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ABSTRACT With the development of smart cities and 5G applications, there is an increasingly urgent
need for cooperative positioning among all kinds of intelligent terminals. Existing cooperative positioning
technology is primarily designed for two-dimensional positions, and the computing speed and positioning
accuracy cannot meet the needs of smart cities. To solve these problems, this paper proposes a factor-
graph-aided three-dimensional faster cooperative positioning algorithm (FG-3DCP) that combines a factor
graph and sum product theory to establish a cooperative localization model with many nodes. To reduce
computational complexity and describe fast positioning, the parameter independence of the factor graph
is used, and the positioning data of each node coordinate axis are calculated independently. Then, the
positioning result is obtained by fusion, and the computing speed is markedly improved. The proposed
algorithm was simulated and analyzed in terms of ranging error, position ambiguity, network topology and
the number of nodes. When the proposed algorithm was compared to the existing non-Bayesian estimation
cooperative position methods, the position performance improved more than 20%, and the convergence rate
was the fastest in the 3D environment.

INDEX TERMS Cooperative positioning, three-dimensional positioning, factor graph, sum product.

I. INTRODUCTION
In smart cities, the number of intelligent terminals is growing
geometrically, and high-precision cooperative positioning is
the core of real-time terminal work. Cooperative positioning
methods have been studied in terms of the limitations of
traditional positioning algorithms; however, most methods
currently only perform two-dimensional plane theoretical
analyses, which makes it difficult to meet the practical needs
of three-dimensional positioning in high-rise buildings and
complex underground networks in smart cities. Positioning
methods based on Bayesian estimation are proposed in [1]
and [2]. Thesemethods obtain better positioning performance
by calculating the marginal posterior probability distribution
function of position variables. However, the multiplication
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of many probability distributions in the algorithm markedly
increases the communication overhead and computational
complexity of the system, resulting in limited applications.
An unscented Kalman filter (UKF) cooperative positioning
method based on sigma point belief information transfer
was proposed in [3]. This method uses the idea of high-
dimensional reconstruction and combines the belief informa-
tion transfer strategy to obtain an approximate solution of the
edge posterior distribution function with the variable nodes
on a factor graph. This method is suitable for distributed
mobile node cooperative localization in a nonlinear Gaussian
scenario. However, due to the excessive number of adjacent
nodes of agents, the problems of high combined message
dimensions and a nonpositive definite covariance matrix are
prone to occur in static networks. A posterior linearization
belief propagation (PLBP) transfer method was proposed
in [1]. The core of this method is that the agent only considers
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the cooperation between two nodes concurrently and obtains
the linearization belief information transfer on the factor
graph through the unscented transformation. But this method
can only obtain good results in low dimensions. Semidefinite
programming (SDP) cooperative positioning was proposed
in [4] and converts the value function minimization problem
with maximum likelihood (ML) estimation into a convex
SDP problem to obtain the node position by relaxing the
nonconvex optimization constraints. However, the method is
centralized, and the computational complexity is high, which
is not well suited to large-scale networks. A nonparametric
belief information transfer cooperative positioning method
is proposed in [5]. The method uses the knowledge of fac-
tor graph theory to construct a network factor graph and
systemizes the cooperative location problem in the network
into a multi-node position variable edge posterior probability
density distribution estimation problem. Weighted particles
are used to approximate the belief message of each variable
node in the factor graph. When the number of particles is
sufficiently large, the probability density distribution of the
node position variable can be approximated more accurately.
However, a large number of particles also increases the com-
putational complexity of the network. [6] uses the covariance
matrix to quantify the position estimation error and selects
the reference node with a smaller variance as the cooperative
node of the positioning target. This method suppresses the
influence of reference nodes with large position errors, but
ignores the influence of non-line-of-sight (NLOS) errors on
the positioning results. A distributed particle filter algorithm
for cooperative positioning and target tracking was proposed
in [7]. This method is used to achieve target positioning and
tracking in indoor environments. However, due to the use of
particles to approximate the posterior probability distribution
of node positions, the computational complexity and commu-
nication overhead of the system are high. The above methods
are primarily designed for two-dimensional plane and cannot
be used for three-dimensional positioning.

