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ABSTRACT To deal with the issue of the distribution system (DS) resilience enhancement under extreme
weather events, this paper presents a new methodological framework for enhancing the load restoration
of DS during a hurricane. As distinct from existing studies, this approach integrates mobile emergency
generators (MEGs) and prosumer communities (PCs) incorporating combined heat and power (CHP) units,
electric boilers (EBs), photovoltaic (PV) sources, and demand response (DR) resources and comprehensively
explores the coordination and flexibility of supply-side and demand-side resources to boost the post-disaster
DS recovery. The discussed problem is formulated by using a two-stage robust optimization model. In the
first stage, the MEGs are pre-positioned prior to the hurricane with the objective of minimizing the outage
cost of the load to promote the capability of DS to resist extreme disturbance. The second stage determines
the real-time allocation ofMEGs, output power of CHP units and EBs, and the power consumption of electric
loads after the hurricane to maximize DS’s load recovery considering the worst-case of the uncertainty
realization. Since the fragility analysis of network elements has an essential impact on the efficacy of
the optimal strategy, we introduce the Z-number-based approach to scientifically determine the failure
probability of components considering the effect of the aging of components and the credibility of the failure
information obtained from the fragility. The effectiveness of the proposed methodology is examined based
on an IEEE 123-bus distribution test system, and the obtained results confirm the validity of the proposed
approach in actual implementations.

INDEX TERMS Extreme weather events, resilience, demand response, two-stage robust optimization,
Z-number.

NOMENCLATURE
A. INDICES
i, j Index of nodes in the distribution network
a Index of loads in prosumer communities
k Index of energy coupling equipment in

prosumer communities
m Index of MEGs
t Index of time

B. SETS
�N Set for nodes in the distribution network
�pro Set for prosumer communities

The associate editor coordinating the review of this manuscript and

approving it for publication was Junjian Qi .

�Nm Set of nodes that MEG m can be connected
to

�sub Set for substations in DS
�fl Set for fixed loads
�nisl Set for non-interruptible shiftable loads
�isl Set for interruptible shiftable loads
�HL Set for heat loads
�CHP Set for CHP units
�EB Set for electric boilers
M Set/index for MEGs
T Time set/index
8f Set for first-stage decision variables:{αm,i,

f ficorg,ij, β
pri
ij , f sourceorg,i }
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8s Set for second-stage decision
variables:{δtm,i, p

t
m,out , p

t
i , L

CHP,e,t
out,k,i , MEB

in,k,i,
Ptnisl,a, P

t
isl,a}

C. CONSTANTS
λshedding,i Outage cost per capacity of load
smaxij Maximum apparent power of

line (i, j)
Vmin
i /Vmax

i Minimum/maximum voltage value
of node i

rij/xij Resistance/reactance of line (i, j)
Pmaxm /Qmaxm Maximum active/reactive power

output of MEG
LCHPout,k,max/L

CHP
out,k,min Maximum/Minimum output power

of the CHP unit
LEBout,k,max/L

EB
out,k,min Maximum/Minimum output power

of the EB
Ph,tLoad,a,i Thermal power consumed by the

heat load

D. VARIABLES
Ptshedding,i Shedding loads due to the hurricane
αm,i Binary, 1 if MEG m is pre-positioned to

node i, 0 otherwise
β
pri
ij Binary, 1 if branch (i, j) is closed prior to

the extreme disaster, 0 otherwise
f ficorg,ij/f

fic
post,ij Fictitious flow on line (i, j) prior to/after

the extreme disaster
f sourceorg,i /f

source
post,i Amount of fictitious flow out of a sub-

station node i prior to/after the extreme
disaster

f loadorg,i /f
load
post,i Amount of fictitious flow into a load

node i prior to/after the extreme disaster
ptorg,ij/q

t
org,ij Active/reactive power transmitted on the

branch (i, j) before the hurricane
ptorg,i/q

t
org,i Active and reactive power demand of

node i before the hurricane
Ptorg,i/Q

t
org,i Active and reactive power injected into

node i before the hurricane
δm,i Binary, 1 if MEGm is connected to node

i, 0 otherwise
β
post
ij Binary, 1 if branch (i, j) is closed after

the extreme disaster, 0 otherwise
ptm,out/q

t
m,out Active/reactive power output of MEG

ptij/q
t
ij Active/reactive power transmitted on the

branch (i, j) after the hurricane
pti/q

t
i Active/reactive power demand of node i

after natural disasters
Pti/Q

t
i Active/reactive power injected into node

i after the hurricane
LCHP,eout,k /L

CHP,h
out,k Electrical/thermal output power of the

CHP unit
LEB,hout,k Thermal output of the EB

MCHP
in,k /M

EB,e
in,k Input power of the CHP unit/EB

Ptnisl,a Power consumption of the non-
interruptible shiftable load

Ptisl,a Power consumption of the interruptible
shiftable load

I. INTRODUCTION
More frequent extreme weather events seriously threaten
the security of the exposed power system’s infrastructure,
especially the distribution system (DS). Moreover, with
the rapid development of innovative technology in the
modernization of power system, not only increasing types of
distributed energy supply resources (e.g., renewable energy
resources, multi-energy coupling devices, and mobile power
sources) appear, but also demand-side resources attract
more attention as flexible adjustment resources for the
power system operation in emergency conditions [1]. The
interaction and coordination of the supply-side and demand-
side resources bring more flexibility and uncertainties for
the resilient operation of the power grid. Consequently,
appropriate strategies need to be made to enhance the load
restoration of the power systems during natural disasters
based on comprehensive utilization of multi-energy supply
and demand resources.

At present, extensive research efforts have been dedicated
to the enhancement of DS resilience under natural disasters.
Many strategies have been put forward to help the power
systems resist the disturbance caused by extreme weather
events in terms of physical hardiness, such as network and
component reinforcement and repair [2]–[5]. Besides, with
the development of renewable energy and integrated energy
system, a large number of distributed energy resources have
emerged in the system, including photovoltaic (PV) sources,
energy coupling equipment, mobile power sources, and so
on. In this case, some experts propose to utilize these flexible
distributed resources to help DS resist extreme disasters from
the perspective of operation capability improvement [6]–[17].
For example, Reference [6] adopted microgrids with dis-
tributed generators to recover the important loads after
natural disasters considering the uncertainties of wind power,
solar power, and load demand. And the distributed energy,
including battery storage and photovoltaic (PV) generation,
was sized and sited optimally in [8] to boost the grid
resilience under extreme disasters based on the multi-
objective optimization method. Reference [10] proposed a
DS load restoration approach by using multiple distributed
energy resources, including renewable generation, micro-
turbine, and energy storage, considering the DS recovery
process sequence. Reference [11] employed distributed
energy resources to improve the important loads restoration
considering the system infrastructure. To further increase the
DS’s capability to withstand severe events, reference [4], [7]
combined the physical and operational measures via strength-
ening the distribution lines and allocating the distributed
power sources. Besides a single power system, the coupling
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of power and transportation networks was considered by the
authors of [13] to develop resilient recovery schemes, which
make full use of repair crews, mobile power sources, and
topology reconstruction technology of DS. However, these
studies [6]–[17] mainly focus on the supply-side resources
to enhance the power grid’s capacity against disasters. Both
the application of distributed power supply resources and
network upgrade need substantial investment cost, and the
power recovery capability improved by these two measures
is limited. To further improve load restoration within limited
costs, demand response (DR) is used to relieve power supply
pressure during severe contingency conditions. For example,
reference [18] studied the incentive-based DR program to
maximize DS’s load loss in case of the generation units’
failure based on the security-constrained unit commitment
model. A multi-state model for demand reduction was built
in [19] to deal with insufficient power supply. Compared
with [19], reference [20] adopted load demand modification
instead of load shedding to prevent DS from violating the
operational limit.

