than SM-AWP and DSGCA in Avgerr-All
and Rms-All. The proposed method on training set is 22%
lower thanMTS inAvgerr-All and Rms-All, and the proposed
method on test set is 32% lower than MTS in Avgerr-All
and Rms-All. The proposed method on training set is 4.9%
lower than MDP, LPS, MBM, SGBMP, and LAMC_DSM
in Avgerr-All and Rms-All, and the proposed method on
test set is 5% lower than MDP, LPS, MBM, SGBMP, and
LAMC_DSM in Avgerr-All and Rms-All. Compared with
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FIGURE 3. Qualitative comparison results on Middlebury 2014 dataset. The first column: input color images from Middlebury 2014;
From second to seventh column: the results achieved by SGBMP, MTS, LAMC-DSM, MBM, DSGCA and Ours, respectively; last column: ground
truth disparity maps.

TABLE 1. Comparison of our method and some selected state-of-the-art supervised methods and existing unsupervised methods on Middlebury
2014 test dataset.

the state-of-the-art deep learning methods CBMV, JMR,
MC-CNN-arct, MC-CNN-fst, MC-CNN-WS and LW-CNN,
the performance of the proposedmethods is better than that of
their methods in terms of Avgerr-All and Rms-All. The pro-
posedmethod on training set is 4.4% lower thanCBMV, JMR,
MC-CNN-arct, MC-CNN-fst, MC-CNN-WS and LW-CNN
in Avgerr-All and Rms-All, and the proposed method on test
set is 8% lower than CBMV, JMR,MC-CNN-arct, MC-CNN-
fst, MC-CNN-WS and LW-CNN in Avgerr-All and Rms-All.
In terms of the disparity maps of different methods in Fig. 3,
disparity maps of the proposed method are the closest to the
ground-truth disparity maps (last column), and the proposed
method produces a smooth and dense disparity maps with the
least noise. The disparity maps achieved by MTS produces
too much noise. The disparity maps achieved by SGBMP
do not perform well in geometric details and discontinuous
disparity areas. Compared with other methods, the disparity
map generated by the proposed method is not only visually

closer to ground-truth disparity maps, but also performs well
in geometric details and discontinuous disparity areas.

2) RESULTS ON MIDDLEBURY BENCHMARK v2
Similarly, the quantitative results of the proposed method on
Middlebury benchmark v2 are shown in Table 2. As not all
the codes of compared methods are available, we obtained
the quantitative results either by performing the codes from
the authors’ homepages without modification or from the
corresponding papers directly. Specifically, the results of the
non-local methods (MST [52] andCross_E [53]) and the local
method based on guided filter [9] are obtained by using the
codes provided by authors. The results of the local methods
AEGF [54] and the data-driven method MC-CNN [21] are
directly cited from the paper [54]. We can see our proposed
method outperforms all the five compared methods, even the
data-driven method based on MC-CNN. The average error of
the proposed method is 2.2% lower than the average errors
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FIGURE 4. Disparity maps of datasets Cloth1, Bowling1, and Lampshade2 obtained by using MST,
Cross_E, GF, and the proposed method from top to bottom except for the left view color image and
the ground truth disparity maps in the first two rows.

of MST, Cross_E and GF, the average error of the proposed
method is 1.1% lower than the average error of AEGF, and the
average error of the proposed method is 0.4% lower than the
average error of MC-CNN. In terms of the disparity maps of
MST, Cross_E, GF, AEGF, and MC-CNN in Fig. 4, disparity
maps of the proposed method are the closest to the ground-
truth disparity maps, and the proposed method produces a
smooth and dense disparity maps with the least noise. For

example, in the black box area, the proposed method is visu-
ally superior to other methods. Disparity maps generated by
MST and Cross_E not only generate too much noise, but also
perform poorly in discontinuous disparity areas and occluded
areas. Compared with other methods, the proposed method
produces less noise, and the proposed method performs better
than other methods in occlusion areas and discontinuous
disparity areas.
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TABLE 2. Quantitative evaluation on Middlebury benchmark v2.

TABLE 3. The average error of the proposed method with different
number of layers on different datasets.

