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ABSTRACT Cubic bipolar fuzzy set (CBFS) is a powerful model for dealing with bipolarity and vagueness
altogether because it contains bipolar fuzzy information and interval-valued bipolar fuzzy information
simultaneously. In this article, we define some new notions such as concentration, dilation, support and
core of a CBFS. We introduce cubic bipolar fuzzy relations (CBFRs) and some of their types. As in statistics
with real variables, we define variance and covariance between two CBFSs. Then, we propose correlation
coefficients and their weighted extensions on the basis of variance and covariance of CBFSs. Later on, some
properties of these correlation coefficients are discussed.We explore that their values lie in [−1,1].Moreover,
we discuss the applications of the proposed correlation coefficients in pattern recognition and clustering
analysis. Numerical examples are provided for better understanding of the applicability and efficiency of
proposed correlation coefficients.

INDEX TERMS Cubic bipolar fuzzy sets, correlation coefficients, pattern recognition, clustering algorithm.

I. INTRODUCTION
Zadeh [1] initiated the concept of fuzzy set (FS) theory which
is a generalization of crisp set theory. This theory was devel-
oped to address the inexactness and uncertainty that arise in
decision-making problems as a result of ambiguities in data
and human judgments. Till now, this theory has been success-
fully applied in various fields including medical science, eco-
nomics, computer science, physics, and chemistry. Later on,
many researchers inaugurated different extensions of fuzzy
sets such as interval-valued fuzzy set(IVFS) [2], intuitionistic
fuzzy set (IFS) [3], hesitant fuzzy set (HFS) [26], pythagorean
fuzzy set (PFS) [5], [6], q-rung orthopair fuzzy set(q-
ROPFS) [7], neutrosophic set (NS) [27], and single-valued
neutrosophic set (SVNS) [28], etc.

In many real life circumstances, human perception is
based on bipolar or dual-sided thoughts. For instance, effects
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and side effects, friendship and enmity, profit and loss
are some examples of two-sided features of decision anal-
ysis. Zhang [8], [9] proposed the idea of bipolar fuzzy
set (BFS) which unifies bipolarity and fuzziness. This set
assigns each element a positive membership degree from
[0,1] and a negative membership degree from [-1,0]. These
degrees indicate the extent to which an element satisfies a
property as well as its counter-property. Lee [10] gave the
operations on bipolar-valued fuzzy sets. Lee and Hur [43]
defined bipolar fuzzy relations. Wei et al. [11] introduced
the idea of interval-valued bipolar fuzzy set(IVBFS) and
discussed multi-criteria decision-making (MCDM) under
interval-valued bipolar fuzzy information. Deli et al. [29]
gave the abstraction of bipolar neutrosophic set (BNS) and
applied it in MCDM problems. Ulucay et al. [30] explored
some similarity measures on BNSs and applied them in
multi-criteria decision making. Basset et al. [31] defined
cosine similarity measures on BNSs and used them in the
diagnosis of bipolar disorders.
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Jun et al. [4] brought out the concept of cubic set (CS)
(hybrid of IVFS and FS) and defined the notions of P-union,
P-intersection, R-union and R-intersection. They also defined
internal cubic sets (ICSs) and external cubic sets (ECSs) and
derived some useful results by taking into consideration both
the ICSs and ECSs.

Correlation coefficient, an important notion in statistics,
measures the linear relationship between two random vari-
ables. It is widely used in statistical analysis and engineering
sciences. Since crisp set theory cannot tackle the ambiguities
and uncertainties, therefore, the idea of correlation coefficient
has been extended to FS theory for better results [45]. Later
on, Gerstenkorn and Manko proposed a correlation coeffi-
cient for intuitionistic fuzzy sets whose values lie in [0,1].
Hung [33] adopted the statistical viewpoint to define a cor-
relation coefficient for IFSs. Garg [16] proposed novel cor-
relation coefficients for Pythagorean fuzzy sets and applied
them in pattern recognition and medical diagnosis. Garg and
Kaur [19] developed correlation coefficients for cubic intu-
itionistic fuzzy environment and discussedMCDMproblems.
Pramanik et al. [35] proposed a novel correlation coefficient
for interval-valued bipolar neutrosophic set and applied it in
multi-attribute decision making (MADM) problem. For more
about pattern recognition and MADM, we refer to [36]–[40].

Riaz and Tehrim [14], Peng et al. [15], Basset et al. [31] ini-
tiated a novel model named as cubic bipolar fuzzy set (CBFS)
which is a hybrid set of BFS and IVBFS. This model gives
more precision and pliability as compared to the existing
models because it accommodates bipolar and interval-valued
bipolar fuzzy information simultaneously. As a result, this
model offers maximum details about the occurrence of rat-
ings, inexactness and bipolarity. They proposed some aggre-
gation operators like cubic bipolar fuzzy weighted geometric
(CBFWG) aggregation operators and cubic bipolar fuzzy
weighted averaging (CBFWA) aggregation operators under
P(R)-order and applied these operators in some multi-criteria
group decision making (MCGDM) problems.

Themain objectives and advantages of this article are listed
below:

1) The first objective of this article is to handle vagueness
and ambiguities more efficiently with the help of cubic
bipolar fuzzy sets (CBFSs).

2) The second objective is to define new notions like con-
centration, dilation, support, core and binary relations
for CBFSs.

3) The third objective is to develop correlation coeffi-
cients and their weighted versions for CBFSs.

4) The fourth objective is to propose new algorithms with
the help of suggested correlation coefficients to solve
complex problems of pattern recognition and cluster-
ing analysis under CBF environment. The usability
and effectiveness of these algorithms is determined by
numerical illustrations.

The rest of the article is structured as follows: In
section 2, we review some basic definitions of fuzzy sets,
interval-valued fuzzy sets, bipolar fuzzy sets, interval-valued

bipolar fuzzy sets. Then, we recall the definition and oper-
ations of CBFSs. In section 3, we propose concentration,
dilation, support and core of a CBFS. Moreover, we inau-
gurate cubic bipolar fuzzy relations and some of their types.
In section 4, we propose correlation measures and their
weighted extensions and discuss their properties. In section 5,
novel algorithms are presented for pattern recognition and
clustering analysis on the basis of suggested correlation
coefficients and the applicability of these algorithms is sub-
stantiated through numerical illustrations. Section 6 contains
concluding remarks.

II. PRELIMINARIES
We devote this section to discuss some fundamental concepts
related to cubic bipolar fuzzy sets that are helpful throughout
this article.
Definition 1: [1] Let M be an initial universe. A fuzzy

set F onM is defined as

F = {〈m, µF(m)〉 : m ∈M}

where µF : M → [0, 1] is described as membership
function and µF(m) is called membership degree of an ele-
ment m ∈ M.
Definition 2: [2] Let I ([0, 1]) be the collection of all

closed sub-intervals of [0,1]. An interval-valued fuzzy set I
on initial universeM is an object having form

I = {〈m, µI(m)〉 : m ∈M}

where µI : M → I ([0, 1]) is described as interval-valued
membership function and µI(m) is called interval-valued
membership degree of an element m ∈M.
Definition 3: [4] Let M be an initial universe. A cubic

set C on M can be defined as

C = {〈m,I(m),F(m)〉 : m ∈M}

where I is an IVFS onM and F is a FS onM.
Definition 4: [8] A bipolar fuzzy set B on M takes the

following form

B = {〈m, µ+B(m), µ−B(m)〉 : m ∈M}

Here, each element m ∈ M is assigned with a positive
membership degree µ+B(m) ∈ [0, 1] and a negative member-
ship degree µ−B(m) ∈ [−1, 0]. For convenience, an ordered
pair 〈µ+B, µ

−

B〉 is termed as bipolar fuzzy number (BFN).
Definition 5: [11] Let I ([0, 1]) be the collection of all

closed sub-intervals of [0,1] and I∗([−1, 0]) be the collection
of all closed sub-intervals of [-1,0]. Then, an interval-valued
bipolar fuzzy set S is expressed as

S = {〈m, µ+B(m), µ−B(m)〉 : m ∈M}

where µ+B(m) ∈ I ([0, 1]) depicts interval-valued posi-
tive membership degree and µ−B(m) ∈ I∗([−1, 0]) depicts
interval-valued negative membership degree of an element
m ∈ M. An interval-valued bipolar fuzzy number (IVBFN)
can be represented as 〈[µ+