The existing three-dimensional positioning algorithms pri-
marily add height information to two-dimensional position-
ing algorithms. The least square (LS) three-dimensional
cooperative positioning algorithm was proposed in [8], and
the maximum likelihood estimation (ML) three-dimensional
cooperative positioning algorithm was proposed in [9].
The two methods introduce height information into the
two-dimensional cooperative positioning to describe three-
dimensional positioning; however, height information can-
not be fused with the two-dimensional positioning plane,
resulting in low cooperative positioning accuracy. A sum-
product-aided cooperative positioning algorithm over a wire-
less network was proposed in [10] and [11], this algorithm
describes the three-dimensional cooperative positioning of an
underwater large-scale network. However, the computational
load of thismethod is too high tomatch the real-time demands
of smart cities. In order to improve the positioning stability,
a variety of Kalman filtering techniques are widely used
in cooperative positioning [12]–[15]. For example, a new

variational bayesian adaptive extended kalman filter is pro-
posed in [12], distributed particle filteris proposed in [15].
However, the above method can not solve the impact of muta-
tion error. Information-aided belief propagation is proposed
in [16] to identify mutation error. Angle measurement is
introduced into the cooperative positioning system to identify
mutation error [17],but it has the problem of large amount of
calculation.Our team proposed a weighted factor graph aided
distributed cooperative position algorithm [18]. A variety of
performance tests are used in [19] and [20] and found that the
cooperative positioning based on factor graph has the advan-
tage of fast positioning speed. However, topology network,
ranging error and time synchronizationwill reduce the perfor-
mance of the cooperative localization algorithm.A reference
node selection method is proposed in [21] and [22], a method
to eliminate ranging error is proposed in [23] and cooper-
ative joint localization and clock synchronization based on
gaussian message passing is proposed in [24] and [25]. These
methods solve one problem in the cooperative positioning
system, and do not consider the problem of three-dimensional
positioning.To solve these problems, this paper proposes a
factor-graph-aided three-dimensional fast cooperative posi-
tioning algorithm. First, this method uses factor graph theory
to construct a mathematical model of cooperative network
topology. Second, it derives the calculation method of each
variable node and function node in the internal factor graph of
the agent based on the mapping relationship between nodes.
Finally, positioning is completed after the iterative update of
the information loop. The first section of this paper is an
introduction, which primarily introduces existing position-
ing algorithms and analyzes their shortcomings. The sec-
ond section maps the topological graph of the cooperative
positioning network to the factor graph and describes the
three-dimensional cooperative positioning algorithm based
on the factor graph in detail. The third section analyzes the
simulation results of the algorithm and quantitatively ana-
lyzes factors such as ranging error and position ambiguity.
The fourth section summarizes the content of this paper.

II. FACTOR-GRAPH-AIDED THREE-DIMENSIONAL
FASTER COOPERATIVE POSITIONING ALGORITHM
To solve the problem of the cooperative localization [11]–[15]
of agents in a wireless environment, this paper uses the
cooperative positioning strategy based on a factor graph to
provide positioning for all agents. The proposed method uses
the knowledge of factor graph theory and the sum prod-
uct algorithm to construct a belief information [16], [17]
transfer model for all agents. Each agent calculates its own
position coordinates and position ambiguity variance by
receiving belief information from neighbor nodes within
communication range. The network topology diagram is
shown in Figure 1, which contains mn agents and ap anchors;
a red link indicates that there is an obstacle between the
anchor node and the agent, which is NLOS; a yellow link
indicates a line-of-sight connection between the anchor and
the agent; and a blue link indicates communication between
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FIGURE 1. Topology diagram of the cooperative positioning network.

the agents. The update mode of the belief information of each
agent is the same in the proposed method [18]; therefore,
this paper takes any agent mq in the network as an example.
The set of neighbor nodes within communication range of
node mq is Cq = {Aq,Mq};Aq = {aq1, .., aqM },Mq =

{mq1, . . . ,mqN }, where Aq represents the set of M anchor
nodes connected to agent mq within the communication
range, and Mq represents the set of N agents connected to
mq within the communication range. The node factor graph
of mq is shown in Figure 2.

FIGURE 2. Node factor graph.

