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ABSTRACT Buffer sizing for switching and routing devices is of significance for guaranteeing the Quality
of Service (QoS) of critical services on the Internet of Things (IoT), continuously evolving scheduling
mechanisms and complex traffic characteristics pose new challenges for the traditional method of static
buffer sizing based on rule-of-thumb. In this paper, the scope of buffer sizing is extended from a basic
scheduling system under homogeneous arrival traffic input to an integrated scheduling system under
heterogeneous arrival traffic input which is more ubiquitous. In this context, Voices, videos and other
heterogeneous data in the IoT are categorized into short-range-dependent (SRD) and long-range-dependent
(LRD) traffic, and the integrated scheduling system is decomposed into single-server-single-queue (SSSQ)
systems by not only decoupling the complex dependencies among heterogeneous traffic inputs but also taking
the impact of SRD and LRD traffic burstiness on the buffer sizing into account. On this basis, expressions
for the relation between the minimum buffer size and the maximum overflow probability are presented. The
numerical analysis results and simulation analysis results reveal that the average arrival rate, traffic burst
level and scheduling priority are positively correlated with the required buffer size, and once the overflow
probability is set, the minimum buffer size can be determined correspondingly. The achievements of this
paper will provide theoretical guidance for IoT manufacturers and technicians to set buffers more reasonably
and use resources more efficiently.

INDEX TERMS SRD traffic, LRD traffic, integrated scheduling, buffer sizing.

I. INTRODUCTION
The Internet of Things (IoT), as the envisaged future internet,
has recently become a hot research topic for both industry
and academia recently [1]. It is anticipated that there will
be 24.6 billion IoT connected devices by 2025, and global
monthly mobile data traffic will reach 164 exabytes [2].
Billions of digital devices and other physical objects, generate
tremendous amounts of voices, images, files, videos and other
heterogeneous service data.

The diversification of services leads to a surge in
IoT traffic, which easily causes network congestion, increases
the forwarding delay, and even packet loss. As a result,
the service quality deteriorates or the service becomes
unavailable completely. At the same time, users have
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increasing requirements for high-quality, high-speed, and
low-latency network services. Traditionally, the most intu-
itive way to solve network congestion and ensure the quality
of service (QoS) is to increase the bandwidth of the network,
but considering the associated operation and maintenance
costs, this is not realistic.

Buffer sizing is an important part of network configura-
tion and plays a critical role in guaranteeing the QoS of
heterogeneous traffic [3]. At present, the configuration of
buffer size in engineering is mainly based on rule-of-thumb,
lacking theoretical performance guarantee, which results in
low resource utilization. In fact, buffer sizing has always
been a hot research topic, and many scholars have performed
many significant studies [4]–[7]. These studies include two
broad categories of analytical buffer sizing methods. The
first one involves the use of stochastic service theory, also
known as queuing theory [8]. That is, given an input traffic
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model and service model, the queuing theory is used to ana-
lyze the queue length distribution, and then the appropriate
buffer size is obtained. This method can be roughly divided
into two directions: short-range-dependent (SRD) and
long-range-dependent (LRD) queuing analysis. The latter is
based on the TCP model [9]–[11]. The representative conclu-
sions include rule-of-thumb, small buffer rule, tiny buffer rule
and packet drop rate-based buffer rule.

Generally, the setting of buffer size is usually determined
by two elements in theory: the traffic arrival process and the
system service process. However, differentiated burst levels
of arrival traffic and the integrated scheduling mechanism of
service system pose new challenges for the traditional method
of static buffer sizing.

For one thing, different types of traffic always have differ-
entiated burst levels, the stronger the traffic burst, the larger
the buffer increment. Specifically, many high-quality mea-
surement studies have proven that the traffic of real-world
network exhibits heterogeneous characteristics and can be
divided into two distinct categories, namely SRD and
LRD traffic [12], [13]. Furthermore, there are significant
differences in the buffer size requirements fo heterogeneous
traffic. When SRD traffic enters the buffer for queuing,
the overflow probability has a negative exponential relation-
ship with the buffer size, that is, a small buffer can meet the
packet loss rate requirement of SRD traffic; However, when
LRD traffic is used as the input, the overflow probability has
the property of a power function, and only a large buffer can
meet the packet loss rate requirement of LRD traffic. There-
fore, SRD and LRD traffic cannot be aggregated together
to calculate the required buffer, because the aggregation of
trafficwill lead to the burst of traffic being absorbed, affecting
the accuracy of buffer sizing.

