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ABSTRACT Magnetic nanoparticles have proven to be extremely useful in a broad range of biomedical
applications. To ensure optimal efficiency, a precise characterization of these particles is required. Thermal
Noise Magnetrometry (TNM) is a recently developed characterization technique that has already been
validated against other techniques. TNMoffers a unique advantage in that no external excitation of the system
is required to drive the measurement. However, the extremely small stochastic signal in the femtotesla range
currently limits the accessibility of the method, and a better understanding of the influences of the sample
characteristics on the TNM signal is necessary. In this study, we present a theoretical framework to model the
magnetic noise power properties of particle ensembles and their signal as measured via TNM. Both intrinsic
sample properties (such as the number of particles or their volume) and the geometrical properties of the
sample in the setup have been investigated numerically and validated with experiments. It is shown that the
noise power depends linearly on the particle concentration, quadratically on the individual particle size, and
linearly on the particle size for a constant total amount of magnetic material in the sample. Furthermore,
an optimized sample shape is calculated for the given experimental geometry and subsequently 3d printed.
This geometry produces a 3.5 fold increase in TNM signal (0.007 to 0.026 pT2) using less than half of the
magnetic material considered in the intial measurements.

INDEX TERMS Biomedical material, magnetic properties, magnetic nanoparticles, magnetic noise, thermal
noise.

I. INTRODUCTION
Thermal fluctuations are ubiquitous in a broad range of phys-
ical systems. Although they are often unwanted and referred
to as noise, they also carry information. Einstein was the
first to model the thermal movements of colloidal particles
in a fluid [1], more commonly known as Brownian motion.
Understanding of this phenomenon underpins the technique
‘‘Dynamic Light Scattering’’ (DLS), a powerful characteri-
zation method for macromolecular systems [2], [3]. The ther-
mal agitation of electrons in a conductor (Johnson-Nyquist

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

noise) [4], [5] has also been implemented in applications
such as Johnson noise thermometry [6], [7]. This technique
is especially relevant in low-temperature systems because
no electric current is required to drive the measurement,
thereby minimizing heat dissipation in the sample [8], [9].
A general theory on thermal noise has been formulated in the
fluctuation-dissipation theorem (FDT) [10], [11]: the fluctu-
ations in any extensive quantity are related to the dissipation
in the system as a result of the application of its conjugate
intensive quantity [12]. Although these theories and applica-
tions have been established for decades, the study of thermal
fluctuations and the FDT continues to be an active research
field today, with several applications in various disciplines.
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For example, the FDT has been extended to non-equilibrium
and non-Hamiltonian systems [13], allowing the response of
a climate system to a weak external force to be modelled
[14]–[17]. Johnson noise thermometry can also provide a
basis for the experimental determination of the Boltzmann
constant [18]–[20] which is used for the definition of the
kelvin.

In this paper magnetic nanoparticle (MNP) dynamics are
discussed. Their dynamic properties are inherently stochas-
tic due to the particles’ nanoscale sizes. The MNPs typi-
cally consist of a magnetic core (normally iron oxide) and
a non-magnetic shell (for example, silica). Over the last few
decades they have been implemented in numerous biomedical
applications [21], [22]. The MNP can be imaged directly
using magnetic particle imaging [23]–[25] (MPI) or Mag-
netorelaxometry imaging [26]–[28] (MRXi), or can be used
as a contrast agent [29] in magnetic resonance imaging
(MRI). MNPs can serve as heat generators in cancer treat-
ment (magnetic field hyperthermia) [30], [31] and can be
used in targeted drug delivery [32]. For these applications
to function safely, reliably and efficiently there is a need
for accurate MNP characterization. Important properties to
determine include the size distribution of the MNPs and their
related dynamic properties.

All established direct magnetic characterization techniques
rely upon a measurement of the particles’ response to an
externally applied field [33]. For example, Magnetorelax-
ometry [34] (MRX) is a MNP characterization technique
in which the relaxation of the net magnetic moment of a
nanoparticle sample is recorded, after abruptly switching
off an externally applied magnetic field. This method is an
example of the dissipation part of the FDT: the dissipation or
impedance of the magnetization M of the sample, the exten-
sive quantity, is studied when an externally applied field H
is applied, the intensive quantity. However, the external field
excitation could potentially alter the particles magnetization
state [35], [36] and therefore influence the outcome of the
measurement. The FDT shows that the thermal fluctuations
in M in the absence of any external field are caused by the
very same mechanisms as those responsible for the dissipa-
tion. The fluctuations can thus also be used to characterize
nanoparticle systems. The technique of Thermal Noise Mag-
netometry (TNM) has been introduced by Leliaert et al in
Ref. 37 and validated against MRX in Ref. 38. It is a powerful
alternative for the characterization of magnetic nanoparticles,
without impact on the magnetic state of the sample. Further
improvement of this method will provide fundamental insight
into the magnetization dynamics of MNP and facilitate their
precise characterization for biomedical applications.