In Figure 2, all nodes are considered to be variable nodes,
Fi−tj represents the function node from the neighbor node i
to the agent tj, and the function node is used for data pro-
cessing of positioning information. Agent mq in the network
is considered as an example, and i ∈ Cq, tj = mq. A solid
line in the Figure 2 represents the belief information provided
by the variable node to the function node, and a dotted line
represents the position estimation information provided by
the neighboring nodes to the target node [18]–[20]. Based
on the calculation criteria of the sum-product algorithm, the
paper uses belief information to iterate, transfer and solve
in the factor graph, and then achieves the positioning of the
target node. The belief information in this study primarily
refers to mean information and variance information.

The FG-3DCP algorithm first collects the coordinate esti-
mation information of agentmq from the adjacent nodes. Sec-
ond, each neighboring node provides the function node with
the belief information required by the agent mq. This infor-
mation includes distance information and the variance of the
position ambiguity variance of neighboring nodes [21], [22].
Finally, the belief information is updated iteratively on

the factor graph until convergence. When calculating the
coordinates of the agent, each coordinate axis is independent
of each other. To meet the real-time demand of smart cities,
this paper converts the three-dimensional positioning prob-
lem into three one-dimensional problems on three branches
(x coordinates, y coordinates, and z coordinates), which can
reduce computational complexity and improve computational
speed. Agent mq in the network is considered to be an exam-
ple to establish its internal factor graph, as shown in Figure 3.

FIGURE 3. Agent mq internal factor graph model.

The variable node d̂i(i = 1, 2, . . . ,M+N ) in Figure 3 rep-
resents the distance information between agent mq and its
neighboring nodes. The distance information enters the inter-
nal factor graph from the function nodeDi, which uses Euler’s
formula to link the coordinates of xq, yq, and zq [18]:

1x2iq +1y
2
iq +1z

2
iq = d2iq (1)

where1xiq,1yiq and1ziq respectively represent the relative
distances between agent mq and its neighboring nodes on
each coordinate axis; and diq indicates the relative distance
between nodes. The constraint relationship formula is shown
in (2), where Xi,Yi,Zi is the coordinate value of the neighbor
node i and xq, yq, zq is the coordinate value of agent mq:

1xiq = Xi − xq
1yiq = Yi − yq
1ziq = Zi − zq

(2)

In the proposed method, belief information is iteratively
transmitted between variable nodes and function nodes.
The information transmission method can be divided into
upstream and downstream iterations. Considering agent mq
as an example, the information calculation method between
nodes is as follows.

First, in the upstream iteration, the function node Ei is used
to transform the belief information between the xq coordinate,
the yq coordinate and the zq coordinate, the formulas are
expressed as:

BI
(
Eki ,1x

k+1
iq

)
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where k represents the number of iterations. The function
nodes Ai, Bi, and Ci are used to describe the conversion
between relative position and absolute position information.
Based on the type of neighbor nodes, this conversion can
be divided into two cases: the neighbor node is an anchor
node, or the neighbor node is a cooperative nodewith position
ambiguity. These situations can be expressed as:
1xiq = Xi − xq
1yiq = Yi − yq
1ziq = Zi − zq

(the neighbor node’s anchor node) (6)


1xiq = X̂i − xq
1yiq = Ŷi − yq
1ziq = Ẑi − zq

(the neighbor node is other agent) (7)

When the neighbor node is an anchor nodewith an accurate
location, the belief information from function nodes Ai,Bi
and Ci to variable nodes xkq , y

k
q, z

k
q is respectively expressed

as follows:
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Aki , x

k
q

)
= N
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When the neighbor node is a cooperative node with posi-
tion ambiguity, the belief information is similar to the for-
mula when the neighbor node is an anchor node. In Equa-
tions (8)∼(10), σ 2

xkq
, σ 2

ykq
, and σ 2

zkq
are the variances of the

Gaussian belief information from the variable nodes xkq , y
k
q,

and zkq, respectively.
After an upstream iteration ends, the next information

update is prepared using the downstream iteration. The vari-
able nodes xq, yq, and zq update the belief information of
function nodes Ai, Bi, and Ci based on the sum-product
algorithm calculation criterion are expressed as
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Based on the principle that the multiplication result of mul-
tiple Gaussian distributed variables still obeys the Gaussian
distribution, and the positioning of the agent in the collabora-
tive network can be described. Considering the belief infor-
mation update of variable node x ′ as an example, variable x ′

follows Gaussian distribution with meanmu and variance σ 2
u .