In addition, when DS goes through extreme weather
events, partial electrical components of the power network
may be broken. In the above literature [3], [7], [12]–[14],
the defective components in the distribution network caused
by extreme events are determined by artificially given.
However, a component malfunction is not random but
depends on the location, intensity, type of disaster, and
position of components in the DS. To deal with this,
the impact of the extreme disasters on electrical components
was quantified via Monte Carlo simulations in [8] with
considering disaster strength, physical features of the equip-
ment, and equipment reliability. To more clearly construct the
vulnerability model of power elements in danger of extreme
weather, reference [21] adopted a linear piecewise function to
approximate the relationship between the failure probability
of transmission components and the intensity of windstorms.
Based on [21], reference [2], [4], [22] calculated the failure
probability of support poles and overhead power lines via
fragility curves expressed by the lognormal distribution.

According to the above research work, it can be deduced
that DS mainly uses supply-side resources to improve the
load restoration during extreme events. Still, resources in
the DS are not fully utilized, such as flexible demand-side
resources. Specifically, DR resources are adopted in the
above studies to solve the problem of tight power supply
mainly from the perspective of reliability. The reliability
theory primarily considers the general faults with a high
probability of occurrence during the operation of the power
grid based on average calculation. However, grid resilience
concentrates on the extreme events with a low probability
of occurrence. In this case, it is not scientific to calculate
grid resilience through average. Moreover, when a natural
disaster strikes the power grid, power outages for some users,
even all users, may occur in the DS owing to the destruction
of part of the infrastructure. In this situation, using only
energy supply resources to restore the load is limited due

to the inadequate number of devices and finite equipment
investment costs of DS. Besides, if the power infrastructure is
broken and there is no power supply during the contingency
events, the end-users cannot participate in the DR program.
If there is a certain amount of electricity but not enough
during the external disturbance, the DR program can relieve
the power supply pressure by shifting the load during the
peak electricity consumption period to the low electricity
consumption period. It can be inferred that DR resources can
help the limited supply-side resources recover more energy
demand, and supply-side resources provide energy to support
the implementation of the DR program. As a result, only
when the supply-side and DR resources are applied in a
coordinated manner can the DS’s energy supply capacity be
fully enhanced during extreme disasters.

In the research of grid resilience promotion strategy,
the impact of natural disasters on the power systems is
usually quantified via the failure probability of electrical
components, such as the conductor wires and poles of trans-
mission corridors. And the failure probability of electrical
components is caculated based on the structural reliability
analysis. In other words, the fragility curve is adopted
to describe the relationship between components failiure
probability and disaster intensity. The faulty components
of DS during the extreme events are determined by given
artificially or one single fragility curve in the above
studies [2]–[4], [7], [12]–[14]. However, on the one hand,
in practice, the damage extent of power infrastructure due
to weather-related events is greatly influenced by the aging
of electrical components. And the vulnerability of the same
component of different ages is characterized by different
fragility curves. On the other hand, the fragility curve is
obtained empirically based on the historical observation
failure data. Since certain weather-related failure records of
components (e.g., conductor wires and poles) are not always
sufficient, the failure probability calculated by fragility
curves may deviate from the actual situation. Hence, one
single fragility curve cannot fully express the damage of
power elements exposed to extreme weather.

To solve the above problem, this paper presents a
comprehensive resources allocation framework for enhancing
the load restoration (ELR) of DS during extreme weather dis-
aster. We take into consideration both supply-side resources
with multiple types of energy and demand-side resources
and explore the coordination and flexibility of supply-
side and demand-side resources to boost the post-disaster
DS recovery, wherein the supply-side resources comprises
mobile emergency generators (MEGs), energy coupling
units, and renewable energy sources. In particular, three
prosumer communities (PCs) are respectively connected to
three load nodes of DS, which consists of combined heat
and power (CHP) units, electric boilers (EBs), PV sources,
thermal load, and electric load participating in the DR
program. Based on this, the ELR problem is formulated using
a two-stage robust optimization (RO)model. In the first stage,
the MEGs are pre-positioned prior to extreme weather events
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with the objective of minimizing the outage cost of load in
order to promo te the capability of DS to resist severe distur-
bance. The second stage determines the real-time allocation
of MEGs, output power of CHP units and EBs, and the power
consumption of electric loads after the extreme weather
events tomaximize DS’s load recovery considering the worst-
case realization of the uncertainty of the components’ func-
tional states. To properly determine the failure probability of
power network elements (e.g., conductor wires and poles),
we introduce the Z-number-based vulnerability modeling
approach considering the effect of the aging of components
and the credibility of the failure information obtained from
the fragility. A column-and-constraint generation (C&CG)
algorithm is applied to solve the developed two-stage
RO model.

Specifically, this paper makes the following contributions:
1) We fully explore the interaction and coordination of

the MEGs, CHP units, EBs, PV sources and DR resources
to develop the optimal recovery improvement strategy for
the DS. And according to allocation process of the MEGs
before and after the hurricane disaster, a two-stage RO model
with the objective of minimizing load loss cost is established,
while considering the uncertainty of power network fragility
caused by the extreme weather event.

2) The Z-number-based vulnerability modeling technique
is proposed to determine the failure probability of electrical
components of the power network, such as conductor
wires and poles, in this paper. Compared with one single
fragility curve-based method, the proposed Z-number-based
method provides a more appropriate estimation for the
functional states of components, which considers the aging of
components and the credibility of information obtained from
fragility curves.

3) Various simulations are conducted to prove the efficacy
of the Z-number-based vulnerability modeling approach and
the effect of comprehensive utilization of supply-side and
demand-side resources on ELR.

The rest of the paper is organized as follows. Section II
details the proposed problem of resource allocation for
DS ELR. Then section III introduces the models for
quantifying the impact of the extreme weather event on
the power network, including the extreme weather model
and the vulnerability model of transmission corridors.
Section IV elaborates on the mathematical formulation of
the proposed problem and solution approach. Based on the
proposed formulation, numerical studies are carried out in
section V. Finally, Section VI gives the conclusion of the
research.

II. PROBLEM DESCRIPTION
In this study, a DS architecture consisting of a distribution
network, MEGs, PCs, and traditional electric loads is
constructed. Wherein a PC composed of multiple energy
prosumers is connected to the main grid via a load node
of the DS. Specifically, the PC with energy generation,
conversion, consumption, and the user energy management

system (UEMS) incorporates CHP units, EBs, PV generation,
thermal load, and electric load.

In this configuration, normally, the distribution network
supplies sufficient power to load consumers, whereas the
distribution line disconnection accidents may happen when
extreme weather events occur. This would weaken the DS’s
power supply ability and lead to the energy shortage of the
load users.

FIGURE 1. Simplified resilience curve during extreme disasters.

During extreme disasters, the DS performance can usually
be described via a simplified resilience curve, illustrated
in Fig.1. It is generally considered that the DS undergoes the
following states:

Phase I: Pre-event state: anticipation and preparation for
disasters;

Phase II: Event progress: system resists the natural disaster,
and the system performance declines.

Phase III: Post-event degradation state: system perfor-
mance reaches a minimum level, and damage assessment is
conducted to prepare for the restoration.

Phase IV: Restorative state: partial system performance
starts to restore.

Phase V: Infrastructure recovery: system infrastructure
starts to be repaired, and the system returns to the pre-disaster
state.