On the timescale of a typical MNP characterization mea-
surement, the MNP dynamics are driven by two differ-
ent stochastic processes. Together, they give rise to the
relaxations observed in MRX, and likewise the fluctuations
considered in TNM. MRX and TNM thus share the same
characteristic timescale. First, there is the Néel switching
process. In this process, the magnetic moment of the MNP

changes direction by crossing the energy barrier KVc set by
the magnetocrystalline (or shape) anisotropy of the particle,
with anisotropy constantK and the volumeVc of themagnetic
core. The Néel fluctuation time τN is given by [39]

τN = τ0 exp
(
KVc
kBT

)
. (1)

τ0 is the inverse of the attempt frequency, typically estimated
on the order of 10−9 s [40], [41]. In a suspension, the particles
can also rotate mechanically. This process is called Brownian
rotation. In contrast to the Néel relaxation, the magnetization
is fixed within the frame of the particle and rotates together
with the particle in the detectors’ frame of reference. The
Brownian fluctuation time τB is given by [42]

τB =
3ηVh
kBT

, (2)

where Vc and Vh denote the core and hydrodynamic volume
of the particle respectively, and η is the viscosity of the
suspension.

The combined relaxation of a system in which both Néel
and Brownian processes are occurring is described by the
effective fluctuation time τeff. This is given by the inverse sum
of the Néel and Brownian fluctuation times

τeff =
τNτB

τN + τB
(3)

and is generally dominated by one contribution, depending
on the particles’ size [43].

Without the application of an external magnetic field,
the magnetization dynamics of the nanoparticle system can
be characterized by means of the thermal fluctuations: the
thermal magnetic noise. However, the signal measured in
TNM is inherently extremely small (down to a few fT), which
makes the characterization of low concentration samples very
time consuming or even impossible. Moreover, the stochas-
tic nature of the experiment makes the interpretation of the
results less intuitive. Therefore, development of the TNM
method will benefit from a deeper understanding of the mea-
sured signal and its dependence on the sample configuration.
In this work, we present a theoretical framework constructed
to mirror our TNM experiment. Its usage is twofold: first
it allows us to investigate the influence of different sample
parameters on the TNM signal, thereby making the design
of future experiments and the interpretation of future results
more accessible. Second, it can be used to improve our exper-
iment by calculating an optimized sample shape for the given
geometrical constraints. The numerical results are verified
with experiments.

First, two methods of calculating the thermal noise power
are described and validated. Their use in the context of
TNM measurements and simulations are then presented.
Next, the dependence of the noise power on two sample
parameters is studied: the number of particles and their size.
Finally, the influence of the volume, distance and geometry
of the sample with respect to the detector is presented, and a
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comparison between the optimized and conventional sample
shapes is made in terms of TNM signal.

II. METHODS
A. THERMAL NOISE MAGNETOMETRY
TNM measures fluctuations in the magnetic flux density
originating from changes in the direction of the particles’
magnetic moments due to thermal energy in the system. The
magnetic flux density Bλ at a certain point in space and in
a certain direction is a stochastic variable, where λ is one
specific realization of the magnetic moments’ phase space�.
Bλ is a superposition of all the magnetic field contributions of
the magnetic moments of the different particles in the sample.
Because the magnetic moment of every particle is free to
move in any direction on the unit sphere,� is uncountable.Bλ

is described by the probability density function PB(x), where
x is a parameter representing a realization of �. Any statis-
tical average of a function f on the nanoparticle ensemble is
then calculated as:

〈f (Bλ)〉 =
∫
f (Bλ)PB(x)dx (4)

At non-zero temperatures, the magnetization direction of
each nanoparticle changes over time. Consequently,Bλ is also
a time dependent stochastic process. In this work it is assumed
that the thermal fluctuations in the magnetic signal Bλ(t) of
a nanoparticle ensemble is stationary and ergodic: this means
that the statistical ensemble averages do not change over time
and can be set equal to their time averages:

〈f (Bλ)〉 = f (Bλ(t)) = lim
T→∞

[
1
T

∫ T

0
f (Bλ(t))dt

]
(5)

For stationary and ergodic processes, the link between
theory (what can be calculated) and experiments (what can
be measured) can readily be made. The ensemble averages
(the average of Bλ(t∗) over the configurations λ at fixed time
t∗) are most suitable for the theoretical calculations, whereas
the time averages, i.e. the average of one realization λ∗ of the
stochastic process Bλ

∗

(t) over time, are much more practical
to record in experiments [12].