For another thing, the integrated scheduling mechanism
of the fiven service system determines the service priority
and service rate of each queue, and profoundly affects the
queue length and buffer size. Specifically, traffic scheduling
realizes that switches and routers in the IoT select a queue
to be forwarded from one or more queues. Common traffic
scheduling methods include priority queuing (PQ), general-
ized processor sharing (GPS), round robin (RR), and their
variants [14]–[16]. Due to the diversity of traffic in the IoT,
a basic scheduling algorithm can no longer meet the require-
ments of bandwidth sharing for heterogeneous traffic, and
integrated scheduling mechanisms combining different basic
scheduling schemes, such as PQ+GPS, PQ+WRR or other
variants [17], [18], have attracted significant research interest
and have also been deployed on many IoT devices such as the
Huawei CE12800 series and H3C MSR 5600 series. There-
fore, an integrated scheduling algorithm is more conducive
to guaranteeing the QoS of heterogeneous traffic. However,
compared with a basic scheduling algorithm, an integrated
scheduling mechanism is more complex with respect to the
allocation of service rates on the output link, which makes
it face more difficulty analyzing the needs of each queue for
buffer sizing.

In this paper, we integrate the traffic arrival process
and system service process in a queuing system organi-
cally and explore the optimal buffer size for heterogeneous
traffic aggregation nodes based on the above conditions.
Specifically, in terms of the traffic arrival process, we model
heterogeneous traffic via Markov modulated Poisson pro-
cesses (MMPP) for SRD traffic and fractional Brownian
motion (fBm) processes for LRD traffic [19]. Regarding
the traffic arrival process, we use the common PQ-GPS
integrated scheduling mechanism [20], so that some traf-
fic flows are served with strictly high priority, and other
traffic flows are handled by the conventional GPS schedul-
ing mechanism. Our main contributions are summarized as
follows:

(1) Based on the traffic arrival process and the system ser-
vice process, the mathematical expression of the relationship
between the maximum overflow probability and the mini-
mum buffer size is derived, which innovates the traditional
rule-of-thumb dominated buffer sizing method in IoT switch-
ing and routing devices, and provides theoretical guidance
for IoT manufacturers and technicians to set buffer more
reasonably and use resources more efficiently.

(2) From homogeneous arrival traffic to heterogeneous
arrival traffic, from basic scheduling systems to integrated
scheduling systems, a more ubiquitous application context is
considered. In this context, calculating the minimum buffer
size of the integrated system in an overall way will ignore
the impact of heterogeneous traffic with different burst levels
on the buffer sizing and obtain loose minimum buffer size
boundary. To this end, heterogeneous arrival traffic is clus-
tered into SRD traffic and LRD traffic, and the integrated sys-
tem is decomposed into single-server-single-queue (SSSQ)
systems, making it possible to obtain a more tight buffer
boundary for each flow in this complex context.

(3) By using numerical analysis method and simulation
analysis method, the accuracy of the expression of the relation
between the maximum overflow probability and the mini-
mum buffer size is verified by setting various parameters in
four typical scenarios.

The remainder of the paper is organized as follows.
Section II summarizes the related traffic models. Section III
presents the expressions for calculating the minimum buffer
size and overflow probability of each individual flow.
Section IV verifies the proposed approach by a numerical
calculation and a network simulation. Section V presents the
conclusion drawn from this research.

II. PREREQUISITES
As mentioned in Section I, heterogeneous traffic is usually
divided into two distinct categories, namely SRD traffic and
LRD traffic. Moreover, SRD traffic and LRD traffic have
different burst levels and have distinct effects on buffer sizing.
Consequently, to calculate the buffer size required under
different burst levels numerically and accurately, we intro-
duce an SRD traffic model and an LRD traffic model in this
Section.
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A. SRD TRAFFIC MODEL
SRD traffic often represents delay-sensitive services such
as voice and command services. Most SRD traffic models,
e.g., fluid-flowmodel, MMPPmodel, packet-train model and
batch arrival Markov process are based on a Markov process.
In this article, an MMPP model is used as the SRD traffic
model.