When the number of variables x ′ is U, the distribution of
its product is proportional to the Gaussian distribution with
mean m3 and variance σ 2

3. The entire update process can be
expressed as follows:

U∏
u=1

N
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u

)
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(
x ′,m3, σ 2
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3
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Equations (11)∼(13) can be calculated based on equations
(14)∼(16). In the downstream iteration, the function nodes
Ai, Bi and Ci update the belief information of variable nodes
1xiq,1yiq and 1ziq based on Equations (17), (18) and (19)
respectively, when the neighbor node is an anchor node:
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where σ 2
1xkiq

, σ 2
1ykiq

and σ 2
1zkiq

are the variances of the Gaussian

belief information from the variable nodes 1xkiq, 1y
k
iq, and

1zkiq respectively. When the neighbor node is an agent of mq.
Finally, the position updates of the variable nodes xq, yq, zq

in the kth iteration is expressed as follows:

BI
(
xkq
)
=

M+N∏
j=1

BI
(
Akj , x

k
q

)
(20)
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FIGURE 4. Network topology diagram.

FIGURE 5. Position results of a single experiment.
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(
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III. SIMULATION RESULTS AND ANALYSIS
A. SINGLE POSITIONING EXPERIMENT RESULTS
In the proposed algorithm, the agents describe position-
ing through information interaction with neighboring nodes
within communication range. The simulation environment
is a 100 × 100 × 100m3 cooperative positioning network
space containing 13 anchors and 200 agents. Agents are
randomly and evenly distributed in the three-dimensional
space, and the network topology is shown in Figure 4, where
a red solid triangle represents an anchor node, and a green
solid circle represents an agent. Communication between
agents and their adjacent anchors is indicated with a black
line in the Figure 4, and communication with other agents
is indicated with a blue line. To ensure ranging accuracy,
agents only communicate and measure the distance with
nodeswithin 40m [23]–[24]. Assuming that the ranging noise
is Gaussian white noise with a mean value of 0 and a variance
of σ 2

n , and given that the ranging error is σn = 1m and the
initial position ambiguity variance of agents is 5 m, the posi-
tioning result is shown in Figure 5. The contour map of the

FIGURE 6. Contour map of positioning error of 200 agents.

FIGURE 7. Positioning performance under different ranging errors
(RMSE).

positioning error of 200 agents after 30 iterations is shown
in Figure 6.

In Figure 5, a black circle indicates the true position of
an agent, the red-to-blue gradient indicates the positioning
result, and a blue straight line indicates the positioning error.
Figure 5 shows that the locations of most agents are described
with high positioning accuracy. However, the positioning
errors of certain nodes distributed on the space boundary
are larger because the number of neighboring nodes (anchor
nodes and cooperative nodes) is small, and the received
belief information has a large deviation, which reduces the
positioning accuracy of the nodes. Figure 6 also shows that
after 10 iterations, the positioning accuracy of most nodes is
between 0 and 2 meters.

B. ANALYSIS OF THE INFLUENCE OF RANGING ERROR
In cooperative positioning [27], [28], the ranging accuracy
between neighboring nodes and the positioning target will
affect the accuracy of the entire cooperative positioning sys-
tem [18]. Positioning errors will accumulate in the iterative
process, resulting in a decrease in positioning performance.
Therefore, this paper selects the same simulation conditions
as in Figure 6 and performs simulation analysis on the stan-
dard deviations of ranging errors σn of 1, 1.5, and 2 m. The
results are shown in Figures 7 and 8.
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FIGURE 8. Positioning performance under different ranging errors (CDF).

FIGURE 9. Effect of position ambiguity on positioning error (RMSE).