There are two important quantities for the stochastic pro-
cess Bλ(t). First, its autocovariance is given by

0BB(t1, t2) = 〈Bλ(t1)Bλ(t2)〉 − mx(t1)mx(t2)

= 0BB(τ ) = 〈Bλ(t1)Bλ(t1 + τ )〉 − m2
x , (6)

where mx(t) is the statistical average of Bλ and the second
equality holds for stationary processes, as t2−t1 is substituted
by τ . Secondly, its Power Spectral Density (PSD) is defined
as

Sb(f ) = lim
T→∞

1
T

∫ T

0
〈|Bλ(t) exp(−i2π ft)dt|2〉 (7)

which takes the form of a Lorentzian for a monodisperse
magnetic nanoparticle ensemble [44]:

Sb(f ) ∝
(4τeff)−1

(π f )2 + (2τeff)−2
(8)

This spectrum is characterized by a white noise part up to
the cutoff frequency 1/(2τeff) and a 1/f 2 dependence for fre-
quencies larger than the cutoff frequency [37]. The amplitude
of the power spectrum follows a 1/d6 power law, where d is
the distance between the MNPs and the point of the magnetic
field detection. For particle ensembles with an extended size
distribution, the PSD is a superposition of Lorenzians [38]
whose shape depends on the corresponding fluctuation time
distribution.

By measuring the stochastic signal Bλ(t) and analysing its
spectrum, it is possible to reconstruct the particle size distri-
bution. Because the fluctuations are inherent to the particles
and only depend on their properties and the thermal energy
in the system, no external excitation has to be applied to the
ensemble during the measurement.

B. NOISE POWER CALCULATION
To enable quantitative comparison between different sample
configurations, the total thermal noise power P measured in
the detector was selected as the basis for analysis. The noise
power takes both changes in the shape and the amplitude of
the PSD into account, and is therefore a suited parameter to
investigate both the influence of intrinsic particle parameters
and the sample geometry.We elaborate on two differentmeth-
ods to calculate the noise power [12] in the context of TNM:
by calculating the variance over different independent con-
figurations, or by integrating the PSD over its full frequency
range. The firstmethodswill be the fastest for the simulations,
while the second method is preferred for experiments. The
consistency between both calculation methods is verified in
the results and discussion sections.

1) METHOD 1: CONFIGURATION AVERAGE
OF THE VARIANCE
The instantaneous noise power of the stochastic process Bλ(t)
is given by its variance

Pb(t) = 〈Bλ(t)Bλ(t)〉 (9)

which is independent of t for stationary processes. Calculat-
ing the statistical average is not possible without knowing the
probability density function. The law of large numbers can
therefore be used to approximate the statistical average:

〈(Bλ)2〉 = lim
n→∞

(Bλ(1))2 + (Bλ(2))2 + . . .+ (Bλ(n))2

n
(10)

If n is large, the average of the squared magnetic flux
density from n random configurations λ of � is a good
approximation to estimate the magnetic noise power. The
variance of a stochastic signal is also used in other disciplines
as a parameter to characterize the system [45], [46] or to track
thermal noise power changes over time [47].

2) METHOD 2: PSD INTEGRATION
It is generally cumbersome or impossible to prepare a large
number of uncorrelated experiments. Often, there is only one
realization λ, which is evaluated over time. Measuring the
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noise power based on (10) as a statistical average is thus
experimentally unfeasible. By assuming that the process is
stationary and ergodic, the ensemble averages can be replaced
by time averages. Conveniently, the same assumptions also
enable the use of the Wiener–Khinchin theorem [48], [49],
which states that the autocovariance and the power spectral
density are each other’s Fourier transforms.

0BB(τ ) =
∫
∞

−∞

Sb(f ) exp(2π if τ )df (11)

Because the noise power equals the autocovariance for
τ = 0: Px = 0XX (0), we can write

Pb = 0BB(0) =
∫
∞

−∞

Sb(f )df . (12)

This means that the noise power can also be calculated
by integrating the PSD over the full frequency range. The
contributions of all the power sources operating at different
frequencies are added to yield the total power in the system.
Alternatively, the noise power in a specific frequency band
can be considered by changing the integration boundaries to
track e.g. changes in specific dynamical ranges [50], [51].

Note that, next to the noise power and the Power Spec-
tral Density

(
with units fT 2 and fT 2

Hz respectively
)
, the noise

amplitude and the Amplitude Spectral Density or the RMS
Spectral Density

(
with units fT and fT

√
Hz

respectively
)
are also

often used. Because the latter quantities are the square roots
of the former, they both contain the same information. In this
paper, we will work with the noise power and power spectral
density.

C. THERMAL NOISE MAGNETOMETRY EXPERIMENTS
TNM experiments were performed in the MRX setup at the
Physikalisch-Technische Bundesanstalt in Berlin [52]. It con-
sists of 6 SQUID sensors with rectangular pickup coils, which
are operated inside an integrated cylindrical superconduct-
ing magnetic shield. Through a warm bore with a diameter
of 27 mm, the MNP sample can be positioned close to the
SQUID sensors at a typical distance of 23.5 mm. For our
measurements we only used one sensor. Iron oxide particles
obtained from Berlin Heart GmbH with an iron concentra-
tion of 1.214 mmol/l were used as the MNP sample. This
nanoparticle system has been chosen for its high noise signal,
thereby allowing TNM measurements of a relatively highly
diluted sample. Interparticle interactions were found to be
of negligible strength for all studied concentrations of the
sample and the formation of aggregates has not been observed
on the timescale of the experiments. This is in line with
expectations, since the non-magnetic particle shells provide
stabilisation and prevent the particles from clustering.