An MMPP model is a kind of stochastic double Poisson
process whose arrival rate is modulated by a multistate irre-
ducible Markov process, and MMPP model has been proven
to be quite accurate in voice traffic modeling. A two-state
MMPP is adopted in this paper to characterize high-priority
traffic.

Specifically, a two-state MMPP is uniquely determined
by an infinitesimal generator matrix used to modulate the
Markov chain and intensity vector of a Poisson process,
which are denoted as � and 3, respectively.

� =

[
−γ1 γ1
γ2 −γ2

]
and 3 =

[
η1 0
0 η2

]
(1)

where γi (i = 1, 2) is the transition rate from state i to another
state, and ηi (i = 1, 2) is the traffic arrival rate at state i.

For am MMPP traffic flow, the cumulative amount of
traffic arrived up to time t, Am(t) can be expressed as

Am(t) = λmt + Zm(t) (2)

where λm = (η1γ2 + η2γ1)/(γ1 + γ2) is the mean arrival rate
of Am(t), and E(Zm(t)) = 0. The variance of Am(t) is given
by

vm(t) =
(
η1γ2 + η2γ1

γ1 + γ2

)2

t2 +
2(η1 − η2)2γ1γ2

(γ1 + γ2)3
t

−
2(η1 − η2)2γ1γ2

(γ1 + γ2)4
(1− e−(γ1+γ2)t ) (3)

B. LRD TRAFFIC MODEL
LRD traffic often represents bandwidth-sensitive services
such as files or videos. Many traffic models have been built to
characterize LRD traffic, such as fractal Brownmotion (fBm)
model, heavy-tailed on/off model, M/G/∞ queuing model.
Among them, the fBm model is considered an effective
method for LRD traffic modeling in terms of temporal and
spatial complexity. Thus, we use an fBm moedl as the
LRD traffic model in this paper.

For an fBm traffic flow, the cumulative amount of traffic
arrived up to time t , Af (t) can be expressed as

Af (t) = λf t + Zf (t) (4)

where Zf (t) =
√
af λf Zf (t), λf is the mean arrival rate, af

is the variance coefficient, and Zf (t) is a standard fBm with
variance vf (t) = t2Hf , in which Hf ∈ (0.5, 1) is the Hurst
parameter. The variance function of Af (t) can be given as
follows

vf (t) = af λf vf (t) = af λf t2Hf (5)

III. BUFFER SIZING
In Section 2, we introduced the SRD traffic model and the
LRD trafficmodel, which enable us to obtain the first element
required for determining the buffer size of each flow of the
traffic arrival process. Furthermore, we need to decompose
the integrated scheduling system to obtain the second element
that determines the buffer size of each flow of the system
service process.

In this section, we design a system model using the Diff-
Serv framework. Based on this framework, we combine the
expression of the total queue length distribution and extended
empty buffer approximation (EBA) theory to decompose the
PQ-GPS integrated scheduling system and obtain the min-
imum buffer size corresponding to the maximum overflow
probability for each flow,which can provide theoretical buffer
sizing guidance for IoT devicsmanufacturers and technicians.

A. SYSTEM MODEL
The DiffServ framework is defined by the Internet Engi-
neering Task Force (IETF) to provide differentiated QoS for
heterogenous traffic. In DiffServ, expedited forwarding (EF)
represents accelerated forwarding behavior, which is usually
applied to delay sensitive traffic. Assured forwarding (AF)
involves ensuring forwarding behavior, which is usually
applied to bandwidth sensitive traffic. Best effort (BE) stands
for best effort forwarding behavior, which is applied to best
effort forwarding traffic that does not require strict QoS guar-
antees, and focuses only on accessibility.

In order to ensure that traffic with different sensitivities
can obtain services with different priority levels, we design
an integrated scheduling system model based on the DiffServ
framework, as shown in Figure 1.

FIGURE 1. PQ-GPS scheduling system model.

According to the flow classification rules of integrated
scheduling, we divide the input traffic into eight flows in the
system model. Among them, Flow 1 and Flow 2 represent EF
services and are depicted by MMPP models. Flow 3, Flow 4,
Flow 5 and Flow 6 represent AF services and are depicted by
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fBm models. Flow 7 and Flow 8 represent BE services and
are also depicted by fBm models.