This paper focuses on the recovery of DS operational
performance. In other words, reduction of DS performance
loss in Restorative state (Phase IV) is the main goal of
this work, and the infrastructure recovery is beyond the
scope of this article. Besides, the time for Post-event
degradation state is calculated via the random numbers
generation method [23] based on the historical experience
information.

In response to the extreme disasters, the MEGs could be
immediately allocated as flexible resources in DS to pick
up partial loads in time and maintain the power supply for
several days or even longer. Besides, in the PC, the EBswould
reduce the power consumption and thus the heat production.
To meet the requirements of heat users, the CHP units in the
PC consume more natural gas to generate thermal energy.
Meanwhile, more electricity could be produced to relieve
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the power supply pressure of the DS. Moreover, the DR
program is implemented in PC according to end users’ load
characteristics, and the prosumer makes its own optimal load
consumption strategy through UEMS. Then each prosumer
sends the relevant information to the corresponding PC.
Based on this information, the PC could regulate the energy
consumption behavior of all prosumers to maximize the
utilization of PV power. Thus distributed energy resources
and DR programs could help relieve the power supply
pressure during the disturbance and improve theDS resilience
during Phase IV. The blue dotted line shows this effect
in Fig.1.

This paper proposes a framework for efficient allocation
and utilization of the supply-side resources incorporating
MEGs, CHP units, EBs, and PV sources, as well as demand-
side resources to improve the DS operational resilience
during the hurricane disaster, which follows a two-stage
routine as below, illustrated in Fig.2.

FIGURE 2. Schematic of the two-stage problem.

In the first stage, prior to the extreme weather disaster,
the MEGs are pre-positioned to the candidate waiting nodes
in the DS to achieve the quickest response to post-disaster
conditions. According to the topological characteristics as
well as the distribution of sources and loads of the DS,
we determine the pre-allocation of MEGs and network
topology of the DS to minimize the outage cost of loads.
The first-stage decisions are made before realizing relevant
uncertainties that are the components’ functional states in our
problem.

In the second stage, after the extreme weather disaster
strikes, the weather information and the impact of weather on
the distribution network are known. Based on this, the MEGs
are dispatched to candidate nodes from the waiting nodes of
the first stage, and the sub-network is also formed. Then the
operational strategy of energy coupling equipment and DR in
PCs can be determined. For this stage, the real-time allocation
of MEGs, output power of CHP units and EBs, and the power
consumption of electric loads are co-optimized to maximize
DS’s load recovery, subject to the worst-case realization of
the uncertainty of the functional states of the components.

In this study, to avoid excessive complicities, we make the
following assumptions. 1) We assume that the transportation
of MEGs could be carried out normally before and after
the natural disaster, and the transportation network is not
considered. 2) To describe the change of controllable load

on the time axis more intuitively, we also assume that the
load nodes’ power supply is restored simultaneously. 3) We
assume that each faulty/damaged line can be isolated via
switches, and the healthy but de-energized part of the feeder
can then be restored by using available feeders orMEGs. And
suppose that the time required for fault isolation is included
in the time for damage assessment (Phase III).

III. IMPACT OF EXTREME WEATHER ON
POWER NETWORK
This section constructs the hurricane model and vulnerability
model of the transmission lines to analyze the influence of the
hurricane on the power network

A. EXTREME WEATHER MODEL
The extent of the damage caused by natural disasters to the
power system depends on many factors, such as the type of
natural disasters (typhoon, earthquake, ice, and snow [22]),
the intensity of natural disasters, and the structure of the
distribution network. Therefore, the model of the extreme
weather event needs to be determined first. At present,
there are mainly two methods for modeling natural disasters.
One is to use relevant historical statistic data [24], and
another is based on the physical mechanism of natural
disasters [25]. In this paper, we take a hurricane as an
example and establish the hurricane disaster model based
on its physical mechanism. The hurricane’s eye location
and radius determine the location and area of the network
affected by the hurricane. The wind speed of a hurricane
determines the extent of damage to critical power network
components, such as power poles. When a hurricane disaster
occurs, distribution lines in the area with high wind speed
may have a greater probability of pole collapse and other fault
events. Thus, the wind speed model of the hurricane is the
foundation of the damage model of distribution lines under
the influence of hurricane disaster.

Based on the pressure, maximum wind speed, maximum
wind speed radius, periodic wind speed of a hurricane,
the wind speed model of the hurricane could be presented as
follows [25]:

v = vm


(
Rvm
dv

)bv
e

[
1−
(
Rvm
l

)bv]
av

(1)

where vm is the maximum wind speed of a hurricane; Rvm
is the maximum wind speed radius of a hurricane; dv is
the distance between the location of the required wind
speed and the center of the hurricane; bv is a proportional
parameter, which can be estimated by the central pressure of
the hurricane [25]; av is a proportional parameter, which is
related to the shape of the cyclone, and is usually taken as
0.5 [25].

B. TRANSMISSION CORRIDORS VULNERABILITY MODEL
The influence of a hurricane on the power network can be
expressed by the vulnerability model of power transmission
corridors mainly composed of conductor wires and poles.
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And in most existing literature, the failure probability of
components subjected to disaster intensity (e.g., wind speed)
is usually calculated by using fragility curves. According
to the structural reliability analysis theory, a fragility curve
obtained based on historical data describes the functional
relationship between failure probability of a component (e.g.,
support poles and conductor wires) and disaster intensity
under given design strength or aging conditions of the power
element. However, since the lower frequency of extreme
weather events and various types of components results
in fewer failure records of the specific components, it is
challenging to produce fragility curves of the components that
fully conform to the actual situation under certain extreme
weather due to the insufficient historical data. Moreover,
in practice, the transmission/distribution network contains
many power equipment and components, and the same type
of element may have various design parameters. Due to
the influence of their design, external environment, or other
objective factors, the aging degree of these electric elements
is different even within the same transmission or distribution
network. However, most existing literature uses one single
fragility curve to imitate the failure of all support poles or
conductor wires in the distribution network, which could not
fully reflect the aging condition and actual failure situation of
power components.

To solve the above issue, this paper introduces a
Z-number-based method to estimate the failure probability
of the distribution lines exposed to the hurricane disaster.
Z-number is a new concept of fuzzy theory, proposed by
Zadeh [26], to deal with the issue of uncertainty and reliability
of information during the decision-making process. The
Z-number method has advantages for handling uncertainty
modelling with incomplete information [27]. Compared with
the fragility curve, the proposed Z-number-based approach
can consider the credibility of failure information obtained
from the fragility curve besides the failure information. The
vulnerability model constructed via the proposed method
not only contains statistical information based on historical
data but also reflects the certainty (sureness, confidence,
probability, etc.) of the acquired information. This effectively
addresses the problems caused by insufficient information.
Besides, the proposed Z-number-based technique could
integrate multiple fragility curves to fully consider the aging
condition of all components of each type in a distribution net-
work. Thus, the Z-number-based method can provide a more
comprehensive and credible estimation for the failure proba-
bility of key electric elements exposed to the natural disaster.

The Z-number method adopts an ordered pair of fuzzy
numbers (A, B) to construct the uncertain model of variables.
And in the ordered pair of fuzzy numbers (A, B), A is the
possibility distribution of the uncertain variable. The second
component, B, expresses the certainty of the possibility
distribution.