`S, µ
+

uS], [µ−
`S, µ

−

uS]〉.
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Definition 6: [13] A cubic bipolar fuzzy set A over the
initial universeM can be defined as

A = {〈m,S(m),B(m)〉 : m ∈M}

where S is an IVBFS and B is a BFS on M. Thus, cubic
bipolar fuzzy set can also be written as

A = {〈m, [µ+
`A(m), µ+uA(m)], [µ−

`A(m), µ−uA(m)],

{µ+A(m), µ−A(m)}〉 : m ∈M}

where the intervals [µ+
`A(m), µ+uA(m)] ∈ I ([0, 1])

and [µ−
`A(m), µ−uA(m)] ∈ I∗([−1, 0]) represent the

interval-valued positive and negative membership degrees,
respectively and µ+A(m) ∈ [0, 1] and µ−A(m) ∈ [−1, 0]
represent the positive and negative membership, respectively,
of an element m ∈M. A cubic bipolar fuzzy number can be
written as 〈[µ+

`A, µ
+

uA], [µ
−

`A, µ
−

uA], {µ
+

A, µ
−

A}〉.
Definition 7: [13] Consider an initial universe M. Let

A = {〈m, [µ+
`A(m), µ+uA(m)], [µ−

`A (m), µ−uA(m)], {µ+A(m),
µ−A(m)}〉 : m ∈ M} and B = {〈m, [µ+

`A2
(m),

µ+uB(m)], [µ−
`B(m), µ−uB(m)], {µ+B(m), µ−B(m)}〉 : m ∈M}

be two CBFSs on M and λ > 0. Then, the operations on
CBFSs under P-order are given below:

i. A ∪P B =
{
〈m, [max{µ+

`A(m), µ+
`B(m)},

max{µ+uA(m), µ+uB(m)}], [min{µ−
`A(m), µ−

`B(m)},

min{µ−uA(m), µ−uB(m)}], {max{µ+A(m), µ+B(m)},

min{µ−A(m), µ−B(m)}}〉 : m ∈M
}

ii. A ∩P B =
{
〈m, [min{µ+

`A(m), µ+
`B(m)},

min{µ+uA(m), µ+uB(m)}], [max{µ−
`A(m), µ−

`B(m)},

max{µ−uA(m), µ−uB(m)}], {min{µ+A(m), µ+B(m)},

max{µ−A(m), µ−B(m)}}〉 : m ∈M
}

iii. A⊕P B =
{
〈m, [µ+

`A(m)+ µ+
`B(m)− µ+

`A(m)

µ+
`B(m), µ+uA(m)+ µ+uB(m)− µ+uA(m)µ+uB(m)],

[−(µ−
`A(m)µ−

`B(m)),−(µ−uA(m)µ−uB(m))],

{µ+A(m)+ µ+B(m)− µ+A(m)µ+B(m),

−(µ−A(m)µ−B(m))}〉 : m ∈M
}

iv. A⊗P B =
{
〈m, [µ+

`A(m)µ+
`B(m), µ+uA(m)µ+uB(m)],

[−(−µ−
`A(m)− µ−

`B(m)− (µ−
`A(m)µ−

`B(m))),

−(−µ−uA(m)− µ−uB(m)− (µ−uA(m)µ−uB(m)))],

{µ+A(m)µ+B(m),−(−µ−A(m)− µ−B(m)

−(µ−A(m)µ−B(m)))}〉 : m ∈M
}

v. Aλ =
{
〈r, [(µ+

`A(m))λ, (µ+uA(m))λ], [−(1− (1−

(−µ−
`A(m)))λ),−(1− (1− (−µ−uA(m)))λ)],

{(µ+A(m))λ,−(1− (1− (−µ−A(m)))λ)}〉 : m ∈M
}

vi. λA =
{
〈m, [1− (1− µ+

`A(m))λ, 1− (1− µ+uA(m))λ],

[−(−µ−
`A(m))λ,−(−µ−uA(m))λ],

{1− (1− µ+A(m))λ,−(−µ−A(m))λ}〉 : m ∈M
}

vii. A ⊆P B if [µ+
`A(m), µ+uA(m)] ≤ [µ+

`B(m), µ+uB(m)]

and [µ−
`A(m), µ−uA(m)] ≥ [µ−

`B(m), µ−uB(m)] and

µ+A(m) ≤ µ+B(m) and µ−A(m) ≥ µ−B(m), ∀m ∈M.

Definition 8: [13] Let A = {〈m, [µ+
`A(m), µ+uA(m)],

[µ−
`A(m),mµ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈M} and B =
{〈m, [µ+

`B(m), µ+uB(m)], [µ−
`B(m), µ−uB(m)], {µ+B(m), µ−B

(m)}〉 : m ∈ M} be two CBFSs on M and λ > 0. Then,
the operations on CBFSs under R-order are given below:

i. A ∪R B =
{
〈m, [max{µ+

`A(m), µ+
`B(m)},

max{µ+uA(m), µ+uB(m)}], [min{µ−
`A(m), µ−

`B(m)},

min{µ−uA(m), µ−uB(m)}], {min{µ+A(m), µ+B(m)},

max{µ−A(m), µ−B(m)}}〉 : m ∈M
}

ii. A ∩R B =
{
〈m, [min{µ+

`A(m), µ+
`B(m)},

min{µ+uA(m), µ+uB(m)}], [max{µ−
`A(m), µ−

`B(m)},

max{µ−uA(m), µ−uB(m)}], {max{µ+A(m), µ+B(m)},

min{µ−A(m), µ−B(m)}}〉 : m ∈M
}

iii. A⊕R B =
{
〈m, [µ+

`A(m)+ µ+
`B(m)− µ+

`A(m)

µ+
`B(m), µ+uA(m)+ µ+uB(m)− µ+uA(m)µ+uB(m)],

[−(µ−
`A(m)µ−

`B(m)),−(µ−uA(m)µ−uB(m))],

{µ+A(m)µ+B(m),−(−µ−A(m)− µ−B(m)−

(µ−A(m)µ−B(m)))}〉 : m ∈M
}

iv. A⊗R B =
{
〈m, [µ+

`A(m)µ+
`B(m), µ+uA(m)µ+uB(m)],

[−(−µ−
`A(m)− µ−

`B(m)− (µ−
`A(m)µ−

`B(m))),

−(−µ−uA(m)− µ−uB(m)− (µ−uA(m)µ−uB(m)))],

{µ+A(m)+ µ+B(m)− µ+A(m)µ+B(m),

−(µ−A(m)µ−B(m))}〉 : m ∈M
}

v. Aλ =
{
〈m, [(µ+

`A(m))λ, (µ+uA(m))λ], [−(1− (1

−(−µ−
`A(m)))λ),−(1− (1− (−µ−uA(m)))λ)],

{1− (1− µ+A(m))λ,−(−µ−A(m))λ〉 : m ∈M
}

vi. λA =
{
〈m, [1− (1− µ+

`A(m))λ, 1− (1− µ+uA(m))λ],

[−(−µ−
`A(m))λ,−(−µ−uA(m))λ], {(µ+A(m))λ,

−(1− (1− (−µ−A(m)))λ)}〉 : m ∈M
}

vii. A ⊆R B if [µ+
`A(m), µ+uA(m)] ≤ [µ+

`B(m), µ+uB(m)]

and [µ−
`A(m), µ−uA(m)] ≥ [µ−

`B(m), µ−uB(m)]

and µ+A(m) ≥ µ+B(m) and µ−A(m) ≤ µ−B(m)∀m ∈M.