In each TNM measurement, we recorded 9,000 sampling
frames of the time signal Bλ(t) with a sample frequency fs =
100 kHz. Each frame consist of N = 50, 000 sample points.
The PSD of each frame was then calculated in the following
way:

1) To overcome the problem of spectral leakage, each
time signal x ′i is first multiplied with the Hann window
function wi (i = 0 . . .N − 1): xi = x ′i · wi. The fast
Fourier transform (FFT) is then applied on xi to yield
FFT(xi)=ai. Because only positive frequencies are to
be considered, the Fourier amplitudes belonging to the
negative frequency part are mapped to the positive
frequency part. The Fourier amplitudes aj belonging to
these positive frequencies gain a factor of two [53].

2) The Power Spectral Density is then computed as

Sj =
2 · |aj|2 · η2

fs · N
(13)

η is a factor accounting for the window usage, and
is equal to 2

√
1.5

for the Hann window. For a detailed
explanation of the discrete PSD computation using
windows we refer to Ref. 54.

The PSDs are then averaged over the 9,000 frames. The
uncertainty on the PSD values was calculated from the stan-
dard deviation of the 9,000 frames.

1) NOISE POWER AND UNCERTAINTY CALCULATION
The noise power was calculated by integrating the resulting
PSD over the frequency domain using method 2. Two con-
tributions to the uncertainty 1P on the power were taken
into account. Firstly, we account for the uncertainty coming
from the calculated uncertainties on the PSD [55]. Secondly,
small amplitude variations in the background noise power
were taken into account by measuring an empty sample and
analysing its measurement data the same way as if it would
have been a MNP sample.

D. THERMAL NOISE MAGNETOMETRY SIMULATIONS
The TNM simulations were performedwith Vinamax [56]: an
open-sourcemacrospin simulation tool formagnetic nanopar-
ticles, which was recently extended to simulate Brownian
rotations of the particles [58]. The particles are considered
spherical and uniformly magnetized. Each individual particle
is approximated by a macrospin and the dynamics of the
ensemble are simulated by numerically solving the stochastic
Landau-Lifshitz-Gilbert equation [59], [60]. The shape of the
sample holder was defined to closely resemble those used
in the experiments and the magnetic field was evaluated in
a rectangular region with the same dimensions as the SQUID
pickup coil.

1) MAGNETIC FLUX DENSITY IN DETECTOR
For the calculation of the magnetic field density B, the detec-
tor was discretized inN points (with index j) and themagnetic
flux density EBij of every simulated particle i was evaluated in
point j as a dipole-dipole field (see Fig. 1):

EBij =
µ0

4π

(
3 Erij( Emi · Erij)
| Erij|5

−
Emi
| Erij|3

)
(14)

Here, Erij denotes the vector between particle i and detector
point j and Emi is the magnetization of particle i. The detector
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FIGURE 1. Schematic representation of the macrospin simulations
modeling a TNM experiment. The particles i and the detector points j are
displayed, connected through the vector Erij . The detector only measures
the magnetic field in the direction En, the normal to the detector plane.
Each detector point contributes for a certain effective area, which is
sufficiently small to ensure a homogeneous field in each area.

is only sensitive to fields in the direction perpendicular to its
surface:

Bij = En · EBij (15)

where En is the normal to the detector plane. The magnetic
flux density in each point j of the detector is the sum of the
contributions from each particle:

Bj = Bi1j + Bi2j + . . . (16)

and accounts for the magnetic flux (in Wb) through the
effective area of this point: the area of the detector which
it represents. For equidistant detector discretization, the total
flux density in the full detector is then calculated by taking the
average of the magnetic flux densities at the different detector
points j.

III. RESULTS AND DISCUSSION
A. VALIDATION OF NOISE POWER
CALCULATION METHODS
We now compare the noise power obtained using both meth-
ods presented above. To this end, we fit a volume-squared
weighted lognormal particle size distribution to the spectrum
measured for the iron oxide MNPs in a cylindrical sample
holder, as shown in Fig. 2 (a). A lognormal distribution is
commonly assumed, as this size distribution results from
the magnetic nanoparticles particle synthesis process [62].
We use the following definition for the lognormal distribu-
tion, with diameter d :

P(d) =
1

√
2πσd

exp
(
−[ln (d/µ)]2

2σ 2

)
(17)

This distribution is parameterized by µ and σ , which cor-
respond to the median and geometric standard deviation of
the distribution respectively. The mean of this distribution is
given by exp

(
ln (µ)+ 1

2σ
2
)
.