In this paper, the failure probability of the key electric
elements (p) is assumed as the Z-number variable. The
uncertainty of p could be described via the ordered pair of

fuzzy numbers (A, B), where A is a fuzzy restriction on the
values that uncertain variable p could take, and B is the
measure of the certainty of the restriction of A on uncertain
variable p. According to the definition of the fuzzy set, A and
B could be expressed as follows:

A = {〈p, µA (p)〉| p ∈ [0, 1]} (2)

B = {〈p, µB (p)〉| p ∈ [0, 1]} (3)

where µA and µB are the membership functions of A and B,
describing the degree of belongingness of p and the reliability
level of A, respectively. In this paper, we respectively adopt
the trapezoid and triangular fuzzy number to represent
A and B, shown as follows:

A = (a1, a2, a3, a4) (4)

B = (b1, b2, b3) (5)

where a1-a4 and b1-b3 are the parameters of the fuzzy
domain of the uncertainty variable. The values of a1-a4
are the components’ failure probability under given wind
speed, determined via multiple fragility curves of the electric
component with the different aging conditions. In this way,
the same type of power elements with different aging degrees
in the distribution network could be taken into account. And
the values of b1-b3 could be obtained based on the reliability
level of the possibility distribution.

Based on the above trapezoid and triangular fuzzy
numbers, a Z-number is usually transformed to a classical
fuzzy number to obtain the value of the Z-number variable
p according to the Fuzzy Expectation theory, the procedures
of which are presented as follows.

Step 1) Convert the reliability part of Z-number (B) into a
weight coefficient ($ ) via

$ =

∫
pµB (p) dp∫
µB (p) dp

(6)

Step 2) Obtain the weighted Z-number by adding the above
weight coefficient to A,

Z$ = {〈p, µA$ (p)〉 |µA$ (p) = $µA (p) , p ∈ [0, 1] } (7)

Step 3) Transform the weighted Z-number into a regular
fuzzy number, denoted as:

Z ′ =
{
〈p, µZ ′ (p)〉

∣∣∣∣µZ ′ (p) = µA ( p
√
$

)
, p ∈ [0, 1]

}
(8)

Step 4) Obtain the value of components’ failure proba-
bility under specific wind speed by the center of gravity
technique [28], which could transform the fuzzy model into
numerical values as follows:

pZ = pZ ′ =

∫
pµZ ′ (p) dp∫
µZ ′ (p) dp

(9)

Generally speaking, the transmission corridors are com-
posed of poles, conductor wires, and other types of equip-
ment. The damage of a single pole or conductor wire could
cause the entire transmission corridor to fail. Therefore,
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the vulnerability model of a transmission corridor could be
derived by the failure probabilities of poles (ppole,ϑ ) and
conductor wires (pcon,ϑ ) based on the principle of series
connection:

pline,ij(v)=1−
npole∏
ϑ1=1

(
1− ppole,ϑ1 (v)

) ncon∏
ϑ2=1

(
1− pcon,ϑ2 (v)

)
(10)

where npole and ncon are the number of poles and conductor
wires included in the line (i, j) respectively; ppole,ϑ and pcon,ϑ
could be obtained via (2)-(9).

IV. MATHEMATICAL FORMULATION OF THE
OPTIMIZATION MODEL
The concerned two-stage problem could be mathematically
formulated as a Min-Max-Min optimization model, shown in
(11)-(60). And the objective of the concerned ELR problem
is to minimize the costs of load shedding of the DS before
and after the hurricane disaster, considering the uncertainty
of components’ functional states.

min
αm,i,f

fic
org,ij,

β
pri
ij ,f

source
org,i

max
µij

min
δm,i,ptm,out ,p

t
i ,L

CHP,e,t
out,k,i ,

MEB
in,k,i,P

t
nisl,a,i,P

t
isl,a,i

×

{
�N∑
i

λshedding,i ·

T∑
t

Ptshedding,i

}
(11)

where µij is a binary variable, if the line (i, j) is faulty due to
the hurricane, µij equals 1. Otherwise, µij equals 0.
In the Min-Max-Min optimization model, the first-stage

constraints, second-stage constraints, and uncertain variables
are presented in the following sections.

A. FIRST-STAGE CONSTRAINTS
The first-stage model co-optimizes the pre-allocation of
MEGs and the network topology of the DS, which subjects
to the following constraints.

(1) Pre-positioning MEGs constraints.

�Nm∑
i

αm,i = 1, ∀m ∈ M (12)

M∑
m

αm,i ≤ CAPi, ∀i ∈ �N (13)

Constraint (12) enforces that each MEG can only be pre-
assigned to one candidate waiting node. Constraint (13)
restricts the capacity of MEGs connected to a node. Here,
CAPi is allowed capacity of MEGs connected to node i.

(2) DS topology reconfiguration constraints. To meet the
radial topology requirements of the distribution network,
we construct the following constraints based on the fictitious
network method [28].∑

(i,j)∈�L

β
pri
ij = nnode − nsub (14)

∑
(j,i)∈�L

f ficorg,ji −
∑

(i,j)∈�L

f ficorg,ij = f loadorg,i , ∀i ∈ �N\�sub

(15)∑
(i.j)∈�L

f ficorg,ij −
∑

(j,i)∈�L

f ficorg,ji = f sourceorg,i , ∀i ∈ �sub (16)

−β
pri
ij · K1 ≤ f ficorg,ij ≤ β

pri
ij · K1,

∀ (i, j) ∈ �L (17)

f sourceorg,i ≥ 1, ∀i ∈ �sub (18)

Constraints (14)-(18) guarantee that the distribution net-
work satisfies two conditions: 1) there is only one substation
in each network; 2) each load node belongs to only
one network. Constraint (14) limits the number of closed
branches to meet the condition 1); Constraints (15) and (16)
guarantee the fictitious flow balance at all load nodes and
substation nodes; Constraint (17) limits the fictitious flow
on disconnected lines to be zero; Constraint (18) restricts
the amount of fictitious flow out of a substation node,
which prevents the single substation node from forming an
island. Here, nnode and nsub are the numbers of all nodes
and substation nodes in the distribution network; K1 is a
sufficiently large positive coefficient.
(3) DS operation constraints.∑

(j,i)∈�L

ptorg,ji −
∑

(i,j)∈�L

ptorg,ij = ptorg,i − P
t
org,i,

∀i ∈ �N ,∀t ∈ T (19)∑
(j,i)∈�L

qtorg,ji −
∑

(i,j)∈�L

qtorg,ij = qtorg,i − Q
t
org,i,

∀i ∈ �N ,∀t ∈ T (20)(
ptorg,ij

)2
+

(
qtorg,ij

)2
≤ β

pri
ij ·

(
smax
ij

)2
,

∀ (i, j) ∈ �L ,∀t ∈ T (21)(
Vmin
i

)2
≤

(
vtorg,i

)2
≤
(
Vmax
i

)2
,

∀i ∈ �N ,∀t ∈ T (22)(
vtorg,i

)2
−

(
vtorg,j

)2
≤

(
1− βpriij

)
· K2

+2 ·
(
ptorg,ijrij+q

t
org,ijxij

)
,

∀ (i, j) ∈ �L ,∀t ∈ T (23)(
vtorg,i

)2
−

(
vtorg,j

)2
≥

(
β
pri
ij − 1

)
· K2

+2 ·
(
ptorg,ijrij + q

t
org,ijxij

)
,

∀ (i, j) ∈ �L ,∀t ∈ T (24)

0 ≤ Ptorg,i ≤
M∑
m

αm,i · Pmax
m ,

∀i ∈ �Nm,∀t ∈ T (25)

0 ≤ Qtorg,i ≤
M∑
m

αm,i · Qmax
m ,

∀i ∈ �Nm,∀t ∈ T (26)

Equations (19)-(20) represent the active and reactive
power balance at each node in the distribution network.
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Here, we think that advanced balancing devices installed
in the DS could avoid three-phase unbalance problems.
Constraint (21) limits the apparent power capacity of
each line. Constraint (22) determines the range of voltage
fluctuation at each node. Constraints (23) and (24) indicate
the voltage of each line based on the DistFlow model.
Constraints (21)-(24) are nonlinear, which could be linearized
via using the approach proposed in [29]. Constraints (25)
and (26) declare that the injected active and reactive power at
the node connected to the MEGs is limited by the maximum
capacity of the MEGs. Here, vtorg,i is the voltage value of
node i at time t before the hurricane; K2 is a sufficiently large
positive coefficient.