Definition 9: [13] LetA = {〈m, [µ+
`A(m), µ+uA(m)], [µ−

`A
(m), µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} be a CBFS
on M. The complement of A can be defined as Ac

=

{〈m, [1 − µ+uA(m), 1 − µ+
`A(m)], [−1 + (−µ−uA(m)),−1 +

(−µ−
`A(m))], {1−µ+A(m),−1+ (−µ−A(m))}〉 : m ∈M}

III. SOME NOVEL CONCEPTS OF CBFSs
In this section, we propose some important concepts includ-
ing concentration, dilation, support and core of a cubic bipo-
lar fuzzy set. Moreover, we introduce cubic bipolar fuzzy
relations and discuss some of their types.
Definition 10: Let A = {〈m, [µ+

`A(m), µ+uA(m)], [µ−
`A

(m), µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} be a CBFS on
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initial universeM. Referring to definition 7(part v) and taking
λ = 2 in it, we obtain

A2
=

{
〈m, [(µ+

`A(m))2, (µ+uA(m))2], [−(1 − (1 −
(−µ−

`A(m)))2),−(1−(1−(−µ−uA(m)))2)], {(µ+A(m))2,−(1−
(1− (−µ−A(m)))2}〉 : m ∈M

}
Then,A2 is termed as P-concentration ofA and denoted by

CONP(A).
Example 1: LetM = {m1,m2,m3} be initial universe and

let

A =

〈m1, [0.16, 0.28], [−0.69,−0.53], {0.36,−0.61}〉,
〈m2, [0.32, 0.46], [−0.71,−0.63], {0.42,−0.56}〉,
〈m3, [0.66, 0.78], [−0.36,−0.22], {0.51,−0.44}〉


be a CBFS on M. Then, P-concentration of A is given as
follows

CONP(A) =



〈m1, [0.025, 0.078], [−0.903,−0.779],
{0.129,−0.847}〉,

〈m2, [0.102, 0.211], [−0.915,−0.863],
{0.176,−0.806}〉,

〈m3, [0.435, 0.608], [−0.590,−0.391],
{0.260,−0.686}〉


Definition 11: LetA={〈m, [µ+

`A(m), µ+uA(m)], [µ−
`A(m),

µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} be a CBFS on initial
universeM. Referring to definition 8(part v) and taking λ = 2
in it, we obtain

A2
=
{
〈m, [(µ+

`A(m))2, (µ+uA(m))2], [−(1− (1− (−µ−
`A

(m)))2),−(1− (1− (−µ−uA(m)))2)], {1− (1− µ+A(m))2,
−(−µ−A(m))2}〉 : m ∈M

}
Then, A2 is termed as R-concentration of A and denoted

by CONR(A).
Example 2: For the CBFS A given in example 1, the R-

concentration is given as follows

CONR(A) =



〈m1, [0.025, 0.078], [−0.903,−0.779],
{0.590,−0.372}〉,

〈m2, [0.102, 0.211], [−0.915,−0.863],
{0.663,−0.313}〉,

〈m3, [0.435, 0.608], [−0.590,−0.391],
{0.759,−0.193}〉


Definition 12: LetA ={〈m, [µ+

`A(m), µ+uA(m)],[µ−
`A(m),

µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} be a CBFS on initial
universeM. If we take λ = 1

2 in definition 7(part v), we get

A
1
2 =

{
〈m, [(µ+

`A(m))
1
2 , (µ+uA(m))

1
2 ], [−(1 − (1 −

(−µ−
`A(m)))

1
2 ),−(1− (1− (−µ−uA(m)))

1
2 )], {(µ+A(m))

1
2 ,−(1

−(1− (−µ−A(m)))
1
2 }〉 : m ∈M

}
Then,A

1
2 is called P-dilation ofA and denoted byDILP(A).

Example 3: Consider the same CBFS A given in exam-
ple 1. Then, P-dilation of A is given as follows

DILP(A) =



〈m1, [0.4, 0.529], [−0.443,−0.314],
{0.6,−0.375}〉,

〈m2, [0.565, 0.678], [−0.461,−0.391],
{0.648,−0.336}〉,

〈m3, [0.812, 0.883], [−0.2,−0.116],
{0.714,−0.251}〉



Definition 13: LetA ={〈m, [µ+
`A(m), µ+uA(m)],[µ−

`A(m),
µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} be a CBFS on initial
universeM. If we take λ = 1

2 in definition 8(part v), we get

A
1
2 =

{
〈m, [(µ+

`A(m))
1
2 , (µ+uA(m))

1
2 ], [−(1− (1− (−µ−

`A

(m)))
1
2 ),−(1− (1− (−µ−uA(m)))

1
2 )], {1− (1− µ+A(m))

1
2 ,−

(−µ−A(m))
1
2 }〉 : m ∈M

}
Then, A

1
2 is called R-dilation of A and denoted by

DILR(A).
Example 4: The R-dilation of CBFS A taken from

example 1 is given as follows

DILR(A) =



〈m1, [0.4, 0.529], [−0.443,−0.314],
{0.2,−0.781}〉,

〈m2, [0.565, 0.678], [−0.461,−0.391],
{0.238,−0.748}〉,

〈m3, [0.812, 0.883], [−0.2,−0.116],
{0.3,−0.663}〉


Definition 14: Let A be a CBFS on M. The support

of A, denoted by Supp (A), can be defined by taking
into consideration both the positive and negative mem-
bership degrees separately. Therefore, it is expressed as
union of positive support (Supp+(A)) and negative support
(Supp−(A)), i.e.,

Supp(A) = Supp+(A) ∪ Supp−(A)

where

Supp+(A) = {m ∈M : [µ+
`A(m), µ+uA(m)]

6= [0, 0] and µ+A(m) 6= 0}

Supp−(A) = {m ∈M : [µ−
`A(m), µ−uA(m)]

6= [0, 0] and µ−A(m) 6= 0}

Clearly, Supp (A) is a crisp set.
Example 5: Let

A =


〈m1, [0.12, 0.29], [−0.78,−0.61], {0,−0.59}〉,
〈m2, [0, 0], [−0.89,−0.73], {0.67, 0}〉,

〈m3, [0.68, 0.74], [−0.23,−0.12], {0.66,−0.38}〉,
〈m4, [0.19, 0.27], [0, 0], {0.88,−1}〉,
〈m5, [0, 0.91], [−0.57, 0], {0.62,−0.78}〉


be a CBFS on M. Then, Supp+(A) = {c, d, e} and
Supp−(A) = {a, c, e} so, Supp(A) = {a, c, d, e}.
Definition 15: Let A be a CBFS on M. Then, the upper

core of A is defined as the huddle of all those elements of
M for which [µ+

`A(m), µ+uA(m)] = [1, 1] and µ+A(m) = 1.
Mathematically,

cU = {m ∈M : [µ+
`A(m), µ+uA(m)]

= [1, 1] and µ+A(m) = 1}

Likewise, the lower core is the huddle of all those ele-
ments of M for which [µ−

`A(m), µ−uA(m)] = [−1,−1] and
µ−A(m) = −1, i.e.,

cL = {m ∈M : [µ−
`A(m), µ−uA(m)]

= [−1,−1] and µ−A(m) = −1}
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Example 6: Let

A =


〈m1, [0.67, 0.73], [−1,−1], {0.59,−1}〉,
〈m2, [1, 1], [−0.73,−0.57], {1,−0.88}〉,
〈m3, [0.17, 0.39], [−1,−1], {0.12,−0.59}〉,
〈m4, [0.9, 1], [−0.69,−0.52], {1,−1}〉,
〈m5, [1, 1], [−1,−1], {0.92,−1}〉


be a CBFS onM. Then, cU = {b} and cL = {a, e}.
Definition 16: Let M be initial universe. A cubic bipo-

lar fuzzy set on M in which [µ+
`A(m), µ+uA(m)] = [0, 0],

[µ−
`A(m), µ−uA(m)] = [0, 0], and {µ+A(m), µ−A(m)} = {0, 0}

for all m ∈ M is called null cubic bipolar fuzzy set. It is
denoted by 8.
Definition 17: Let M be initial universe. A cubic bipo-

lar fuzzy set on M in which [µ+
`A(m), µ+uA(m)] = [1, 1],

[µ−
`A(m), µ−uA(m)] = [−1,−1], and {µ+A(m), µ−A(m)} =
{1,−1} for all m ∈M is called absolute cubic bipolar fuzzy
set. It is denoted by Ã.
Remark 1: The two well-known laws of crisp set theory,

named as law of contradiction and law of excluded middle,
do not hold in cubic bipolar fuzzy theory. That is,
(i) A ∩P A

c
6= 8

(ii) A ∪P A
c
6= Ã

(iii) A ∩R Ac
6= 8

(iv) A ∪R Ac
6= Ã

Example 7: Let

A =

〈m1, [0.23, 0.47], [−0.12,−0.06], {0.08,−0.29}〉,
〈m2, [0.59, 0.67], [−0.48,−0.31], {0.26,−0.31}〉,