Note that the diameter distribution can be transformed
into a switching time distribution and the weighting can be
changed from a volume-squared weighted to a volume- or
number weighted distribution, as described in the appendix.

The size distribution fitted from the TNMdata had parame-
tersµ = 46.1±0.5 nm and σ = 0.64±0.01, corresponding to

a mean diameter of 56.6 nm. The sample has also been mea-
sured with MRX and DLS as control measurements, yield-
ing an average particle diameter of 54.7 nm and z-average
of 55.0 nm respectively. Both values are in excellent agree-
ment with the value obtained from the TNM data. This distri-
bution was subsequently used to simulate a MNP ensemble
using Vinamax. Each simulation contained 10,000 particles.
Only Brownian switching was taken into account, and we
used the material parameters of iron oxide (saturation magne-
tization Ms =400 kA/m) and the suspension parameters for
water (viscosity η = 1 mPa·s). Since particles with a diam-
eter smaller than 10 nm have a cutoff frequency well above
the Nyquist frequency of the experiment, their characteristic
Power Spectral Density is constant in the measured frequency
region. As they cannot be distinguished in this measurement,
they have been left out of the simulation. In future research,
the experimental sample frequency of 100 kHz could be
increased to make TNM also sensitive to smaller particles or,
as suggested by Ref. 38, the viscosity of the suspension could
be increased to lower the cutoff frequency of the particle
system.

A large number of randomly chosen configurations λ are
easily generated in simulations, which allows one to calculate
the noise power using method 1. Generating 80,000 sample
configurations, the noise power was calculated with equa-
tion (10) to be (1.21±0.03) ·10−6 fT2. The distribution of the
magnetic flux density Bλ in the detector is shown Fig. 2 (b).
As expected for the lognormal size distribution, the magnetic
noise is slightly non-Gaussian.

It is also possible to generate a time series of the MNP
dynamics in Vinamax, similar as the time signal recorded in
experiments. A video, displaying the time dependent mag-
netic field in the detector plane is available as supplementary
material. The simulated time signal makes it possible to
estimate the noise power according to method 2. This result
can be quantitatively compared to the noise power found
by method 1. The averaged Power Spectral Density from
such a simulated signal is shown in Fig. 2 (c). Note that its
amplitude does not match the amplitude of the experimental
PSD in panel (a), since only 10,000 particles were consid-
ered in the simulation. The analytical expression of the PSD
for the corresponding size distribution is also plotted, and
an extrapolation towards the lower frequency part is made.
The integration of the combined PSD (i.e. the simulated and
extrapolated part up to 0.01 Hz) yields a noise power of
(1.19± 0.03) · 10−6 fT2.
The noise power calculated from the two methods

coincide within their uncertainty intervals. Both methods
therefore yield equal noise powers, and can thus be used
interchangeably for TNM. It is clear that method 1 is
more convenient for simulations, where independent sample
configurations are easily generated, but where the genera-
tion of the time signal requires long calculation times to
cover the low frequency range of the PSD. For the experi-
ments however, the noise power calculations naturally follow
method 2.

VOLUME 9, 2021 111509



K. Everaert et al.: Noise Power Properties of Magnetic Nanoparticles as Measured in TNM

FIGURE 2. Power Spectral Density of the experimental time signal and fitted lognormal distribution (a). This size distribution is
subsequently used in the simulations to validate the two noise power calculation methods. Panel (b) displays the thermal magnetic field
distribution in the detector of 100,000 simulated configurations (method 1). The distribution of the stochastic magnetic signal deviates
slightly from a Gaussian distribution. The Power Spectral Density of the computational time signal generated with Vinamax is displayed
in (c), which is used to calculate the noise power following method 2. An extrapolation of the calculated PSD in the lower frequency
range is plotted, using the PSD form of the assembling size distribution.

B. NOISE POWER DEPENDENCE ON PARTICLE VOLUME
AND NUMBER OF PARTICLES
Now that it has been shown that the TNM noise power can be
calculated efficiently both for simulations and experiments,
the simulations can be used to improve the experiment. The
number and volume of particles are two main parameters
whose influence on the signal strength are well understood in
other characterization methods. The stochastic nature of the
TNM experiment makes their impact however less intuitive.
Here, we investigate the dependence of the thermal noise
power on the number of particles and their volume, both
for a variable and a fixed total iron concentration. For these
simulation, a cylindrical sample holder geometry has been
used.

1) VARIABLE IRON CONCENTRATION
Fig. 3 shows the dependence of the noise power on the
number of monodisperse particles obtained by simulations

(with a fixed volume, equivalent to a radius of 60 nm) in
panel (a) and the effect of the particle volume (for a fixed
number of 10,000 particles) in panel (b). Note that in both
cases, the total iron amount is not constant.