In addition, we use a PQ-GPS integrated scheduling mech-
anism to schedule eight heterogeneous traffic. Among them,
Flow 1 and Flow 2 have strictly high priority and are used to
represent voice, command and other delay-sensitive services.
The other flows have low priority levels, and each flow is
assigned a weight to guarantee a minimum service rate and
handled by GPSmechanism. This property provides forward-
ing guarantees for individual traffic flows and prevents them
from experiencing service starvation. Finally, all eight flows
are scheduled in turn through the PQ mechanism.

B. TOTAL QUEUE LENGTH DISTRIBUTION
Notably, fBm is a Gaussian process, and an MMPP can also
be approximated as a Gaussian process when time tends to
infinity [11]. According to the large deviation principle (LDP)
method, the variance v(t) of Gaussian traffic A(t) for queuing
satisfies lim

x→∞
v(t)/tα = 0, ∃α < 2. Then, the upper bound

and lower bound of the total queue length distribution can be
derived as follows:

Upper bound: P(Q > x) ≤ exp
(
−
1
2
2(tx)

)
(6)

Lower bound: P(Q > x) ≥
exp

(
−

1
22(tx)

)
√
2π
(
1+
√
2(tx)

)2 (7)

where 2(tx) is the determinative function of queue length
distribution, which is given by

2(t) =
(−x + (C − λ)t)2

v(t)
(8)

where x is the queue length, C is the service rate, λ is the
arrival rate, and v(t) is the variance of the arrival traffic.

The parameter tx minimizes 2(t), i.e., tx = argmint 2(t).
By differentiating this equation and solving 2′(t) = 0,
we obtain the required value tx that minimizes 2(t).
It can be seen from Equation (6) and Equation (7) that the

difference between the two bounds of the total queue length
distribution is the parameter exp(−2(tx)/2). Here, we can
further take the geometric average of the upper and lower
bounds [11], therefore, the total queue length distribution can
be given by the following equation:

P(Q > x) ≈
exp

(
−

1
22(tx)

)
4
√
2π
(
1+
√
2(tx)

)2 (9)

Specifically, for the PQ-GPS system model in this paper,
we concretize the determinative function to the following
equation:

2(t) =

(
−x + (C −

∑p
m=1 λm −

∑n
f=p+1 λf )t

)2
∑p

i=1 vm +
∑n

f=p+1 vf
(10)

where n is the total number of flows in the integrated schedul-
ing system, p is the number of high priority flows, and n−p is

the number of low priority flows. λm is given by Equation (2),
λf is given by Equation (4), vm(t) is given by Equation (3),
and vf (t) is given by Equation (5).

C. PQ-GPS SCHEDULING SYSTEM DECOMPOSITION
As mentioned above, to obtain more accurate buffer sizes for
individual traffic flows, we need to decompose the complex
PQ-GPS system into a series of individual SSSQ systems, and
the key is to obtain the service rate of each SSSQ.

Specifically, the service rate of SSSQm is denoted by
cm(m ∈ [1, p]). As MMPP flows have high priority, they are
processed as if the GPS subsystem does not exist. As a result,
by allocating the total link capacity to theMMPP traffic flows
one by one, it is easy to determine that the service rate of
SSSQm is cm = C . Moreover, only when all the traffic in
SSSQ1 is served, can the traffic in SSSQ2 be served, and so
on for SSSQm.
Based on this principle, the total queue length distribution

of the PQ-GPS system is approximately the queue length
distribution of the GPS subsystem. If we take 2(t) as the
determinative function of the PQ-GPS system, and 8(s) as
the determinative function of GPS subsystem, then we have
mint 2(t) = mins8(s), i.e., 2(tx) = 8(sx). By solving
this equation, we can finally obtain the service rate of the
GPS subsystem, which is denoted as cGPS .

The service rate of SSSQf is, denoted by cf (f ∈ [p+1, n]).
However, the fBm traffic flows in the GPS subsystem
share links and are interdependent; thus, it is not easy to
calculate cf . Fortunately, EBA shows that the total queue
length distribution of the whole heterogeneous traffic is sim-
ilar to that of the low priority traffic.
Proposition 1: The service capacity of the GPS system,

cGPS , can be approximately calculated by solving the follow-
ing equation:

2(tx) = 8(sx) (11)

where tx = argmint 2(t), and sx = argmins8(s).