〈m3, [0, 0.9], [−1,−0.8], {0,−0.2}〉


be a CBFS onM = {m1,m2,m3}. Then,

Ac
=

〈m1, [0.53, 0.77], [−0.94,−0.88], {0.92,−0.71}〉,
〈m2, [0.33, 0.41], [−0.69,−0.52], {0.74,−0.69}〉,

〈m3, [0.1, 1], [−0.2, 0], {1,−0.8}〉


Now,

A ∩P A
c
=



〈m1, [0.23, 0.47], [−0.12,−0.06],
{0.08,−0.29}〉,

〈m2, [0.33, 0.41], [−0.48,−0.31],
{0.26,−0.31}〉,

〈m3, [0, 0.9], [−0.2, 0],
{0,−0.2}〉


6= 8

and

A ∪P A
c
=



〈m1, [0.53, 0.77], [−0.94,−0.88],
{0.92,−0.71}〉,

〈m2, [0.59, 0.67], [−0.69,−0.52],
{0.74,−0.69}〉,

〈m3, [0.1, 1], [−1,−0.8],
{1,−0.8}〉


6= Ã

If we replace P-order by R-order in the above example,
we can see that law of contradiction and excluded middle still
do not hold.
Theorem 1: Let A = {〈m, [µ+

`A1
(m), µ+uA(m)], [µ−

`A(m),
µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈M} andB = {〈m, [µ+

`A2

(m), µ+uB(m)], [µ−
`B(m), µ−uB(m)], {µ+B(m), µ−B(m)}〉 : m

∈M} be two CBFSs onM. Then,

i. (A ∪P B)⊕P (A ∩P B) = A⊕P B;
ii. (A ∪P B)⊗P (A ∩P B) = A⊗P B;
iii. (A ∪R B)⊕R (A ∩R B) = A⊕R B;
iv. (A ∪R B)⊗R (A ∩R B) = A⊗R B.

Proof: We prove (i)-(ii), and (iii)-(iv) can be proved
analogously.

(i). (A ∪P B)⊕P (A ∩P B) =
{
〈m, [max{µ+

`A(m),

µ+
`B(m)},max{µ+uA(m), µ+uB(m)}]

{max{µ+A(m), µ+B(m)},min{µ−A(m),

µ−B(m)}}〉 : m ∈M
}
⊕P

{
〈m, [min{µ+

`A(m),

µ+
`B(m)},min{µ+uA(m), µ+uB(m)}],

[max{µ−
`A(m), µ−

`B(m)},max{µ−uA(m), µ−uB(m)}],

{min{µ+A(m), µ+B(m)},max{µ−A(m),

µ−B(m)}}〉 : m ∈M
}

=
{
〈m, [max{µ+

`A(m), µ+
`B(m)} +min{µ+

`A(m),

µ+
`B(m)} −max{µ+

`A(m), µ+
`B(m)}min{µ+

`A(m),

µ+
`B(m)},max{µ+uA(m), µ+uB(m)} +min{µ+uA(m),

µ+uB(m)} −max{µ+uA(m), µ+uB(m)}min{µ+uA(m),

µ+uB(m)}], [−min{µ−
`A(m), µ−

`B(m)}max{µ−
`A(m),

µ−
`B(m)},−min{µ−uA(m), µ−uB(m)}max{µ−uA(m),

µ−uB(m)}]{max{µ+A(m), µ+B(m)} +min{µ+A(m),

µ+B(m)} −max{µ+A(m), µ+B(m)}min{µ+A(m),

µ+B(m)},−min{µ−A(m), µ−B(m)}max{µ−A(m),

µ−B(m)}〉 : m ∈M
}

=
{
〈m, [µ+

`A(m)+ µ+
`B(m)− µ+

`A(m)µ+
`B(m),

µ+uA(m)+ µ+uB(m)− µ+uA(m)µ+uB(m)],

[−(µ−
`A(m)µ−

`B(m)),

−(µ−uA(m)µ−uB(m))], {µ+A(m)+−µ+A(m)µ+B(m),

−(µ−A(m)µ−B(m))}〉 : m ∈M
}
= A⊕P B

(ii). (A ∪P B)⊗P (A ∩P B) =
{
〈m, [max{µ+

`A(m),

µ+
`B(m)},max{µ+uA(m), µ+uB(m)}], [min{µ−

`A(m),

µ−
`B(m)},min{µ−uA(m), µ−uB(m)}], {max{µ+A(m),

µ+B(m)},min{µ−A(m), µ−B(m)}}〉 : m ∈M
}

⊗P
{
〈m, [min{µ+

`A(m), µ+
`B(m)},min{µ+uA(m),

µ+uB(m)}], [max{µ−
`A(m), µ−

`B(m)},max{µ−uA(m),

µ−uB(m)}], {min{µ+A(m), µ+B(m)},max{µ−A(m),

µ−B(m)}}〉 : m ∈M
}

=
{
〈m, [max{µ+

`A(m), µ+
`B(m)}min{µ+

`A(m), µ+
`B(m)},

max{µ+uA(m), µ+uB(m)}min{µ+uA(m), µ+uB(m)}]

[−(−min{µ−
`A(m), µ−

`B(m)} −max{µ−
`A(m),

µ−
`B(m)} −min{µ−

`A(m), µ−
`B(m)}max{µ−

`A(m),

µ−
`B(m)}),−(−min{µ−uA(m), µ−uB(m)}

−max{µ−uA(m), µ−uB(m)} −min{µ−uA(m), µ−uB(m)}
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max{µ−uA(m), µ−uB(m)})]{max{µ+A(m), µ+B(m)}

min{µ+A(m), µ+B(m)},−(−min{µ−A(m), µ−B(m)}

−max{µ−A(m), µ−B(m)} −min{µ−A(m),

µ−B(m)}max{µ−A(m), µ−B(m)})〉 : m ∈M
}

=
{
〈m, [µ+

`A(m)µ+
`B(m), µ+uA(m)µ+uB(m)],

[−(−µ−
`A(m)− µ−

`B(m)− µ−
`A(m)µ−

`B(m)),

−(µ−uA(m)µ−uB(m))], {µ+A(m)µ+B(m),

−(−µ−A(m)− µ−B(m)− µ−A(m)µ−B(m))}〉 : m ∈M
}

= A⊗P B

Theorem 2: Let A = {〈m, [µ+
`A1

(m), µ+uA(m)], [µ−
`A(m),

µ−uA(m)], {µ+A(m), µ−A(m)}〉 : m ∈ M} and B =

{〈m, [µ+
`A2

(m), µ+uB(m)], [µ−
`B(m), µ−uB(m)], {µ+B(m),

µ−B(m)}〉 : m ∈M} be two CBFSs onM. Then,

i. (A ∪P B) ∩P B = B;
ii. (A ∩P B) ∪P B = B;
iii. (A ∪R B) ∩R B = B;
iv. (A ∩R B) ∪R B = B.

Proof: We prove (i) & (ii), and (iii) & (iv) can be proved
similarly.