B. UNCERTAINTY
In this study, the impact of hurricane disaster on power
infrastructure is regarded as uncertain, represented by func-
tional states of transmission corridors. Based on the failure
probability model of transmission corridors constructed in
Section II, the uncertainty set of power network vulnerability
during the extreme event is modeled as follows [22]:

U =

µij
∣∣∣∣∣∣12

∑
(i,j)∈�L

(
− log2 pline,ij

)
µij ≤ 0

 (27)

where 0 is the uncertainty budget of the failure of the net-
work. Under the given failure probability of the lines, a larger
value of 0 means that the uncertainty set contains more faulty
transmission corridors damaged by the hurricane. In this
situation, the optimization model based on the uncertainty
set with large 0 would be more conservative. Therefore,
the conservative level of the proposed optimization approach
could be adjusted via setting the value of the uncertainty
budget 0. This solves the problem that the application of
traditional robust schemes is poor due to the high conservative
level.

C. SECOND-STAGE CONSTRAINTS
The second-stage model co-optimizes supply-side and
demand-side resources to improve the recovery of post-
disaster DS’s loads, which subjects to the following con-
straints.

1) POST-DISASTER MEGs DISPATCH CONSTRAINTS

�Nm∑
i

δm,i ≤ 1, ∀m ∈ M (28)

0 ≤ ptm,out ≤
�N∑
i

δm,i · Pmax
m , ∀m ∈ M , ∀t ∈ T

(29)

0 ≤ qtm,out ≤
�N∑
i

δm,i · Qmax
m , ∀m ∈ M , ∀t ∈ T

(30)

Constraint (28) indicates that each MEG can only be sent
to at most one of its candidate nodes from the pre-positioning
location of the first stage. Constraints (29) and (30) declare
the boundary of output active and reactive power of each
MEG.

2) CONSTRAINTS OF POST-DISASTER DS TOPOLOGY
RECONFIGURATION
After the extreme disaster, some lines in the power network
would break off. To continue to supply electrical energy
to consumers, the power network’s topological connection
structure needs to be changed via remote-controlled switches.
Note that the switch sequence generation and the process of
the network topology reconstruction are beyond the scope of
this work. Interested readers may refer to [31]–[33], etc. The
constraints of topology reconfiguration of post-disaster DS
are described as follows:

β
post
ij ≤

(
1− µij

)
·

(
lij + β

pri
ij

)
,

∀ (i, j) ∈ �L (31)

β
post
ij ≥

(
1− µij

)
·

(
−lij + β

pri
ij

)
,

∀ (i, j) ∈ �L (32)∑
(i,j)∈�L

β
post
ij = nnode − nisland (33)∑

(j,i)∈�L

f ficpost,ji −
∑

(i,j)∈�L

f ficpost,ij = f loadpost,i,∀i ∈ �N\�fs (34)∑
(i.j)∈�L

f ficpost,ij −
∑

(j,i)∈�L

f ficpost,ji = f sourcepost,i , ∀i ∈ �fs (35)

−β
post
ij · K1 ≤ f ficpost,ij ≤ β

post
ij · K1,

∀ (i, j) ∈ �L (36)

Constraints (31) and (32) indicate that the transmission
corridors are open if they are broken, and the undamaged
lines remain in their pre-disaster status if they do not have
the remote-controlled switches. Like constraints (14)-(17)
illustrated in Section III.B, constraints (33)-(36) ensure that
the reconstructed distribution network still maintains radial
topology. Wherein constraint (33) declares the relationship
between the number of closed branches and the number of
islands after the disaster. Here, nisland is the number of all
islands formed after the extreme disaster.

3) POST-DISASTER DS OPERATION CONSTRAINTS∑
(j,i)∈�L

ptji −
∑

(i,j)∈�L

ptij = pti − P
t
i ,∀i ∈ �N ,∀t ∈ T (37)

∑
(j,i)∈�L

qtji −
∑

(i,j)∈�L

qtij = qti − Q
t
i , ∀i ∈ �N ,∀t ∈ T

(38)(
ptij
)2
+

(
qtij
)2
≤ β

post
ij ·

(
smax
ij

)2
,

∀ (i, j) ∈ �L , ∀t ∈ T (39)(
vti
)2
−

(
vtj
)2
≤

(
1− βpostij

)
· K2

+2
(
ptij · rij + q

t
ij · xij

)
,

∀ (i, j) ∈ �L , ∀t ∈ T (40)
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(
vti
)2
−

(
vtj
)2
≥

(
β
post
ij − 1

)
· K2

+2
(
ptij · rij + q

t
ij · xij

)
,

∀ (i, j) ∈ �L , ∀t ∈ T (41)(
Vmin
i

)2
≤
(
vti
)2
≤
(
Vmax
i

)2
,

∀i ∈ �N ,∀t ∈ T (42)

Pti =
M∑
m

δm,i · ptm,out ,

∀i ∈ ∪
m∈M

�Nm,∀t ∈ T (43)

Qti =
M∑
m

δm,i · qtm,out ,

∀i ∈ ∪
m∈M

�Nm,∀t ∈ T (44)

Constraints (37)-(44), similar to constraints (19)-(26) con-
structed in Section III.B, declare the operational requirements
of post-disaster DS. Here, vti is the voltage value of node i at
time t after the hurricane. Constraints (39)-(44) are nonlinear,
which could be linearized via using the approach proposed
in [30], [34].

4) OPERATIONAL CONSTRAINTS OF ENERGY COUPLING
EQUIPMENT
Each PC mainly contains two types of energy conversion
devices: CHP units and EBs, in this paper.Wherein CHP units
consume natural gas to provide electrical and thermal energy
for the end-users. And EBs generate thermal power to meet
the heating demand. The operational constraints of CHP units
and EBs are presented as follows [30], [35]:

LCHP,eout,k = η
CHP
me,kM

CHP
in,k (45)

LCHP,hout,k = η
CHP
mh,kM

CHP
in,k (46)

LEB,hout,k = η
EB
eh,kM

EB
in,k (47)

LCHPout,k,min ≤ LCHPout,k ≤ L
CHP
out,k,max (48)

LEBout,k,min ≤ LEBout,k ≤ L
EB
out,k,max (49)

Constraints (45)-(47) describe the relationship between
the output and input power of CHP units and EBs.
Constraints (48) and (49) restrict the range of output power
of the CHP units and EBs.

5) DR CONSTRAINTS
The energy consumers in PCs participate in the DR program
to help the DS further enhance the post-disaster load
restoration capacity based on the limited power supply
resources. According to the operation characteristics of
energy consumption devices, the load devices can be divided
into fixed loads (FLs), non-interruptible shiftable loads
(NISLs), interruptible shiftable loads (ISLs). This paper
focuses on the allocation schemes for resisting the extreme
disaster by implementing the DR programs. In this case,
we construct the directly controlled load model based on the

power consumption characteristics of the load devices, which
is more suitable for the emergency.