8(s) =

(
−x + (cGPS −

∑n
f=p+1 λf )s

)2
∑n

f=p+1 vf
(12)

The required value sx that minimizes8(s) can be obtained
by differentiating this equation and solving 8′(s) = 0.
Furthermore, we need to discuss how to derive the expres-

sion of cf from the expression for cGPS in the GPS subsys-
tem. Specifically, we assume that the guaranteed service rate
received by fBmf (f ∈ [p + 1, n]) can be given by µf cGPS .
If µf cGPS − λf ≥ 0, it denotes the excess service received
by fBmf . Otherwise, fBmf needs additional service, and thus,
|µf cGPS − λf | denotes the service deficit. That is, we can
solve the service capacity problem in two situations.
Situation I : fBmi(i ∈ [p + 1, n]) is the guaranteed excess

service while fBmj(j ∈ [p + 1, n], j 6= i) represents that the
fBm requires additional service. Consequently, fBmj cannot
be served in a timely manner and becomes the dominant
contributor of the total GPS subsystem queue, which means
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that the total queue length distribution of the GPS subsystem
can be used to approximate that of fBmj.
Proposition 2: The service capacity of SSSQj, cj, can be

approximately calculated by solving the following equation:

8(sx) = 0(ux) (13)

where sx = argmins8(s), and ux = argminu 0(u).

0(u) =

(
−x + (

∑
cj −

∑
λj)u

)2∑
ajλju2Hj

(14)

The required valueµx that minimizes 0(u) can be obtained
by differentiating this equation and solving 0′(u) = 0.

According to the joint Equations (10), (11), (12), (13)
and (14), we know that, when the Hurst parameters of het-
erogeneous fBm traffic are not exactly the same, it is difficult
to obtain a closed expression for cj. However, if all of the fBm
traffic flows have the same Hurst parameter H , then we can
obtain a closed expression. In this case, we have

ux =
Hx

(
∑
cj −

∑
λj)(H − 1)

(15)

0(ux) =

(
x

H−1

)2
∑
ajλj

(
Hx

(
∑
cj−

∑
λj)(H−1)

)2H (16)

∑
cj =

∑
λj +

(
cGPS −

∑
λk

)( ∑ ajλj∑
akλk

) 1
2H

(17)

where k ∈ [p+ 1, n].

ci = µicGPS (18)

Situation II : fBmi(i ∈ [p+1, n]), fBmj(j ∈ [p+1, n], j 6= i)
are guaranteed excess services. However, due to the bursty
nature of fBm flow, there is a certain time interval in which
some flows have temporary excess service, while other flows
require additional service. In this case, the service capacity ci
can be calculated as follows:

ci = µicGPS +
(∑

µjcGPS −
∑

λj

)( aiλi∑
akλk

) 1
2H

(19)

where k ∈ [p+ 1, n].

D. OPTIMAL BUFFER SIZE BASED ON QUEUE LENGTH
After obtaining the service capability ck (k ∈ [1, n]) of a
single SSSQ system, the buffer size analysis of the complex
PQ-GPS system can be transformed into the analysis of these
equivalent SSSQ systems whose analysis process is simpler
and whose analysis results are more accurate.

Specifically, given the service capacity ck of SSSQk and
the equivalence relationship between the k th traffic flow
and SSSQk , the queue length distribution, P(Qk > x), based
on Equations (9) and (10) is obtained by setting n = 1 and
C = ck as follows:

P(Qk > x) ≈
exp

(
−

1
22k (tx)

)
4
√
2π
(
1+
√
2k (tx)

)2 (20)

where

2k (t) =
(−x + (ck − λk )t)2

vk (t)
(21)

On the one hand, if the maximum probability of
buffer overflow in the k th traffic flow is 1m, based on
Equations (3), (20) and (21), the minimum buffer size b∗m of
MMPP SRD traffic can be obtained.

P(Qk > x) = 1m (22)

where k ∈ [1, p].

b∗m = argmax(1m) (23)

On the other hand, if the maximum probability of buffer
overflow in k th traffic flow is 1m, based on Equations (5),
(17), (18) or (19), (20) and (21), the minimum buffer size b∗f
of fBm LRD traffic can be obtained.