(i). (A ∪P B) ∩P B
{
〈m, [max{µ+

`A(m),

µ+
`B(m)},max{µ+uA(m), µ+uB(m)}],

[min{µ−
`A(m), µ−

`B(m)},min{µ−uA(m), µ−uB(m)}],

{max{µ+A(m), µ+B(m)},min{µ−A(m), µ−B(m)}}〉 :

m ∈M
}
∩P {〈m, [µ

+

`A2
(m), µ+uB(m)], [µ−

`B(m),

µ−uB(m)], {µ+B(m), µ−B(m)}〉 : m ∈M}

=
{
〈m, [min(max{µ+

`A(m), µ+
`B(m)}, µ+

`A2
(m)),

min(max{µ+uA(m), µ+uB(m)}, µ+uA2
(m))],

[max(min{µ−
`A(m), µ−

`B(m)}, µ−
`B(m)),max(min

{µ−uA(m), µ−uB(m)}, µ−uB(m))]{min(max{µ+A(m),

µ+B(m)}, µ+B(m)),max(min{µ−A(m), µ−B(m)},

µ−B(m))}〉 : m ∈M
}

= {〈m, [µ+
`A2

(m), µ+uB(m)], [µ−
`B(m), µ−uB(m)],

{µ+B(m), µ−B(m)}〉 : m ∈M}

= B

(ii). (A ∩P B) ∪P B =
{
〈m, [min{µ+

`A(m),

µ+
`B(m)},min{µ+uA(m), µ+uB(m)}],

[max{µ−
`A(m), µ−

`B(m)},max{µ−uA(m), µ−uB(m)}],

{min{µ+A(m), µ+B(m)},max{µ−A(m), µ−B(m)}}〉 :

m ∈M
}
∩P {〈m, [µ

+

`A2
(m), µ+uB(m)],

[µ−
`B(m), µ−uB(m)], {µ+B(m), µ−B(m)}〉 : m ∈M}

=
{
〈m, [max(min{µ+

`A(m), µ+
`B(m)}, µ+

`A2
(m)),

max(min{µ+uA(m), µ+uB(m)}, µ+uA2
(m))], [min(max

{µ−
`A(m), µ−

`B(m)}, µ−
`B(m)),min(max{µ−uA(m),

µ−uB(m)}, µ−uB(m))], {max(min{µ+A(m), µ+B(m)},

µ+B(m)),min(max{µ−A(m), µ−B(m)}, µ−B(m))}〉

: m ∈M
}

= {〈m, [µ+
`A2

(m), µ+uB(m)], [µ−
`B(m), µ−uB(m)],

{µ+B(m), µ−B(m)}〉 : m ∈M} = B

A. CUBIC BIPOLAR FUZZY RELATIONS
Definition 18: Let M × N be cartesian product of two

initial universes M and N. A cubic bipolar fuzzy relation R
fromM toN (in short, R :M→ N) is a cubic bipolar fuzzy
set onM×N, i.e.,
R = {〈(m, n), [µ+`R(m, n), µ

+

uR(m, n)], [µ
−

`R(m, n), µ
−

uR
(m, n)], {µ+R (m, n), µ

−

R (m, n)}〉 : (m, n) ∈M×N}
In particular, a cubic bipolar fuzzy relation (CBFR) from

M to M is called CBFR on M. The collection of all CBFRs
on M(resp. from M to N) is denoted by CBFR(M)(resp.
CBFR(M×N)).
Example 8: Let M = {m1,m2,m3} be initial universe.

A CBFR on M can be represented in the matrix form
in Table 1.
Now, we discuss some types of CBFRs.
Definition 19: Let R ∈ CBFR(M×N). Then, the inverse

of R is a CBFR fromN toM (R−1 : N→M) and is defined
as R−1 = {〈(n,m), [µ+

`R−1
(n,m), µ+

uR−1
(n,m)], [µ−

`R−1
(n,

m), µ−
uR−1

(n,m)], {µ+
R−1

(n,m), µ−
R−1

(n,m)}〉 : (n,m) ∈ N×

M}, where for each (n,m) ∈ N×M, [µ+
`R−1

(n,m), µ+
uR−1

(n,m)] = [µ+`R(m, n), µ
+

uR(m, n)], [µ
−

`R−1
(n,m), µ−

uR−1
(n,

m)] = [µ−`R(m, n), µ
−

uR(m, n)] and µ
+

R−1
(n,m) = µ+R (m, n),

µ−
R−1

(n,m) = µ−R (m, n).
Example 9: Consider the CBFR given in example 8. Then,

R−1 is given as in Table 1.
Definition 20: A CBFR R ∈ CBFR(M) is said to be

reflexive if for each m ∈ M, [µ+`R(m,m), µ+uR(m,m)] =
[1, 1], [µ−`R(m,m), µ−uR(m,m)] = [−1,−1] andµ+R (m,m) =
1, µ−R (m,m) = −1.
Definition 21: A CBFR R ∈ CBFR(M) is said to be sym-

metric if for each m,m′ ∈ M, [µ+`R(m,m
′), µ+uR(m,m

′)] =
[µ+`R(m

′,m), µ+uR(m
′,m)], [µ−`R(m,m

′), µ−uR(m,m
′)] =

[µ−`R(m
′,m), µ−uR(m

′,m)] and µ+R (m,m
′) = µ+R (m

′,m),
µ−R (m,m

′) = µ−R (m
′,m).

Definition 22: A CBFR R ∈ CBFR(M) is said to be
transitive if for (m, m̈) ∈M×M, [µ+`R(m, m̈), µ+uR(m, m̈)] ≥∨
ṁ∈M

(
[µ+`R(m, ṁ), µ+uR(m, ṁ)]

∧
[µ+`R(ṁ, m̈), µ+uR(ṁ, m̈)]

)
,

[µ−`R(m, m̈), µ−uR(m, m̈)] ≤
∧

ṁ∈M

(
[µ−`R(m, ṁ), µ−uR(m, ṁ)]∨

[µ−`R(ṁ, m̈), µ−uR(ṁ, m̈)]
)
and µ+R (m, m̈) ≥

∨
ṁ∈M

(
µ+R (m,

ṁ)
∧
µ+R (ṁ, m̈)

)
, µ−R (m, m̈) ≤

∧
ṁ∈M

(
µ−R (m, ṁ)

∨
µ−R (ṁ,

m̈)
)
.
Definition 23: A CBFR R ∈ CBFR(M) is called an

equivalence relation on M if it is reflexive, symmetric and
transitive.
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TABLE 1. CBFR for examples 8, 9 and 10.

Example 10: A CBFR on M = {m1,m2,m3} is given
in Table 1. It is easy to check that this CBFR is an equivalence
relation.

IV. CORRELATION COEFFICIENTS OF CBFSs
In this section, we propose some correlation coefficients
for any two cubic bipolar fuzzy sets (CBFSs), which deter-
mine the strength of relationship between them. Moreover,
an advanced feature of these correlation coefficients is their
ability to determine whether two CBFSs are positively or
negatively correlated.
Definition 24: Let α̃ = 〈[µ+

`α̃
, µ+uα̃], [µ

−

`α̃
, µ−uα̃], {µ

+

α̃
, µ−

α̃

}〉 and β̃ = 〈[µ+
`β̃
, µ+

uβ̃
], [µ−

`β̃
, µ−

uβ̃
], {µ+

β̃
, µ−

β̃
}〉 be two

CBFNs, then the deviation of α̃ and β̃ can be computed by
using the following expression

d̃(α̃, β̃) =
(µ+

`α̃
− µ+

`β̃
+ µ+uα̃ − µ

+

uβ̃

2

)
+

( (−µ−
`α̃
)− (−µ−

`β̃
)+ (−µ−uα̃)− (−µ−

uβ̃
)

2

)
+(µ+

α̃
− µ+

β̃
)+ ((−µ−

α̃
)− (−µ−

β̃
))

The deviation consists of two parts: the deviation of pos-
itive membership degrees and that of negative membership
degrees. Since, cubic bipolar fuzzy information deals with
a property as well as its counter-property so it sounds rea-
sonable to add up the deviation of positive and negative
membership degrees.