Figure 7 shows that as the standard deviation of the ranging
error σn decreases, the convergence speed increases. When
the standard deviation of the ranging error is 1 m, the con-
vergence speed is maximized, and the positioning error is
1.483 m. Figure 8 shows that when the ranging error is 1 m,
the accuracy of approximately 99% of the nodes can reach
3 m because when the ranging error decreases, the measured
distance between the agent and its neighboring nodes is
near the true distance, which allows the neighboring nodes
to transmit more accurate belief information to the agent.
Concurrently, the FG-3DCP can effectively reduce the impact
of cooperative node information with large ranging errors,
thereby improving system positioning performance.

C. ANALYSIS OF THE INFLUENCE OF POSITION
AMBIGUITY
In a cooperative location network [29], the prior position
ambiguity of neighboring nodes affects the positioning accu-
racy. The settings are the same as those used to produce
Figure 6. The nodewith the positioning error ranking at 100 is
analyzedwith the position ambiguities σp of 3, 4, and 5m, and
the results are shown in Figure 9.

Figure 9 shows that the position ambiguity σp of neigh-
boring nodes affects system positioning performance: the
smaller the position ambiguity σp is, the faster the conver-
gence speed. When the position ambiguity is σp = 3m,

FIGURE 10. Network topology diagrams of Models 1 and 2.

TABLE 1. Model corresponding parameters.

the positioning error is 1.12 m because prior information with
a small position ambiguity σp can providemore reliable belief
information for agents.

D. ANALYSIS OF THE INFLUENCE OF NETWORK
TOPOLOGY
In addition to the influencing factors of ranging error and
position ambiguity, the collaborative network topology also
limits the positioning accuracy of the system. Two topology
structures are selected in this study, the simulation parameters
are shown in Table 1, and the network topology is shown
in Figure 10. In the two models, each agent has three anchors
and three neighboring cooperative nodes within communica-
tion range. In model 1, agents are distributed on the eight
vertices of a cube with a side length of 60 m, and anchors are
distributed on the vertices of a regular quadrangular pyramid
with a side length of 60 m. In model 2, the anchor position
distribution is the same as that in model 1, and the agents are
randomly distributed in the network. The simulation results
of the two models are shown in Figure 11.

Figure 11 shows that in the two topological networks,
the positioning performance of model 1 is better than that
of model 2 under the same simulation conditions. The posi-
tioning error can reach 0.98 m because the error vectors
received from neighboring nodes by the agents in model 1
are not concentrated in the same direction but are relatively
evenly distributed on the three axes x, y and z. Therefore, the
convergence direction is more accurate in the iterative update,
which makes positioning more accurate.

E. ANALYSIS OF THE NUMBER OF NEIGHBOR NODES
Compared to the traditional positioningmethod, the outstand-
ing advantage of cooperative localization is that when the
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FIGURE 11. Effect of network topology on positioning error (RMSE).

FIGURE 12. Effect of the number of neighboring nodes on the positioning
performance (RMSE).

number of anchor nodes is insufficient, positioning can be
achieved by communicating with neighboring nodes. How-
ever, there are still certain problems with existing cooperative
positioning systems. Expanding the communication range
will increase the number of neighboring nodes of each agent
in the network when the positions of the agents and the
anchors in the network are fixed; these changes will affect
positioning performance. The simulation conditions are the
same as in Figure 6, and the communication range is set to
40, 50, and 60 m. The results are shown in Figures 12 and 13.

Figure 12 shows that when the communication range is
reduced, positioning performance decreases. Figure 13 also
shows that when the communication range is 40 m, only
83.5% of the node positioning accuracy can reach 2 m.
When the number of all agents in the network is constant,
the number of neighbor nodes for each agent increases as
the communication range increases, which can accept more
comprehensive belief information and improve positioning
accuracy.

F. COMPARATIVE ANALYSIS OF MULTIPLE ALGORITHMS
To comprehensively analyze the positioning performance of
the factor-graph-aided three-dimensional faster cooperative
positioning algorithm (FG-3DCP), the LS cooperative posi-
tioning algorithm, ML cooperative positioning algorithm and
sum-product algorithm over a wireless network (SPAWN) are

FIGURE 13. Effect of the number of neighboring nodes on the positioning
performance (CDF).

FIGURE 14. Performance comparison of cooperative positioning
algorithms (RMSE).

compared to the proposed algorithm. The simulation condi-
tions are as follows: the number of agents is 100, the number
of anchors is 13, the ranging error σn is 1 m, the position
ambiguity σp is 5 m, the communication range is 60 m and
the number of particles of the SPAWN algorithm is 500. The
results are shown in Figures 14 and 15.