FLs include important load equipment and uncontrollable
load equipment. Theworking time and operation cycle cannot
be adjusted arbitrarily, such as lighting, refrigerator, and
elevator. The mathematical model of FLs is shown as follows:P

t
fl,a = Dtfl,a, ∀t ∈

[
tstartope,a, t

end
ope,a

]
Ptfl,a = 0, ∀t /∈

[
tstartope,a, t

end
ope,a

] (50)

where Ptfl,a represents the power consumption of FL a at time
t;Dtfl,a represents the electrical power of FL a at time t; [tstartope,a,
tendope,a] is the operation time interval of FL a.
For NISLs, the start time of devices could be adjusted

according to the users’ demand. However, once the load
equipment starts to run, it needs to work continuously for
a period of time and cannot be interrupted. Specifically,
washing machines, dryers, grinders, and so on all belong to
NISLs. The mathematical model of NISLs is described as
follows:{

Ptnisl,a = Dnisl,a, ta,s ≤ t ≤ ta,s +1Ta
Ptnisl,a = 0, t < ta,s or t > ta,s +1Ta

(51)

ωsta,a ≤ ta,s ≤ ωend,a (52)

ωsta,a ≤ ta,s +1Ta ≤ ωend,a (53)
ωend,a∑
t=ωsta,a

Ptnisl,a = Dtotalnisl,a (54)

where Dtnisl,a represents the electrical power of NISL a at
time t; ta,s is the start time of NISL a; 1Ta is the time
period for NISL a to complete the work; [ωsta,a, ωend,a] is
the schedulable time range of NISL a; Dtotalnisl,a is the all power
required by NISL a to complete the work.

For ISLs, the operation time is flexible. The start
time of ISL devices could be adjusted, and the operation
of ISL equipment can be interrupted at any time. For
example, air conditioners and hybrid electric vehicles are
ISLs [36]. The mathematical model of NISLs is built as
follows:{

Dmin
isl,a ≤ P

t
isl,a ≤ D

max
isl,a, ωsta,a ≤ t ≤ ωend,a

Ptisl,a = 0, t < ωsta,a or t > ωend,a
(55)

Ptisl,a = υ
t
aD

max
isl,a + (1− υ ta)D

min
isl,a, ∀t ∈

[
ωsta,a, ωend,a

]
(56)

ωend,a∑
t=ωsta,a

Ptisl,a = Dtotalisl,a (57)

where Dmaxisl,a and Dminisl,a are the upper and lower limits of
operation power of ISL a respectively; υ ta is a binary variable.
If ISL device a is operating, υ ta equals 1; otherwise, υ ta
equals 0.Dtotalisl,a is all power required by ISL a to complete the
work.
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6) ENERGY CONSERVATION CONSTRAINTS
For traditional load nodes of the DS, the electrical energy
balance relationship is formulated as follows:

Ptshedding,i = ptorg,i − p
t
i , ∀t ∈ T , ∀i ∈ �N\�pro (58)

In PCs, the energy load demand mainly includes electrical
load and thermal load. Based on this, the electrical and ther-
mal energy balance relationships in each PC are respectively
shown as follows:

M∑
m

δtm,i · p
t
m,out + p

t
pv,i +

�CHP∑
k

LCHP,e,tout,k,i + P
t
shedding,i

=

�EB∑
k

MEB,e,t
in,k,i +

�fl∑
a

Ptfl,a,i +
�nisl∑
a

Ptnisl,a,i +
�isl∑
a

Ptisl,a,i,

∀t ∈ T , ∀i ∈ �pro (59)
�CHP∑
k

LCHP,h,tout,k,i +

�EB∑
k

LEB,h,tout,k,i ≥

�HL∑
a

Ph,tLoad,a,i,

∀t ∈ T , ∀i ∈ �pro (60)

where ptpv,i is the power output of PV in the PC i
at time t .
It is worth mentioning that the proposed approach can

be applied to larger scale systems. Because the size of the
distribution systemmainly affects the number of sub-network
formed due to system reconfiguration after the extreme
disasters. And comparedwith the smaller scale power system,
the larger scale system mainly brings about changes in
the number and capacity of mobile emergency generators,
energy coupling units, renewable energy resources, and
controllable loads. This would not influence the structure of
the contructed model. Therefore, the proposed approach has
scalable.

D. SOLUTION METHODOLOGY
In this paper, we adopt the C&CG algorithm to solve the
proposed two-stage RO model. In the C&CG approach, the
two-stage problem needs to be decomposed into a master
problem and sub-problem. For the sake of clarity, the master
problem and sub-problem can be expressed in compact form,
shown in (61) and (62), respectively.

min
φf ∈8f

ηC&CG

s.t. ηC&CG ≥ CT
0 u+W

T
0 φ

s

3T
1 φ

f
+ CT

1 u+W
T
1 φ

s
= c1

3T
2 φ

f
+ CT

2 u+W
T
2 φ

s
≤ c2 (61)

where φf , u, φs are first-stage decision variables (αm,i, f
fic
org,ij,

β
pri
ij , f sourceorg,i ), uncertainty variables (µij), and second stage

decision variables (δtm,i, p
t
m,out , p

t
i , L

CHP,e,t
out,k,i , MEB

in,k,i, P
t
nisl,a,

Ptisl,a) respectively. ηC&CG is the objective function value
of the subproblem. 3, C , W , c1, c2 are the coefficients of

variables and constants in constraints (12)-(60).

max
u∈U

min
φs∈8s

CT
0 u+W

T
0 φ

s

s.t. 3T
1 φ

f ∗
+ CT

1 u+W
T
1 φ

s
= c1

3T
2 φ

f ∗
+ CT

2 u+W
T
2 φ

s
≤ c2 (62)

where U is the feasible regions of u. The above sub-problem,
a max-min problem, cannot be solved directly, which needs
to be transformed into a mixed-integer linear optimization
problem based on duality theory [37] and the Big-M method
as follows:

max
u,ϑ,π

CT
0 u+

(
c1 −3T

1 φ
f ∗
− CT

1 u
)T
ϑ

+

(
3T

2 φ
f ∗
+ CT

2 u− c2
)T
π

s.t. 3T
1 φ

f ∗
+ CT

2 u+W
T
1 φ

s
= c1

W T
0 + ϑ

TW1 + π
TW2 = 0

0 ≤ c2 −3T
2 φ

f ∗
− CT

2 u−W
T
2 φ

s
≤ M · ξ

0 ≤ π ≤ K3 · (1− ξ)

ϑ ≥ 0, π ≥ 0 (63)

where ϑ and π are dual variables of the max-min prob-
lem (62); M is a large value in the Big-M method, and the
value of ξ is 1 or 0.
Based on the above models, the optimal solution of

the proposed two-stage RO problem will be obtained
via iteratively solving the master problem (61) and sub-
problem (63), and the details could refer to [35], [38].

V. CASE STUDY
A. TEST DATA
The effectiveness of the proposed approach for the improve-
ment of load restoration in DSwith multiple energy resources
is tested on an IEEE 123-bus test system [39], which has
85 load nodes, 118 transmission corridors. In this system,
three PCs are connected with the DS at nodes 14, 18, and
32. The total PV production profile, electric loads, and heat
loads demand data of the three PCs are shown in Fig.3, and
the parameters of CHP units and EBs [40] are respectively
listed in Table.1. Besides, we consider 2 MEGs with 50kW
capacity and 3 MEGs with 200 kW capacity equipped in
the DS.