The deviation of CBFNs satisfies the following properties
Theorem 3: Let α̃, β̃ and γ̃ be three CBFNs, then
i. −4 ≤ d̃(α̃, β̃) ≤ 4
ii. d̃(α̃, β̃) = −d̃(β̃, α̃)
iii. d̃(α̃, β̃)+ d̃(β̃, γ̃ ) = d̃(α̃, γ̃ )

Proof: Straightforward.
Example 11: Let α̃ = 〈[0.14, 0.53], [−0.37,−0.26],
{0.49,−0.55}〉 and β̃ = 〈[0.48, 0.63], [−0.44,−0.31],
{0.71,−0.68}〉 be two CBFNs. Then,

d̃(α̃, β̃) =
(0.14− 0.48+ 0.53− 0.63

2

)
+

(0.37− 0.44+ 0.26− 0.31
2

)
+ (0.49− 0.71)+ (0.55− 0.68) = −0.63

Definition 25: Let M = {m1,m2, . . . ,mn} be ini-
tial universe and A = {〈mi, [µ

+

`A(mi), µ
+

uA(mi)],
[µ−
`A(mi), µ

−

uA(mi)], {µ
+

A(mi), µ
−

A(mi)}〉 : mi ∈ M} be a
CBFS onM. The mean value of A is given by

E(A) =
〈
[µ̄+
`A, µ̄

+

uA], [µ̄
−

`A, µ̄
−

uA], {µ̄
+

A, µ̄
−

A}
〉

=

〈[1
n

n∑
i=1

µ+
`A(mi),

1
n

n∑
i=1

µ+uA(mi)
]
,

×

[1
n

n∑
i=1

µ−
`A(mi),

1
n

n∑
i=1

µ−uA(mi)
]
,

×

{1
n

n∑
i=1

µ+A(mi),
1
n

n∑
i=1

µ−A(mi)
}〉

E(A) is again a CBFN.
Let M = {m1,m2, . . . ,mn} be initial universe and A =
{〈mi, [µ

+

`A(mi), µ
+

uA(mi)], µ
−

`A(mi), µ
−

uA(mi)], {µ
+

A(mi),
µ−A(mi)}〉 : mi ∈ M} and B = {〈mi, [µ

+

`B(mi), µ
+

uB(mi)],
[µ−
`B(mi), µ

−

uB(mi)], {µ
+

B(mi), µ
−

B(mi)}〉 : mi ∈M} be two
CBFSs onM. We define

di(A)

=

(µ+
`A(mi)− µ̄

+

`A + µ
+

uA(mi)− µ̄
+

uA

2

)
+

( (−µ−
`A(mi))− (−µ̄−

`A)+ (−µ−uA(mi))− (−µ̄−uA)

2

)
+(µ+A(mi)− µ̄

+

A)+ ((−µ−A(mi))− (−µ̄−A))

di(B) =
(µ+

`B(mi)− µ̄
+

`B + µ
+

uB(mi)− µ̄
+

uB

2

)
+

( (−µ−
`B(mi))− (−µ̄−

`B)+ (−µ−uB(mi))− (−µ̄−uB)

2

)
+(µ+B(mi)− µ̄

+

B)+ ((−µ−B(mi))− (−µ̄−B))

Definition 26: Let A = {〈mi, [µ
+

`A(mi), µ
+

uA(mi)],
[µ−
`A(mi), µ

−

uA(mi)], {µ
+

A(mi), µ
−

A(mi)}〉 : mi ∈ M} be a
CBFS onM. The variance of A can be defined as

D(A) =
1

n− 1

n∑
i=1

(di(A))2 (1)

Definition 27: Let A = {〈mi, [µ
+

`A(mi), µ
+

uA(mi)],
[µ−
`A(mi), µ

−

uA(mi)], {µ
+

A(mi), µ
−

A(mi)}〉 : mi ∈ M} and
B = {〈mi, [µ

+

`B(mi), µ
+

uB(mi)],n [µ−
`B(mi), µ

−

uB(mi)],
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{µ+B(mi), µ
−

B(mi)}〉 : mi ∈ M} be two CBFSs on M. The
covariance between A andB is given by

Cov(A,B) =
1

n− 1

n∑
i=1

di(A)di(B) (2)

Clearly, covariance satisfies the following properties:

i. Cov(A,B) = Cov(B,A)
ii. Cov(A,A) = D(A)

Definition 28: For two CBFSs A and B, the correlation
coefficient is defined by

θ1(A,B) =
Cov(A,B)
√
D(A).D(B)

(3)

Theorem 4: LetA andB be two CBFSs on initial universe
M = {m1,m2, . . . ,mn}. Then, the correlation coefficient
given in Eq.(3) satisfies the following conditions:

i. θ1(A,B) = θ1(B,A)
ii. −1 ≤ θ1(A,B) ≤ 1
iii. θ1(A,B) = 1 if A = B
iv. θ1(A,Ac) = −1.

Proof: (i) Straightforward.
(ii) To prove this, we utilize Cauchy-Schwarz inequality

which states that (
m∑
j=1

tjsj)2 ≤ (
m∑
j=1

t2j )(
m∑
j=1

s2j ) for all t =

(t1, t2, . . . , tm), s = (s1, s2, . . . , sm) ∈ Rm. Now,

(Cov(A,B))2 =
{ 1
n− 1

n∑
i=1

di(A)di(B)
}2

≤
1

n− 1

n∑
i=1

(di(A))2 ×
1

n− 1

n∑
i=1

(di(B))2

= D(A)D(B)

⇒ |Cov(A,B)| ≤
√
D(A)D(B)

⇒ −

√
D(A)D(B) ≤ Cov(A,B)

≤

√
D(A)D(B)

⇒ −1 ≤
Cov(A,B)
√
D(A).D(B)

≤ 1

Hence, −1 ≤ θ1(A,B) ≤ 1.
(iii) If A = B, then [µ+

`A(mi), µ
+

uA(mi)] =

[µ+
`B(mi), µ

+

uB(mi)], [µ
−

`A(mi), µ
−

uA(mi)] = [µ−
`B(mi),

µ−uB(mi)], µ
+

A(mi) = µ
+

B(mi) and µ
−

A(mi) = µ
−

B(mi) for all
mi ∈ M. Clearly, D(A) = D(B) and Cov(A,B) = D(A).
Then,

θ1(A,B) =
Cov(A,B)
√
D(A).D(B)

=
D(A)

√
D(A)D(A)

= 1.

(iv) For a CBFS A, the complement of A is given by
Ac

= {〈mi, [1 − µ+uA(mi), 1 − µ+
`A(mi)], [−1 +

(−µ−uA(mi)),−1 + (−µ−
`A(mi))], {1 − µ+A(mi),−1 +

(−µ−A(mi))}〉 : mi ∈M}
Now, as shown at the bottom of the page.
Thus,

D(Ac) = 1
n−1

n∑
i=1

(di(Ac))2 = 1
n−1

n∑
i=1

(−di(A))2 = 1
n−1

n∑
i=1

(di(A))2 = D(A). Further, we have Cov(A,Ac) = 1
n−1

n∑
i=1

di(A)di(Ac) = 1
n−1

n∑
i=1
−(di(A))2 = −D(A). Hence,

θ1(A,Ac) =
Cov(A,Ac)
√
D(A).D(Ac)

=
−D(A)
√
D(A)D(A)

= −1

Example 12: Let

A =

〈m1, [0.23, 0.36], [−0.47,−0.31], {0.41,−0.26}〉,
〈m2, [0.51, 0.69], [−0.34,−0.27], {0.21,−0.39}〉,
〈m3, [0.47, 0.63], [−0.58,−0.43], {0.49,−0.61}〉



di(Ac) =
(µ+

`Ac (mi)− µ̄
+

`Ac + µ
+

uAc (mi)− µ̄
+

uAc

2

)
+

( (−µ−
`Ac (mi))− (−µ̄−

`Ac )+ (−µ−uAc (mi))− (−µ̄−uAc )

2

)
+(µ+Ac (mi)− µ̄

+

Ac )+ ((−µ−Ac (mi))− (−µ̄−A))

=

( (1− µ+uA(mi))− (1− µ̄+uA)+ (1− µ+
`A(mi))− (1− µ̄+

`A)

2

)
+

( (1− (−µ−uA(mi)))− (1− (−µ̄−uA))+ (1− (−µ−
`A(mi)))− (1− (−µ̄−

`A))

2

)
+((1− µ+A(mi))− (1− µ̄+A))+ ((1− (−µ−A(mi)))− (1− (−µ̄−A)))

= −

{(µ+
`A(mi)− µ̄

+

`A + µ
+

uA(mi)− µ̄
+

uA

2

)
+

( (−µ−
`A(mi))− (−µ̄−

`A)+ (−µ−uA(mi))− (−µ̄−uA)

2

)
+ (µ+A(mi)− µ̄

+

A)+ ((−µ−A(mi))− (−µ̄−A))
}
= −di(A)
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and

B =

〈m1, [0.36, 0.49], [−0.61,−0.47], {0.41,−0.56}〉,
〈m2, [0.56, 0.71], [−0.43,−0.36], {0.54,−0.44}〉,
〈m3, [0.18, 0.32], [−0.51,−0.29], {0.36,−0.39}〉


be two CBFSs on M. At first, we calculate the mean values
of A andB as follows

E(A) = 〈[0.40, 0.56], [−0.46,−0.34], {0.37,−0.42}〉

E(B) = 〈[0.37, 0.51], [−0.52,−0.37], {0.44,−0.46}〉

The variance and covariance of A andB can be computed
by finding the values of di(A) and di(B) for i = 1, 2, 3. After
calculations, we have

d1(A) = −0.315, d2(A) = −0.165,

d3(A) = 0.485, d1(B) = 0.15,

d2(B) = 0.225, d3(B) = −0.385.