In terms of runtime, it can be observed from Table 1 that
most of the other methods use GPU/CUDA accelerations,
except for our method, RBES-GC, LAMC_DSM [49], MTS,
SM-AWP and LPS [46]. The running time of our method
is significantly lower than that of LAMC_DSM, but higher
than that of MTS, SM-AWP, and LPS. Besides, we achieve
a lower computational expense, even when it is compared
with deep learning methods CBMV [14] and LW-CNN [12]
which work on Nvidia GTX Titan with CUDA acceleration
and deep learning method MDP [45] which works on Nvidia
GTX Titan X. Our method is done on the CPU and an
accelerated version of the proposed method on the GPU will
be considered in the future.

D. ANALYSIS AND DISCUSSION
It can be seen from Fig. 3 that disparity maps of the proposed
method obviously produce less noise than other methods.
Quantitatively, the results in the Table 1 are consistent with
the visual results. Next, we further investigate the effective-
ness of the proposed method from the following ablation
study.

TABLE 4. The average error of the proposed method with different l .

TABLE 5. Quantitative evaluation of different methods on KITTI dataset.

It can be seen from Table 3 that the proposed method only
uses the first layer and the second layer to obtain an error rate
of 6.34 and 7. 11 on Middlebury benchmark v3, respectively;
while the proposed method uses the first layer and the second
layer to obtain an error rate of 4.07 and 4.16 on Middlebury
benchmark v2, respectively. When the proposed method uses
the first layer and the second layer at the same time, an error
rate of 5.15 and 3.81 is obtained on Middlebury benchmark
v3 and Middlebury benchmark v2, respectively. This shows
the effectiveness of the proposed method with two layers.

In addition, we also discuss the influence of different l
on the performance of the proposed method, and the results
are shown in Table 4. According to the results in the table,
when l = 2, the proposed method achieves the smallest
average error. When l is greater than 2, the average error of
the proposed method gradually increases, and the time cost
also increases. The time cost when l = 3 is about twice the
time cost when l = 2. Considering the time cost and average
error, choosing l = 2 is a better choice. This also shows the
effectiveness of the proposed method with two layers.

In order to further verify the performance of the proposed
method on other data sets, we also conducted experiments
on the KITTI dataset. The experimental results are shown in
the Table 5. It can be seen from the table that our method
achieves the smallest error among all comparison methods.
This shows that the proposed method has good generalization
performance.

Here, Out-noc, Avg-all, D1-bg, and D1-all are used as
evaluationmetrics for different methods, in which ‘‘Out-noc’’
is percentage of erroneous pixels in non-occluded, ‘‘Avg-
all’’ is average disparity (end-point error) in total areas,
‘‘D1-bg’’ is percentage of outliers averaged only over back-
ground regions in first frame, and ‘‘D1-all’’ is percentage of
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TABLE 6. Comparison results under other metrics on KITTI 2012 dataset.

outliers averaged over all ground truth pixels in first frame,
respectively.

In addition, we introduce more other evaluation indicators
to evaluate the experimental results, and the results are shown
in Table 6. In Table 6, the x-PE error measures the percentage
of bad pixels whose error is larger than x pixels, and Para.num
is the number of parameters. From the results in the table,
the result of our method is the best, and the number of
parameters in our model is also the least. Under the x-PE
measurement, the error of the OASM-Net method is about
1.2 times the error of our method, and the parameter amount
of the OASM-Net method is about 3.4 times that of our
method. The error of the GF(Census) is about 2.2 times the
error of our method. This shows that the proposed method
still maintains good performance even under other metrics.
This shows the effectiveness of the proposed method.

V. CONCLUSION
In this paper, a deep high-order tensor convolutional sparse
coding model is proposed, which can automatically learn
the deep convolutional kernel. Based on the learned deep
convolutional kernel, a two-layer dictionary learning model
is established. Then, the sparse representation coefficients
under the first-layer dictionary and the second-layer dictio-
nary are respectively solved, and a new weighted matching
cost method is constructed, which combines shallow and
deep features. The experimental results on the Middlebury
benchmark v3 andMiddlebury benchmark v2 show the effec-
tiveness of the proposed method.

In the future, we will design an efficient solution algorithm
for deep high-order tensor convolution sparse coding, and
study deeper matching costs. In addition, GPU version of the
proposed method will also be considered.
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