P(Qk > x) = 1f (24)

where k ∈ [p+ 1, n].

b∗f = argmax(1f ) (25)

IV. MODEL VALIDATION
In this section, we verify the model through four scenarios,
and each scenario uses twomethods, one that employs Python
for numerical analysis and another that utilizes NS3 for sim-
ulation analysis. Without loss of generality, for the PQ-GPS
integrated scheduling system, we set the number of EF ser-
vice queues represented by theMMPPmodel to 1, the number
of AF service queues represented by the fBm model to 2,
and the number of BE service queues represented by the fBm
model to 1.

A. SCENARIO I
In this scenario, we set four traffic flows, MMPP1, fBm2,
fBm3, and fBm4, which correspond to the EF service,
AF1 service, AF2 service, and BE service, respectively.
The specific parameters for these traffic flows are shown
in Table 1, which lists the parameters used to explore buffer
sizing under Situation I introduced in Section III-C.

TABLE 1. Parameter settings in scenario I.

Table 2 and Figure 2 illustrate the minimum buffer sizes
of heterogeneous traffic under different maximum overflow
probability requirements.

Table 2 and Figure 2 reveal that, once the maximum over-
flow probability of a traffic flow is determined, the minimum

VOLUME 9, 2021 115241



H. Shi et al.: BS-HTIS: Buffer Sizing for Heterogeneous Traffic and Integrated System

TABLE 2. Buffer sizing analysis results in scenario I.

FIGURE 2. Buffer sizing analysis results in scenario I.

buffer size is determined accordingly. Moreover, the smaller
the maximum overflow probability is required, the larger the
minimum buffer size is required.

Specifically, the minimum buffer size under any maxi-
mum overflow probability for traffic flow MMPP1 is zero
in Table 2 and Figure 2. The reason for this is that compared
with the service capacity (C = 200) of the PQ-GPS inte-
grated schedluling system, the average arrival rate of traffic
flowMMPP1 is relatively small (λ1 = 46). At the same time,
traffic flowMMPP1 is a strictly high-priority flow, and fBm2,
fBm3 and fBm4 are regarded as nonexistent trafic flows, thus,
MMPP1 can get timely service.

In addition, for low-priority traffic flows in the GPS sub-
system, under different maximum overflow probabilities,
the minimum buffer size of fBm2 and fBm3 is the same,
but the minimum buffer size of fBm4 is much larger than
that of fbm2 and fbm3. The reason for this is that, fBm2 and
fBm3 are guaranteed excess service and they have the same
average arrival rate, burst level and service rate, which means
the traffic arrival process and system service process of
fBm2 and fBm3 are consistent, so the requirements on buffer
sizing for fBm2 and fBm3 are the same. However, quite
different from the previous two, fBm4 requires additional

service, which means that traffic in fBm4 flow cannot be
processed in a timely manner, so the requirement on buffer
sizing for fBm4 is much larger.

B. SCENARIO II
In this scenario, we set four traffic flows, MMPP1, fBm2,
fBm3, and fBm4, which correspond to the EF service,
AF1 service, AF2 service, and BE service, respectively.
The specific parameters for these traffic flows are shown
in Table 3, which lists the parameters used to explore buffer
sizing under Situation I introduced in Section III-C. Differ-
ent from Table 1, we change some parameters of MMPP1,
fBm2 and fBm4 to obtain some comparative conclusions.

TABLE 3. Parameter settings in scenario II.

Table 4 and Figure 3 illustrate the minimum buffer sizes
of heterogeneous traffic under different maximum overflow
probability requirements.

TABLE 4. Buffer sizing analysis results in scenario II.

According to the comparative analysis between
Table 2 and 4, as well as between Figure 2 and Figure 3,
we can draw the following conclusions.

Although we change the transition rate of MMPP1 and
increase its burst level, the conclusion is the same
as Scenario I. since MMPP1 has a relatively small average
arrival rate as compared to the service rate of the integrated
scheduling system and it is served with strict high-priority,
no traffic of MMPP1 need to be buffered.

In addition, for low-priority traffic flows in the GPS sub-
system, we set the hurst parameter of fBm2 as H = 0.9
and that of fBm3 as H = 0.8, and ensure the consistency of
other parameters of the two. The result is that under the same
maximum overflow probability, the minimum buffer size of
fBm2 is much larger than that of fBm3. The reason for this
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FIGURE 3. Buffer sizing analysis results in scenario II.

is that, different types of services always have differentiated
burst levels, the stronger the LRD traffic burst, the larger the
buffer increment. Moreover, this conclusion is also applicable
to fBm4. After we weaken the burstiness of fBm4, the mini-
mum buffer size is significantly reduced.