By using Eq.(1), the variance of A andB is given below

D(A) =
1
2

[
(−0.315)2 + (−0.165)2 + (0.485)2

]
= 0.1808

D(B) =
1
2

[
(0.15)2 + (0.225)2 + (−0.385)2

]
= 0.1107

By using Eq.(2), the covariance between A andB is given
as

Cov(A,B) =
1
2

[
(−0.315)(0.15)

+ (0.485)(−0.385)
]
= −0.1356

The correlation coefficient using Eq.(3) can be calculated
as

θ1(A,B) =
−0.1356

√
0.1808× 0.1107

= −0.9585.

Definition 29: Let A and B be two CBFSs on initial
universe M = {m1,m2, . . . ,mn}, then another correlation
coefficient is defined by

θ2(A,B) =
Cov(A,B)

max{D(A),D(B)}
(4)

Theorem 5: LetA andB be two CBFSs on initial universe
M = {m1,m2, . . . ,mn}. Then, the correlation coefficient
given in Eq.(4) satisfies the following conditions:
i. θ2(A,B) = θ2(B,A)
ii. −1 ≤ θ2(A,B) ≤ 1
iii. θ2(A,B) = 1 if A = B
iv. θ2(A,Ac) = −1.

Proof: We omit the proof.
In various multi-attribute decision making (MADM) sce-

narios, different attributes are assigned different weights by
the decision experts. Therefore, weights of the elementsmi ∈

M (i = 1, 2, . . . , n) should be taken into consideration.
For this purpose, the above-defined correlation coefficients
θ1(A,B) and θ2(A,B) can be extended to weighted correla-
tion coefficients as follows:

Definition 30: Let w = (w1,w2, . . . ,wn) be the weight
vector of the elements mi ∈ M (i = 1, 2, . . . , n) with the

conditions that wi ≥ 0 and
n∑
i=1

wi = 1. Then, for any two

CBFSs A and B on M, the weighted correlation coefficient
is defined by

θ3(A,B) =
Covw(A,B)
√
Dw(A)Dw(B)

(5)

where

Dw(A) =
1

n− 1

n∑
i=1

wi(di(A))2

Covw(A,B) =
1

n− 1

n∑
i=1

widi(A)di(B)

Theorem 6: For two CBFSs A and B on M =

{m1,m2, . . . ,mn}, the weighted correlation coefficient pro-
posed in Eq. (5) fulfills the following properties:
i. θ3(A,B) = θ3(B,A)
ii. −1 ≤ θ3(A,B) ≤ 1
iii. θ3(A,B) = 1 if A = B
iv. θ3(A,Ac) = −1.

Proof: We only prove (ii) and the remaining parts are
straightforward.

(ii) By using Cauchy-Schwarz inequality, we have

(Covw(A,B))2 =
{ 1
n− 1

n∑
i=1

widi(A)di(B)
}2

=

{ 1
n− 1

n∑
i=1

√
widi(A)

√
widi(B)

}2
≤

1
n− 1

n∑
i=1

wi(di(A))2

×
1

n− 1

n∑
i=1

wi(di(B))2

= Dw(A)Dw(B)

⇒ |Covw(A,B)| ≤
√
Dw(A)Dw(B)

⇒ −

√
Dw(A)Dw(B) ≤ Covw(A,B)

≤

√
Dw(A)Dw(B)

⇒ −1 ≤
Covw(A,B)
√
Dw(A).Dw(B)

≤ 1

Hence, −1 ≤ θ3(A,B) ≤ 1.

Definition 31: Let w = (w1,w2, . . . ,wn) be the weight
vector of the elements mi ∈ M (i = 1, 2, . . . , n) with the

conditions that wi ≥ 0 and
n∑
i=1

wi = 1. Then, for any two

CBFSs A and B on M, the weighted correlation coefficient
is defined by

θ4(A,B) =
Covw(A,B)

max{Dw(A),Dw(B)}
(6)
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Algorithm 1
Step 1. Consider some known patterns L1,L2, . . . ,Lm in the
form of CBFSs in a finite initial universeM.
Step 2. Construct an unknown patternQ in the form of CBFS
in M, this pattern is to be recognized.
Step 3. Find the correlation coefficients of Q and Lj (j =
1, 2, . . . ,m) by using Eqs.(3)or (4). If the elements of the ini-
tial universeM own some weights, then weighted correlation
coefficients given in Eqs. (5) or (6) can be utilized.
Step 4. The patternQ belongs to the pattern Lj for which the
value of correlation coefficient is maximum.

Theorem 7: For two CBFSs A and B on M =

{m1,m2, . . . ,mn}, the weighted correlation coefficient pro-
posed in Eq. (6) fulfills the following properties:

i. θ4(A,B) = θ4(B,A)
ii. −1 ≤ θ4(A,B) ≤ 1
iii. θ4(A,B) = 1 if A = B
iv. θ4(A,Ac) = −1.

Proof: We omit the proof.
Remark 2: If we take w = ( 1n ,

1
n , . . . ,

1
n ), then the

weighted correlation coefficients given in Eqs. (5) and (6)
reduce to unweighted correlation coefficients presented in
Eqs. (3) and (4).

V. APPLICATIONS IN PATTERN RECOGNITION AND
CLUSTERING ANALYSIS
This section provides applications of our proposed correlation
coefficients to pattern recognition and clustering analysis
under cubic bipolar fuzzy environment.

A. PATTERN RECOGNITION
Pattern recognition is a data analysis technique that employs
machine learning algorithms to identify patterns and regular-
ities in data. Pattern recognition has a broad range of applica-
tions, including image processing, aerial photo interpretation,
speech and fingerprint recognition, optical character recogni-
tion in scanned documents such as contracts and photographs,
and even medical imaging and diagnosis.

To identify an unknown pattern from the known ones under
cubic bipolar fuzzy data, we adopt the following steps:

The flow diagram of the proposed algorithm 1 is presented
in Figure 1.

1) NUMERICAL EXAMPLE
Consider three known patterns which are given in the form of
CBFSs in initial universeM = {m1,m2,m3} as

L1=

〈m1, [0.37, 0.48], [−0.51,−0.40], {0.46,−0.32}〉,
〈m2, [0.22, 0.33], [−0.36,−0.25], {0.39,−0.24}〉,
〈m3, [0.41, 0.52], [−0.62,−0.51], {0.53,−0.67}〉


L2=

〈m1, [0.21, 0.34], [−0.47,−0.34], {0.48,−0.59}〉,
〈m2, [0.52, 0.65], [−0.36,−0.23], {0.67,−0.44}〉,
〈m3, [0.47, 0.60], [−0.29,−0.16], {0.41,−0.33}〉



L3=

〈m1, [0.29, 0.44], [−0.33,−0.18], {0.56,−0.26}〉,
〈m2, [0.52, 0.67], [−0.36,−0.21], {0.69,−0.41}〉,
〈m3, [0.36, 0.51], [−0.28,−0.13], {0.44,−0.31}〉


The unknown pattern is given as follows:

Q =

〈m1, [0.17, 0.36], [−0.41,−0.22], {0.38,−0.43}〉,
〈m2, [0.43, 0.69], [−0.33,−0.18], {0.71,−0.52}〉,
〈m3, [0.26, 0.49], [−0.52,−0.31], {0.22,−0.67}〉


We want to know which pattern Q belongs to? For this

purpose, we determine the correlation coefficients of Q and
Lj, j = 1, 2, 3 by using Eqs. (3) and (4). The results are
presented in Table 2.

TABLE 2. Results of correlation coefficients between unknown and
known patterns.