The noise power scales linearly with the number of parti-
cles, and quadratically with their volume. These power laws
can be explained as follows. The magnetic nanoparticles in
the sample are noise sources, which means that adding an
additional particle to the ensemble can either result in a
positive or a negative contribution to the magnetic field in
the detector, depending on the orientation of the particle’s
magnetic moment. On average, when doubling the number
of particles the flux density in the detector will only increase
by a factor

√
2, and the noise power will scale linearly with

the number of particles. This contrasts with deterministic
processes like e.g. MRX measurements where all particles
are aligned by an externally applied field [34]. Here, the sig-
nal amplitude scales linearly and hence the power scales
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FIGURE 3. Noise power for a variable total iron amount as a function of (a) the number of particles (with a fixed volume) and (b) the volume
of the particles (with a fixed number of particles). A cylindrical sample holder with monodisperse MNPs has been used. The noise power
scales linearly with the number of particles and quadratically with their volume. The latter is also shown as function of particle radius in (c),
based on the same dataset. Note that uncertainties have been calculated, but are too small to be seen.

quadratically with the amount of particles. These finding are
in accordance with those in other stochastic systems, e.g. the
scaling of the average translation distance with the square
root of the number of steps in a random walk [61] (where the
average translation distance and the number of steps resemble
the noise amplitude and the number of particles respectively)
and the linear dependence of the noise power of synchrotron
radiation on the number of particles in the bunch [57].

Increasing the particles’ volume while the number of par-
ticles remains constant, increases the TNM signal like in a
deterministic signal. No extra noise sources are created, and
an increase in the magnetic moments results in a quadratic
increase of the noise power, as shown in Fig. 3 (b) and (c).

The linear dependence of the noise power on the number of
particles was experimentally confirmed and shown in Fig. 4.
We measured a dilutions series of the iron oxide MNPs in
a water suspension. The Power Spectral Density of each
dilution and their integrated noise power are shown in panels
(a) and (b) respectively. The peaks observed at 50 Hz and a
few higher frequencies are artefacts and have not been taken
into account when calculating the total noise power. To allow
a quantitative comparison, the simulation of Fig. 3 (a) was
repeated for a lognormal size distribution with the parame-
ters found from the fit in Fig. 2 (a). The results are shown
in Fig. 4 (c). The total amount of particles in the sample can
then be estimated from a quantitative comparison between the
computational results of Fig. (b) and (c). Taking into account
the linear dependence on the amount of particles, the non-
diluted sample (1:1) is estimated to contain about 6 · 1013

particles.

2) FIXED IRON CONTENT
Fig. 5 shows the noise power of a simulated particle ensemble
in which the number of particles N and their volume Vp are
varied according to Vtot = N · Vp for a fixed Vtot . All panels

display the same data set and show that the noise power
depends linearly on the particle volume and inversely on
the number of particles. This is readily understood from the
power laws described in the previous paragraph: for a variable
particle amount, when increasing the amount of particles
by a factor X , the noise power also increases by the same
factor. However, because the total iron concentration is fixed,
the particle volume is reduced by X . This leads to a reduction
of a factor X2 of the noise power. Together, this results in an
inverse linear, and a linear relation between the noise power
and the particle number and volume, respectively. This means
that in a dynamic measurement where the signal is tracked
over time, clustering of the particles could be observed as an
increase in noise power due to a decrease in the number of
particles in favour of larger particle volumes.

C. NOISE POWER DEPENDENCE ON GEOMETRICAL
SETUP PARAMETERS
This section focuses on the effect of adjusting the volume,
geometry and distance of the sample with respect to the
detector. The magnetic field of a (point) dipole decays as
1/r3 with distance r . Therefore, the distance of the MNPs
from the detector has a major influence on the amplitude of
the TNM signal. The sample should ideally be positioned as
close to the detector as possible. Additionally, the shape of
the sample holder also influences the amplitude of the signal.
Symmetrically shaped sample holders (cylinders, cones) are
typically used. These are easy to manufacture, but may not
have the optimal shape with respect to the signal strength.
Therefore, we calculated a geometry and designed a sample
holder that enhances the TNM signal in the given setup, taken
into account both the distance from the detector and the shape
of the sample holder. The signal of a conventional cylindrical
sample holder is compared to that of the newly calculated
geometry by constructing a sensitivity profile through the
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FIGURE 4. Experimental confirmation of the linear dependence of the noise power on the number of particles. (a) The measured Power
Spectral Density of the dilution series and (b) their integrated noise power as a function of the concentration factor, i.e. the inverse
dilution factor. Panel (a) and (b) share the same legend. (c) shows the simulated noise power as a function of number of sample particles,
where the particles’ size distribution is chosen to resemble the experiment.

FIGURE 5. Noise power for a fixed total iron amount (fixed total volume) as a function of (a) the radius of the particles, (b) the number of
particles and (c) the volume of the particles. A cylindrical sample holder with monodisperse MNPs has been used.

accessible sample space, i.e. at different distances from the
detector.