C. SCENARIO III
In this scenario, we set four traffic flows, MMPP1, fBm2,
fBm3, and fBm4, which correspond to the EF service,
AF1 service, AF2 service, and BE service, respectively.
The specific parameters for these traffic flows are shown
in Table 5, which lists the parameters used to explore buffer
sizing under Situation II introduced in Section III-C.

TABLE 5. Parameter settings in scenario III.

Table 6 and Figure 4 illustrates the minimum buffer size
of heterogeneous traffic under different maximum overflow
probability requirements.

Table 6 and Figure 4 reveals that, when the average arrival
rate of MMPP1 is relatively high and fBm2, fBm3, fBm4 are
all guaranteed excess services, fBm4 is no longer the main
contributor to the queue length of the integrated scheduling
system.

Specifically, in Table 6 and Figure 4, if the maximum
overflow probability is less than 10−4, the minimum buffer
size of MMPP1s should be greater than 0. And the reason
is, compared with the service capacity (C = 200) of the
PQ-GPS integrated schedluling system, the average arrival
rate of traffic flow MMPP1 is relatively high (λ1 = 160).
However, since the traffic flow MMPP1 is a strictly high
priority flow and can get timely service, the minimum buffer

TABLE 6. Buffer sizing analysis results in scenario III.

FIGURE 4. Buffer sizing analysis results in scenario III.

size are much less than those of fBm2, fBm3 and fBm4,
although its average arrival rate is much larger than those of
fBm2, fBm3 and fBm4.

In addition, for low-priority traffic flows in the GPS sub-
system, We set the ci − λi of fBm2, fBm3 and fBm4 to
be greater than 0, so they can all get excess service.The
result is that under the same maximum overflow probability,
the minimum buffer size of fBm3 and fBm4 is similar, but
the minimum buffer size for fBm2 is much smaller. The
reason for this is that, although fBm2, fBm3 and fBm4 are all
guaranteed excess services, the excess services of fBm3 and
fBm4 are the same and the burst level is similar, so the
minimum buffer size required is basically the same. However,
the relative excess services of fBm2 are larger than those of
fBm3 and fBm4, so theminimum buffer size required is much
smaller.

D. SCENARIO IV
In this scenario, we set four traffic flows, MMPP1, fBm2,
fBm3, and fBm4, which correspond to the EF service,
AF1 service, AF2 service, and BE service, respectively.
The specific parameters for these traffic flows are shown
in Table 7, which lists the parameters used to explore buffer
sizing under Situation I introduced in Section III-C.
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TABLE 7. The parameter settings in scenario IV.

Table 8 and Figure 5 illustrates the minimum buffer size
of heterogeneous traffic under different maximum overflow
probability requirements.

TABLE 8. Buffer sizing analysis results in scenario IV.

FIGURE 5. Buffer sizing analysis results in scenario IV.

Table 8 and Figure 5 reveals that, in the case that the service
capacity of the PQ-GPS integrated scheduling system is sig-
nificantly improved, consistent with the analysis conclusion
of the first three scenarios, we still need the buffer sizing to
queue the incoming traffic.

V. CONCLUSION
The rapid development of the IoT has brought many new
services, some of which bring SRD traffic and some of which
bring LRD traffic.When these heterogeneous traffic flows are

scheduled in switches or routers, the impact of heterogeneous
traffic with different burst levels on the buffer sizing pose
new challenges for designing the buffer sizes. To solve this
problem, we cluster heterogeneous traffic in the IoT into
MMPP SRD traffic and fBm LRD traffic, and decompose the
integrated PQ-GPS scheduling system into SSSQ systems,
thereby we derive expressions for calculating the minimum
buffer size and maximum overflow probability of individual
traffic flow based on EBA and LDP theory, and obtain the
relationship between the minimum buffer size and maximum
overflow probability for each flow. The results of numerical
analysis and simulation analysis show that no matter how
the service capacity is increased, the system’s demand for
buffer sizing will not change, and the results of this paper
will provide theoretical guidance for the development of
IoT devices.
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