It is evident from the above table thatQ belongs to the pat-
tern L3. Now, suppose that the elements of M carry weights
and their weights are 0.37, 0.28 and 0.35, respectively. Then,
the weighted correlation coefficients by using Eqs. (5) and (6)
can be calculated between unknown and known patterns. The
results are summarized in Table 3.

TABLE 3. Results of weighted correlation coefficients between unknown
and known patterns.

Again, the pattern Q belongs to the pattern L3.

B. CLUSTERING ANALYSIS
Clustering refers to a process that divides a set of data points
into clusters such that the data points in the same cluster have
more similar traits than those in different clusters. In what
follows, we propose a novel clustering algorithm under cubic
bipolar fuzzy environment. Before this, we discuss some
basic ideas.
Definition 32: Let Lj be m CBFSs, then F = (fst )m×m is

called correlation matrix, where fst = θ (Ls,Lt ) denotes the
correlation coefficient between Ls and Lt and satisfies:
i. −1 ≤ fst ≤ 1, s, t = 1, 2, . . . ,m;
ii. fss = 1, s = 1, 2, . . . ,m;
iii. fst = fts, s, t = 1, 2, . . . ,m.
Definition 33: Let F = (fst )m×m be a correlation matrix,

then F2
= F ◦F = (f̄st )m×m is called composition matrix of

F , where

f̄st = max
u
{min{fsu, fut }}, s, t = 1, 2, . . . ,m.

Definition 34: Let F = (fst )m×m be a correlation matrix,
then after finite number of compositions:F → F2

→ F4
→

. . . → F2κ
→. . . , there exists a positive integer κ such that
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FIGURE 1. Flow diagram of algorithm 1.

F2κ
= F2(κ+1) , and F2κ is termed as equivalent correlation

matrix.
Definition 35: Let F = (fst )m×m be an equivalent correla-

tion matrix, then Fρ = (f ρst )m×m is a Boolean matrix, called
ρ-cutting matrix of F , where

f ρst =

{
0 if fst < ρ,

1 if fst ≥ ρ,

s, t = 1, 2, . . . ,m and ρ is confidence level with ρ ∈ [0, 1].
We now develop a novel CBF clustering algorithm as follows:

Algorithm 2
Step 1. Let {L1,L2, . . . ,Lm} be a huddle of CBFSs on M
and {ξ1, ξ2, . . . , ξn} be a set of attributes. First, construct the
correlation matrix F = (fst )m×m, where fst can be computed
by utilizing Eq.(5), i.e.,

fst = θ3(Ls,Lt ) =
n∑
i=1

wi
Covw(Ls,Lt )
√
Dw(Ls)Dw(Lt )

where wi, i = 1, 2, . . . , n are the weights assigned to the
attributes by decision experts.
Step 2. Find F2 and check whether F2

⊆ F . If this holds,
then F is the equivalent correlation matrix, otherwise, con-
struct the equivalent correlation matrix F2κ :

F→ F2
→ F4

→ . . .→ F2κ
→ . . . , until F2κ

= F2(κ+1) .

Step 3. For a confidence level ρ, find a ρ-cuttingmatrixFρ =
(f ρst )m×m, where f

ρ
st is defined by using definition 5.4.

Step 4. Classify the CBFSs by the principle: If all the entries
of sth row(column) in Fρ are the same as the corresponding
entries of tth row(column) in Fρ , then the CBFSs Ls and Lt
belong to the same cluster, otherwise not.

The flow chart diagram of the proposed algorithm 2 is
given in Figure 2.

1) NUMERICAL EXAMPLE
A robot is a re programmable multi-functional manipula-
tor that can move material, parts, equipment, or specialized
devices using variable programmed motion to perform a
wide range of tasks. Due to recent development in infor-
mation technology and engineering sciences, the utilization
of robots has been increased in different advanced manufac-
turing systems. Robots are capable of performing repetitive,

FIGURE 2. Flowchart diagram of algorithm 2.

challenging, and dangerous tasks with great accuracy. There-
fore, a variety of industrial applications such as automated
assembly, material handling, machine loading, spray painting
and welding, are proficiently performed by the robots.

Suppose that there are five robots Lj, j = 1, 2, . . . , 5,
which are to be evaluated by a committee of technical
experts on the basis of five attributes: ξ1(cost), ξ2(load
capacity), ξ3(positioning accuracy), ξ4(repeatability) and
ξ5(programming flexibility). The weight vector of these
attributes is w = (0.19, 0.20, 0.17, 0.21, 0.23).
To demonstrate the differences of the opinions of different

experts, we present the evaluation information in the form of
CBFSs which is given in Table 4.
Now, we apply the clustering algorithm to cluster the

robots.
Step 1: Calculate the correlation coefficients of Lj (j =

1, 2, . . . , 5) by using Eq.(5) and construct the correlation
matrix:

F =


1.000 0.505 −0.474 0.174 −0.222
0.505 1.000 0.236 −0.343 0.079
−0.474 0.236 1.000 0.218 0.341
0.174 −0.343 0.218 1.000 −0.125
−0.222 0.079 0.341 −0.125 1.000
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TABLE 4. Evaluation information of 5 robots under 5 attributes.

TABLE 5. Clustering results of 5 robots.

Step 2: Calculate

F2
= F ◦ F =


1.000 0.505 0.236 0.174 0.079
0.505 1.000 0.236 0.218 0.236
0.236 0.236 1.000 0.218 0.341
0.174 0.218 0.218 1.000 0.218
0.079 0.341 0.341 0.218 1.000


Since F2 * F , so we construct the equivalent correlation

matrix by calculating further compositions as follows:

F4
= F2

◦ F2
=


1.000 0.505 0.236 0.218 0.236
0.505 1.000 0.236 0.218 0.236
0.236 0.341 1.000 0.218 0.341
0.218 0.218 0.218 1.000 0.218
0.341 0.341 0.341 0.218 1.000



F8
= F4

◦ F4
=


1.000 0.505 0.236 0.218 0.236
0.505 1.000 0.236 0.218 0.236
0.341 0.341 1.000 0.218 0.341
0.218 0.218 0.236 1.000 0.218
0.341 0.341 0.341 0.218 1.000



F16
= F8

◦ F8
=


1.000 0.505 0.236 0.218 0.236
0.505 1.000 0.236 0.218 0.236
0.341 0.341 1.000 0.218 0.341
0.236 0.236 0.236 1.000 0.236
0.341 0.341 0.341 0.218 1.000



F32
= F16

◦ F16
=


1.000 0.505 0.236 0.218 0.236
0.505 1.000 0.236 0.218 0.236
0.341 0.341 1.000 0.218 0.341
0.236 0.236 0.236 1.000 0.236
0.341 0.341 0.341 0.218 1.000


Thus, F16 is an equivalent correlation matrix.
Step 3: For a confidence level ρ, apply the definition 35 on

the entries of equivalent correlation matrix F16 to obtain a

ρ-cutting matrix. It is obvious that different values of ρ will
give different ρ-cutting matrices.
Step 4: We discuss a sensitivity analysis on the basis of

different values of confidence level ρ, and acquire all possible
clusters of the 5 robots. The results are summarized in Table 5.

VI. CONCLUSION
CBFS is a generalization of bipolar fuzzy set which handles
the two-sided approach of decision analysis and inexact-
ness of the data by taking into consideration both IVBFS
and BFS simultaneously. In this article, we defined some
well-known terminologies for CBFSs which include concen-
tration, dilation, support and core of a CBFS. We developed
cubic bipolar fuzzy relations along with their certain types.
In statistics, correlation coefficient examines the strength
of relationship between two variables. It also determines
whether two variables tend to behave in the same manner
(positive correlation) or in the opposite manner (negative
correlation). The correlation coefficients for CBFSs should
also possess these characteristics. Therefore, as in statistics
with real variables, we defined variance and covariance for
two CBFSs and then, developed correlation coefficients and
their weighted extensions on the basis of variance and covari-
ance of CBFSs. These correlation coefficients range in [-1,1]
which make them superior to some of the existing correlation
coefficients that lie in [0,1]. We investigated some properties
of these correlation coefficients. We applied these correlation
coefficients to pattern recognition and clustering analysis
and demonstrated their usability and effectiveness through
numerical illustrations. In the future, we will study distance
and similarity measures [36] and knowledge measures [40]
for CBFS.
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