The optimized geometry was calculated by discretizing
the available sample space in the warm bore into a regularly

spaced grid of voxels, spaced 500 µm apart. For each voxel,
the hypothetical contribution of one MNP located inside the
voxel to the total noise power measured in the detector was
calculated. The resulting ranking of the voxels by their impact
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FIGURE 6. Calculated noise signal (blue) and noise power gain per added volume element (orange) as a function of the sample volume.
A quasi linear regime for the noise power is visible for common sample volumes (up to 300 µl). The geometry of the 80 µl sample was used
for the construction of a sample holder optimized for the experiments.

on the measured signal allowed the selection of those voxels
with the highest impact when defining an optimized sample
geometry for a specific volume.

Fig. 6 shows the total noise power as a function of the sam-
ple volume for the optimized sample geometry (blue curve),
and displays a monotonically increasing behavior. However,
the rate of increase slows down at larger volumes because
points that are located at larger distances from the detector
contribute little to the TNM signal. This is also reflected in
the power per sample volume, as plotted in orange in Fig. 6.
The most ‘‘efficient’’ sample, corresponding to the highest
noise power per sample volume, would theoretically consist
of only a single MNP. Although the fluctuations of individual
particles can be captured [63], the noise power would be
insufficient to be detected in our setup, as it was designed to
characterize magnetic nanoparticle samples containing over
109 particles. Because the smooth decrease of the orange
noise power per volume, there is no clear cutoff value for
the sample volume. Instead, bearing in mind the cost of
the material and practicality of the measurements, we chose
to optimize our experimental sample holder geometry for a
volume of 80 µl. This is an improvement upon the regu-
lar cylindrical sample holder which contains 200 µl sample
material.

One way to further increase the signal per sample volume
would be to use all 6 detectors of the setup. Instead of
placing the entire sample as close as possible to one detector,
the volume could be divided into 6 sub-volumes divided over
the 6 detectors. However, because of the nearly linear P(V )
curve for small volume changes V (see the inset of Fig. 6),
such a construction would barely increase the noise power
for these volumes andwould significantly increase the sample
preparation time. Therefore, only one detector was used for
the construction of our optimized sample holder.

1) SENSITIVITY PROFILES
The two sample holders are now compared by their noise
power profile, as recorded at different position along the

warm bore axis. This is referred to as the sensitivity pro-
file in the remainder of this paper. The experimental and
numerical sensitivity profiles are presented in Fig. 7, in which
the conventional and the optimized sample holder are called
‘‘SH 1’’ and ‘‘SH 2’’, respectively. The simulations have been
made for 10,000 sample configurations with the lognormal
size distribution parameters as shown in Fig. 2 (a). To enable
direct comparison, the numerical sensitivity curve has been
re-scaled with the average ratio of the experimental and sim-
ulated profile.

Fig. 7 shows a qualitative agreement between the numer-
ical and experimental sensitivity profiles. The experimental
curves typically display slightly sharper peaks, i.e. higher
values around position 0 and lower values in the tails at larger
distances. The ratios between the experimental and the com-
putational noise power at distance zero are 1.07 and 1.06 for
the optimized and the cylindrical sample holders, respec-
tively. This small difference is attributed to a systematic inac-
curacy, e.g. a small difference between the theoretical and the
actual length of the detector in the experiment. Nonetheless,
the good qualitative agreement between the experimental and
simulated results validates the computational framework used
to simulate the thermal noise of the magnetic particles.

Another conclusion that can be drawn from Fig. 7 is that
the geometrical parameters of the sample can be numerically
optimized in favor of the TNM signal. At the optimal depth,
a factor of 3.5 in signal strength is gained for the optimized
sample holder compared to the regular cylindrical one, this
is achieved despite the volume of the magnetic material
having been reduced by more than half. The aforementioned
procedure enables to precisely define an ideal TNM sample
holder shape for to the detector geometry of any experimental
setup.

As a guide to the eye, the experimental curves are fitted
with a dipole-dipole sensitivity profile model:

Pb = a
(

1
(d2 + b2)3

+
1

(d2 + b2)5

)
(18)
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FIGURE 7. Sensitivity profile of the conventional (SH 1) and the optimized (SH 2) sample holders, both measured
experimentally and computationally. By varying the y-coordinate of the sample holders, thereby altering the distance to the
detector, a noise power sensitivity profile is constructed as a function of the position of the sample holder in the warm
bore. The values of the simulations are scaled in order to match the experimental values. The experimental curves are fitted
with the dipole-dipole sensitivity profile (18). The shapes of the two sample holders in the experimental setup are shown in
the inset.

where Pb is the noise power, d the position in the warm bore,
b the distance between the sample and the detector and a
a weight factor (which could for example account for the
amount of particles in the sample). For the cylindrical sample
holder, the dipole fit matches the data quite well, due to the
relatively large distance between the sensor and the narrow
cylinder. From the geometry shown in the inset of Fig. 7 it is
obvious that a simple point-point model between the detector
and the optimized sample holder is not a good approximation.