Figure 14 shows that the proposed method achieves bet-
ter performance than the other methods due to its use of
the factor graph. Under the same simulation conditions,
the proposed method achieves a faster convergence speed
and higher positioning accuracy, and the positioning error
is approximately 0.97 m. FG-3DCP only needs 10 iterations
to achieve positioning and meets the real-time requirements
of smart cities. Figure 15 also shows that the positioning
performance of the proposed method is significantly better
than that of the LS and ML algorithms. Approximately 99%
of nodes’ positioning accuracies reach 2 m because the LS
and ML methods do not consider the influence of the prior
information of the nodes and the position ambiguity of the
neighboring nodes. When there are insufficient anchor nodes
within communication range, the position ambiguity of the
cooperative nodes accumulates errors during each iterative
update, resulting in poor positioning accuracy. The position-
ing accuracy of the SPAWN algorithm is slightly better than
the proposed method because the SPAWN algorithm uses
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FIGURE 15. Performance comparison of cooperative positioning
algorithms (CDF).

FIGURE 16. Actual positioning error of two agent nodes.

many weighted particles to represent information. The more
particles there are, the higher the accuracy of the SPAWN.
However, this method also increases computational com-
plexity and communication overhead. Conversely, the factor-
graph three-dimensional coordinated positioning proposed
in this paper achieves good positioning performance under
the above mentioned conditions and reduces computational
complexity, thus improving overall positioning performance.

G. FG-3DCP PERFORMANCE EXPERIMENT BASED ON
UWB
Using the UWB modules to build the actual network with a
size of 9m ∗ 6m, and test the positioning performance of the
FG-3DCP. There are 8 UWB modules in the network, four
of which are anchor nodes. Set two nodes in the network as
the agents to be located. Ranging between UWB modules is
interfered due to the complex electromagnetic environment.
The average ranging error between agent 1 and its neighbor-
ing nodes is 42.78cm, and the average ranging error between
agent 2 and its neighboring nodes is 36.51cm. The position
ambiguity of the agent node is 0.2m. Each agent node adopts
a topology structure surrounded by neighboring nodes. The
refresh time of the positioning result is 0.5s. The positioning
error in a certain iteration is shown in Figure 16.

Figure 16 shows that the RMSE of agent 1 after conver-
gence is 0.51m and the RMSE of agent 2 after convergence is

0.42m. The positioning accuracy will further increase as the
number of nodes in the network increases. Both agents have
the ability to quickly converge, convergence can be completed
after five iterations. Due to the small amount of calculation
and fast convergence, FG-3DCP can achieve accurate real-
time positioning in actual experiments. Carrying out fur-
ther theoretical analysis, the computational complexity of
FG-3DCP is O (N ) while N is the number of nodes, and the
computational complexity of SPAWN is O

(
K 2
· N
)
while K

represents the number of particles. Obviously, the computa-
tional complexity of SPAWN is much higher than FG-3DCP
under similar calculation accuracy. It can be proved after
experiment and analysis, FG-3DCP has the advantages of
high positioning accuracy and low computational complexity.
It can provide users with three-dimensional real-time high-
precision positioning.

IV. CONCLUSION
To mitigate the two-dimensional limitation of existing coop-
erative localization technologies and their slow computa-
tional speeds that cannot meet the demands of real-time
calculations. Based on the 2-D factor graph cooperative
positioning algorithm, this paper proposes an FG-3DCP algo-
rithm that is suitable for three-dimensional space. The pro-
posed algorithm is based on the knowledge of factor graph
theory; uses formulae of variable nodes and function nodes
in the factor graph; determines the mathematical model and
topological structure of the cooperative position; and solves
the problem of multiagent cooperative position in practical
application scenarios. Using simulations, this paper intro-
duces the cooperative network topology and then simulates
and analyzes factors such as ranging error, position ambiguity
and the number of nodes. Finally, the proposed method is
compared to other methods, the results show that the pro-
posed method achieves a faster convergence speed than other
methods and that approximately 99% of agents’ positioning
accuracy can reach 2 m.
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