In addition, to calculate the wind speed at each node in
DS, we take node 13 as the origin to establish a rectangular
coordinate system, while assuming that the coordinate of the
hurricane eye is (17, 17) in the rectangular coordinate system.
Here we consider extreme wind profiles characterized in
reference [23]. Based on all nodal coordinates of the studied
system and the location of the hurricane eye, the wind speed
of all nodes can be calculated via (1). Moreover, we adopt
fragility curves of the components that are 0, 10, 30, and
50 years old [41] to study the effect of components degrada-
tion on the failure probability of transmission corridors during
the disturbance event, illustrated in Fig.4. In this simulation,
the duration of the hurricane event progress (Phase II) is
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FIGURE 3. The total PV production profile, electric loads, and heat loads
demand of the three PCs.

TABLE 1. Parameters of CHP units and EBs in each PC.

known as 2 hours. The data for the operation time of the
switch is based on [23].

To assess the resilience of DS, we adopt risk-based
quantitative measures proposed in [23], including value-
at-risk (VaRα) and conditional-value-at risk (CVaRα). The
calculation method of VaRα and CVaRα can be found in
reference [23]. And like reference [23], we also use loss in

energy to measure the operational resilience of the DS during
the hurricane disaster.

B. SIMULATION RESULTS
1) EFFECTIVENESS OF THE Z-NUMBER MODELLING
APPROACH
In this paper, we propose a Z-number-based method to esti-
mate the failure probability of components under given wind
speed, which considers the effect of aging of components and
the reliability/credibility of the fragility curve. To evaluate the
effectiveness of the proposed approach, we compared the
failure probability of all transmission corridors obtained
via the conventional method (one single fragility curve)
and proposed Z-number-based method with considering the
degradation of poles, represented by three scenarios as shown
in Table. 2.

TABLE 2. Scenario settings for validation of Z-number based components
failure model.

FIGURE 4. Fragility curves of components that are 0, 10, 30, and 50 years
old.

Specifically, in Scenarios 1, we consider that the failure
probability of components calculated through one single
empirical fragility curve (the 0 years curve in Fig.4) is
completely credible, and the degradation of components
is not considered. Compared with Scenarios 1, in Scenar-
ios 2 and 3, both the credibility of fragility curves and the
aging of components are considered by using the Z-number-
based fragility modeling method. Wherein the credibility of
fragility curves is classified as low and high, reflected via
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fuzzy number B in the Z-number model. And p0line,ij, p
10
line,ij,

p30line,ij, and p50line,ij represent the failure probability of each
transmission line that are 0, 10, 30, and 50 years old, which
is calculated based on the corresponding fragility curves
in Fig.4.

Here, we take branch 35-36 as an example. And its failure
probability affected by different wind speeds is calculated
based on the above three scenarios, illustrated in Fig.5.

FIGURE 5. The failure probability of branch 35-36 calculated in the
proposed three scenarios.

As observed, as the wind speed grows, the failure proba-
bility of branch 35-36 obtained by conventional method and
Z-number method become greater. And failure probability
under the same wind speed calculated by the three scenarios
is quite different. Specifically, the results of one single
fragility (Scenario 1) are much lower than the results of
the Z-number method (Scenario 2 and 3). This indicates
that, the aging of components and credibility of fragility
curves have a significant effect on modeling grid fragility.
And the component failure probability model built by the
conventional method is more conservative for evaluating the
influence of hurricanes on energy infrastructure. Besides,
under the same wind speed, the failure probability obtained
via Scenarios 3 is larger than that via Scenarios 1. This
suggests that, the calculated failure probability would
increase if the degradation of components is considered,
which is consistent with reality. Thus, it is necessary to
consider the degradation of components and credibility of
fragility curves when constructing the vulnerability model of
the power network. And Z-number-based modeling method
could provide a more realistic and comprehensive estimation
of the failure probability of the power network caused by
extreme disasters.

2) EFFECTIVENESS OF THE PROPOSED ELR APPROACH
To illustrate the effectiveness of the proposed DS resilience
improvement approach, three cases with different load
restoration resources and a deterministic case have been

defined in Table. 3, and a comparative analysis is conducted
based on these cases.

TABLE 3. Scenario settings for validation of ELR strategy.

Specifically, in Case 1, we consider no available energy
supply and demand resources for the ELR after the hurricane.
Thus, Case 1 is the base case, which shows the post-disaster
DS’s load loss without extra energy resources for load
restoration. Compared with Case 1, the distributed energy
resources, including MEGs, CHP units, EBs and PV sources,
and DR programs, are considered in Case 2, Case 3, and
Case 4. AndCase 4 adopts deterministic optimizationwithout
considering the uncertainties. Besides, the Z-number-based
fragility model with high credibility of the fragility curve is
adopted in the three cases to construct the uncertain set of the
transmission corridors’ functional states under the hurricane.

Based on the above cases, the load loss and performance
loss of DS caused by the hurricane are calculated with
different values of failure uncertainty budget 0, shown
in Fig.6-7.

FIGURE 6. The load loss of the DS with different values of failure
uncertainty budget.

It can be seen from Fig.6 that, the DS load loss in Case 1,
2, and 3 are the same, but the DS load loss in Case 4 is
smaller than that in Case 1, 2 and 3. This is because,
Case 1, 2, and 3 all adopt robust optimization, and the
resilience improvement methods based on resource allocation
( adopted in Case 2 and 3 ) do not reduce the initial impact
of the hurricane on the power system. Besides, the robust
optimization method considers the worst situation realization
of the uncertainty (the damage scenario of the DS in this
paper), which causes the larger load loss in Case 1, 2, and 3.
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FIGURE 7. The performance loss of DS with different values of failure
uncertainty budget.

Besides, the deterministic optimization does not consider the
uncertainty, so the DS load loss in Case 4 is unchanged with
different failure uncertainty budget 0.
It can be seen from Fig.6-7 that, under the same wind

speed, the trends of the DS performance loss in the three
cases are roughly the same as the trends of the DS load loss
with the increase of the failure uncertainty budget 0. And as
the failure uncertainty budget 0 and wind speed get larger,
the load loss and performance loss of DS increase, which
means that the operational performance of DS declines. The
reason is that, parameter 0 limits the maximum number of
faulty lines, and represents the impact intensity of disaster
on the distribution network. Besides, subjected to the same
wind intensity, the performance loss in Case 2 and 3 is smaller
than those in Case 1. This indicates that, distributed energy
resources and DR programs contribute to load restoration
of post-disaster DS. Last but not least, consideration of the
worst scenario in robust optimization results in the larger
performance loss in Case 3, compared with deterministic
optimization (Case 4). And like load loss, the performance
loss in Case 4 stays the same for different failure uncertainty
budget 0.

To further explore the effect of the proposed resource
allocation method on DS resilience, VaRα and CVaRα of the
DS in the above four cases are calculated to quantify the
resilience of DS during the hurricane.

To obtain the VaRα and CVaR, we calculate the DS
performance loss for each wind speed, and map it into the
probability density function (PDF) of wind speeds to form
probabilistic performance loss of the DS [23], shown in Fig.8.

Based on this, the VaRα and CVaR of three cases can
be determined, shown in Table.4 Note that, the failure
uncertainty budget of 15 is considered for simulation while
calculating the probabilistic performance loss, VaRα, and
CVaRα of the DS in the four cases.

It can be observed from Table. 4 that, the VaRα and CVaR
of Case 1 are larger than that of Case 2, 3, and 4. This indicates

FIGURE 8. The probabilistic performance loss of DS in the four cases.