IV. SUMMARY AND CONCLUSION
A theoretical and numerical framework to examine the noise
power properties of magnetic nanoparticle ensembles has
been reported as measured in TNM. This magnetic nanoparti-
cle characterization technique provides amethod to derive the
size distribution of the ensemble by measuring the thermally
induced fluctuations in the magnetic field. In contrast to
other magnetic characterization methods, no external mag-
netic fields need to be applied. This can be beneficial as
an applied field can potentially change the magnetic state
of the particles. However, the signal measured in TNM is
inherently small (down to fT range) and stochastic in nature,
limiting the current accessibility of the method and making
the results non-intuitive for interpretation. The dependence of
the TNM signal on basic, yet fundamental, sample parameters
has been studied numerically and verified with experiments.
It has been shown that the noise power depends linearly on the
particle concentration, quadratically on the individual particle
size, and linearly on the particle size for a constant total
amount of magnetic material in the sample. An optimized

sample shape has been calculated and constructed, which
has been compared with a conventional sample holder by
measuring a sensitivity profile in the experimental setup.
The optimized shape showed an increase in TNM signal by
a factor of 3.5 (from approximately 0.007 to 0.026 pT2),
while the amount of magnetic material is reduced with
more than half of the volume of the conventional holder.
The qualitative correspondence between the numerical and
experimental profiles validates the numerical framework and
proves the self-consistency of the approach. The simulations
make it possible to predict and visualize aspects of TNM
which can subsequently be analyzed and studied experimen-
tally. Our results therefore contribute to the establishment
of TNM as a reliable magnetic nanoparticle characterization
method, thereby paving the way towards improved funda-
mental insights in the magnetization dynamics of magnetic
nanoparticle ensembles.

A. APPENDIX
The TNM Power Spectral Density consists of a (volume-
squared) weighted sum of Lorentzian curves (see 8), each
corresponding to the noise spectrum of a single nanoparticle.
This signal can be decomposed in a, commonly used [62],
lognormal distribution of such curves, as described by

P(x, µ, σ 2) =
1

√
2πσx

exp
(
−[ln (x/µ)]2

2σ 2

)
. (19)

However, often the relaxation time distribution is less use-
ful than the corresponding diameter distribution, which itself
can be either number, volume or volume-squared weighted.
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This appendix will derive and recall some useful properties
of the lognormal size distribution in order to perform these
transformations.

Note that there is a fundamental difference between trans-
forming the volume and number weighted diameter dis-
tributions into each other, and the transformation of the
(e.g. volume weighted) diameter distribution into the
(e.g. also volume weighted) switching time distribution.

The first transformation seeks to describe two different
distributions as function of the same quantity, i.e. diameter.
In contrast, the second transformations describes the same
distribution as function of different quantities, i.e. diameter
or switching time.

B. TRANSFORMING A NUMBER WEIGHTED
DISTRIBUTION INTO A DIAMETER WEIGHTED
DISTRIBUTION AND VICE VERSA
In Ref. 64, it is shown for the lognormal size distribution
how to transform a volume weighted distribution into a num-
ber weighted distribution. Here, this result is extended to a
volume-squared weighted distribution:

D6

number weighted︷ ︸︸ ︷
P(D, µ, σ 2) dD ∝ D3

volume weighted︷ ︸︸ ︷
P(D, exp[ln(µ)+ 3σ 2], σ 2) dD

∝

volume−squared weighted︷ ︸︸ ︷
P(D, exp[ln(µ)+ 6σ 2], σ 2) dD

(20)

C. TRANSFORMING A SWITCHING TIME DISTRIBUTION
INTO A DIAMETER DISTRIBUTION AND VICE VERSA

P(τB, µτ , σ 2
τ )dτB ∝ P

(
D,
[
2kBT
ηπ

µτ

]1/3
,
σ 2
τ

9

)
dD (21)

and

P(D, µD, σ 2
D)dD ∝ P

(
τB,

πη

2kBT
µ3
D, 9σ

2
D

)
dτB (22)

where the following properties of the lognormal distribution
were used [64]:

Multiplication with a scalar a: if variable x is lognormal
distributed with mean µ and standard deviation σ , then y =
a · x is lognormal distributed with mean aµ and standard
derivation σ .

P(x, µ, σ 2)dx = P(y, aµ, σ 2)dy (23)

Exponentiation with a scalar a: if variable x is lognor-
mal distributed with mean µ and standard deviation σ , then
y = xa is lognormal distributed with mean µa and standard
derivation aσ .

P
(
x, µ, σ 2

)
dx = P

(
y, µa, a2σ 2

)
dy (24)
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