TABLE 4. VaR and CVaR for different cases with α = 95%.

that, distributed energy resources and DR programs (Case 2
and 3) are helpful for boosting the DS operational resilience
during the hurricane disaster. And compare with distributed
energy resources, the effect of DR programs on DS resilience
improvement is smaller. This is because, we only consider
the DR programs in PCs in this paper. And the controllable
loads are very small compared to the whole loads in the DS.
Hence, to enhance the effect of DR, the DS could encourage
more customers to participate in the DR programs by taking
some incentives.

Besides, to confirm the validity of the obtained calculation
results, we compare the above simulation results with refer-
ence [23], illustrated in Table.4 It can be observed that, the
values of VaRα and CVaR calculated in this paper are smaller
than that in reference [23]. This is because, the components
failure probability model adopted in this paper is different
from that in reference [23]. Based on this, the failure
probability of the same transmission lines influenced by the
same wind intensity would be different. What’s more, this
paper uses a different damage scenarios modeling method
for particular wind speed from reference [23]. This is why,
although these two papers adopt the same wind profile, DSs
in the two papers have different levels of damage. And then,
the DS performance loss, VaRα, and CVaR obtained in the
two papers are different.

3) ECONOMIC ANALYSIS OF RESOURCE ALLOCATION PLAN
Based on the cases defined in Table. 3, the load shedding
costs of DS are optimized as shown in Table. 5. Note that, the

VOLUME 9, 2021 122919



X. Zhu et al.: Co-Optimization of Supply and Demand Resources for Load Restoration

failure uncertainty budget of 15 and the wind speed of 30m/s
are considered for the simulation in this section.

TABLE 5. Various costs of power DSs in different cases.

It can be seen from Table. 5, load shedding cost of Case 3 is
greater than Case 4 since the robust optimization determines
the optimal scheme considering the worst scenario of the
hurricane damage. And the DS’s load shedding cost without
distributed energy resources and DR (Case 1) is significantly
larger than that of the DS in Case 2 and 3. As the DS
is equipped with multi-energy supply resources, including
MEGs, CHP units, EBs, and PV generators in Case 2, the
load loss cost of DS is reduced by about 519.37 thousand
yuan. This indicates that, emergency energy supply resources
and distributed energy supply resources contribute to the
ELR of post-disaster DS. Besides the multi-energy supply
resources in Case 2, implementation of the DR program in
Case 3 achieves a further reduction in load shedding cost.
Compared with Case 1, the reduced load loss cost of Case 3 is
about 584.11 thousand yuan, which is 36.54% of the total
load loss cost in Case 1 (without supply-side and demand-side
resources for load restoration). Therefore, allocation of multi-
energy supply resources and DR programs in a coordinated
way is capable of effectively enhancing the load restoration
of post-disaster DS and decreasing the economic losses of DS
caused by disasters.

4) EFFECT OF DR
In this study, the electrical consumers in PCs participate in
the DR program after the hurricane strikes to improve the
load recovery. To confirm this effect, a comparative study is
performed in this section, based on Case 2 and Case 3 created
in Table. 3 considering the different configurations of load
restoration resources.

In Case 2, the DS is equipped with CHP units, EBs, and PV
generators at nodes 14, 18, and 32, andMEGs are allocated to
different sub-network. But theDR resources are not taken into
consideration. In Case 3, the configuration of energy supply
resources are the same as the Case 2, and DR programs are
implemented at the node 14, 18 and 32 (the three PCs).

Based on the above Cases 2 and 3, the electrical
energy consumption of nodes 14, 18, and 32 is presented
in Fig.9-14.

Fig.9-11 show the load consumption of three PCs without
implementing the DR program before and after the hurricane
disaster (Case 2). It can be seen that, MEGs, CHP units,
EBs, and PV generators can provide electrical energy to
meet a part of the electrical demand of consumers after the
partial transmission corridors are damaged by the hurricane
disaster. And the FLs demand, mainly including critical
loads and uncontrollable loads, could be fully satisfied

FIGURE 9. Load consumption of the PC at node 14 in Case 2.

FIGURE 10. Load consumption of the PC at node 18 in Case 2.

FIGURE 11. Load consumption of the PC at node 32 in Case 2.

through emergency energy supply sources after the hurricane.
However, the electricity offered by the above emergency
energy supply resources and distributed energy sources
cannot fully meet all end users’ power demands, and a part of

122920 VOLUME 9, 2021



X. Zhu et al.: Co-Optimization of Supply and Demand Resources for Load Restoration

the loads are still in a blackout due to the disaster. The reason
is that the output power of theMEGs, CHP units, EBs, and PV
sources are restricted, owing to the limitation of investment,
operation, and maintenance cost of the additional power
supply equipment. Thus, to fully restore the loads after the
disaster, utilization of multi-energy supply resources, such as
MEGs, CHP units, EBs, and PV generators, is insufficient.

To further improve the load restoration of post-disaster DS,
in Case 3, the DR program is implemented in PCs connected
to DS via nodes 14, 18, and 32.

FIGURE 12. Load consumption of the PC at node 14 in Case 3.

FIGURE 13. Load consumption of the PC at node 18 in Case 3.

Fig.12-14 illustrate the load consumption of three PCs
before the hurricane disaster and the load consumption of
three PCs after the hurricane disaster considering both multi-
energy supply resources and DR resources (Case 3). Com-
paredwith Case 2, the electrical consumption pattern of nodes
14, 18, and 32 has changed in Case 3 as a result of the DR
program. Partial controllable loads of each PC have shifted
to the electricity valley period (from 1 am to 8 am), which
reduces the peak-to-valley difference in power supply and
relieves the power supply pressure during the extreme disaster

FIGURE 14. Load consumption of the PC at node 32 in Case 3.

event. Compared with load restoration in Case 2, the load
restoration in Case 3 is further enhanced via controlling the
shiftable loads (NISLs and ISLs). Therefore, implementation
of the DR program contributes to further improvement of
load recovery of post-disaster DS without requirements of
additional equipment investment and maintenance costs. And
integration of multi-energy supply-side and demand-side
resources in a coordinated manner is able to maximize the
restoration of the power supply of terminal loads.

VI. CONCLUSION
In this paper, we present a two-stage RO framework for
determining the optimal load recovery strategy of DS
with multi-energy supply-side and demand-side resources
during the hurricane disaster. Comparing with the existing
studies, the major contributions of this work are that
we introduce a novel Z-number-based fragility modeling
approach to estimate the failure probability of transmission
corridors caused by extreme disasters. Besides, the effect
of comprehensive utilization of power emergency resources,
multi-energy supply resources, and DR resources on ELR of
DS during the disaster is studied. According to the simulation
results from case studies, some significant findings of this
research are summarized as follows:
· Compared with the traditional fragility modeling method,

the proposed Z-number-based approach can obtain a more
realistic failure probability of electrical components in the
power network, which considers the aging of components and
credibility of fragility curves.
· Comprehensive utilization of MEGs, multi-energy cou-

pling units, distributed generation, and DR resources are
capable of maximizing the load restoration of DS during
the extreme disaster, based on the complementarity of multi-
energy supply-side and demand-side resources.
· Electricity customers participating in DR program

conduces to the load recovery of post-disaster DS with no
need for additional equipment investment and maintenance
costs, which provides a more economical and flexible way to
improve power grid resilience.
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In this study, due to space restrictions, the multiple
energy coupling of demand-side resources is not considered
in the proposed resilience enhancement model. However,
the interaction and substitutability of multiple energy loads
can provide more potential and flexibility for the relief of
pressure on energy supply during extreme disasters. Thus
future works may focus on this direction for further exploring
the resilience improvement resources.
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